Geology and Ore Deposits of the Central York Mountains, Western Seward Peninsula, Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Geology and Ore Deposits of the Central York Mountains, Western Seward Peninsula, Alaska Geology and Ore Deposits of p50 the Central York Mountains, I Western Seward Peninsula, S3 Alaska GEOLOGICAL SURVEY BULLETIN 1287 O GC oc O es ^ HI » <=; HI i i QC GO eea 00 Geology and Ore Deposits of the Central York Mountains, Western Seward Peninsula, Alaska By C. L. SAINSBURY GEOLOGICAL SURVEY BULLETIN 1287 Description of the geologic structure, stratigraphy, petrology, and ore deposits of an area containing tin deposits and a new type of beryllium deposit UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library, of Congress catalog-card No, 78-602244 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.00 (paper cover) CONTENTS Page Abstract_ _______________________________________________________ l Introduction__________-__-_-______--__---------____________--_--__ 2 Location_ ___________________________________________________ 2 Purpose and scope of report_._--___-----_--____-________-_-_-_ 3 Methods of study__________-_---___--_--_-_.________._----___ 4 Acknowledgments __________-_-__----___---_______l______--____ 4 Previous work_____-__-__-----_-________--___________---____- 5 Sedimentary rocks._________-____-_-_____-___-_-___________----_-__ 6 Pre-Ordovician rocks___________________________________________ 7 Slate of the York region-____________________________________ 7 Argillaceous and dolomitic limestone.___--___-_______-----___ 9 Undifferentiated limestone and argillaceous and dolomitic lime­ stone_ ________________________________________________ 10 Summary of pre-Ordovician rocks_______-_-__________------_ 11 Lower Ordovician rocks.____-___-_--_____---__________-___--_-_ 12 Argillaceous limestone and limestone (shallow-water facies) _ _ _. _ 13 Limestone and argillaceous limestone (quiet-water facies)_______ 19 Lower and Middle Ordovician rocks____.__-_-___________--__-_._ 29 Shale and limestone..______________________________________ 29 Middle Ordovician rocks____------_---------__-___-__.-_--__--- 30 Dark limestone..__________-__-___-_-_--_____--_-__--_-_--- 30 Undifferentiated Middle and Upper Ordovician rocks__._____----._ 32 Summary of Ordovician rocks.__________________________________ 32 Pleistocene rocks-_-_-_-____----_-_----_----__--_____.__---__-- 32 Structure. ______-___----_-____._.-_-__--..----__-______._.-------_ 33 Thrustfaults_______________________________________...________ 35 Normal faults.________________________ _.____________)___________ 39 Age of faulting._______._._____.__.........__.___________-___._ 41 Igneous rocks_____________________________________________________ 41 Pre-Ordovician rocks...________________________________________ 41 Upper Cretaceous or Tertiary (?) rocks.... ____-_.._____-___---_--. 43 Granite stocks..--.-___-_ -_---.-----._____.._-_-_-----.- 43 Dike rocks -.__-_-_._____----_____-_-_....._____-_.-_-._ 45 Rhyolite dikes.____-_--_-----_-----_______-.-__-_---_- 45 Lamprophyre dikes-_-_--_----_-----_-----_---_-------- 46 Chemical composition._____________________________ 48 Origin_ _ ________________________________________ 56 Age of igneous rocks.______-_____-__-_-___-___-_______-__--__--- -- 61 Tin deposits______________________________________________________ 62 Economic importance__________________________________________ 62 Geology.-_-_--________-____--_-_-_-__-----__________.-------_ 64 in IV CONTENTS Page Beryllium deposits.________._____________--________---___---------- 64 Economic importance_______-___-_____-_______-__-_-_-------__- 64 General description.___________________________________________ 65 Beryllium minerals and paragenetic sequence...___________________ 67 Main deposits._____________-___________________--_------------ 76 Rapid River..._._..__....-__.__..__..-...---------_---.-- 76 Curve Greek....__.-------.----.-------------------------. 77 Lost River Valley--___-------------_---_-_--------_------- 78 Tin Creek...__._.____-..___--_..____._______-._--.__-_ 79 Camp Creek_________---_____-__-_____-__----___--_--_-__- 81 Lost River mine_^___--___--_______-_-___-___-_----_----_ 83 Suggested zonal relation of tin and beryllium deposits._________________ 84 Ore genesis_______________________________________________________ 86 Distribution of rare elements______________________________________ 90 Suggestions for prospecting.________________________________________ 91 Suggestions for exploration _________________________________________ 93 Selected references..___________-_____..-___________--_____-__------- 95 Index.________-______________--___--____-______________--------__ 99 ILLUSTRATIONS [Plates are in pocket] Page PLATE 1. Geologic map and structure sections of the central York Mountains. 2. Diagram showing variation in oxides in igneaus rocks of the York Mountains. 3-6. Geologic maps: 3. Beryllium deposits on Camp Creek, Lost River area. 4. Beryllium deposits on Rapid River. 5. Beryllium and tin deposits in Lost River valley. 6. Tin and beryllium deposits on Tin Creek. FIGUEE 1. Map of the western Seward Peninsula, Alaska, showing areas discussed in this report....._________________ 3 2-7. Photographs: 2. Cleaved thin-bedded argillaceous limestone which overlies the "slate of the York region" ____ 9 3. Very thin bedded argillaceous limestone of un­ certain age exposed around the mouth of Esch Creek.... ___________--__._____-_-.____ 12 4. Clastic limestone in beds of the shallow-water facies of the Lower Ordovician limestones.... 14 5. Knobby-surfaced limestone of the shallow-water facies of the Lower Ordovician limestones__._ 15 6. Beds of pink limestone of the uppermost Lower Ordovician rocks.._________________________ 28 7. Dolomitized flaggy limestones of the lowermost Middle Ordovician rocks.___________________ 29 CONTENTS V Page FIGURE 8. Stratigraphic record of the main Quaternary events re­ corded in the York Mountains.____________________ 34 9. Diagrammatic cross section through marine terraces near the Lost River_-_-----_--_____-_--_--------_---__ 34 10-15. Photographs: 10. Mint River thrust east of the Mint River____._ 35 11. Tectonic breccia near a thrust fault, showing disoriented blocks of limestone_____________ 36 12. Chevron fold involving medium- to thick-bedded limestones of the 01 map unit._____________ 37 13. Rapid River fault in the south tributary of the Kanauguk River__-__-__----__--__-_-_--_- 37 14. Rapid River fault where it enters the drainage basin of the Rapid River. _________________ 38 15. Banded dolomite that replaced medium-bedded calcitic limestone._____-.---_____-_-____._ 39 16. Photomicrograph of coarse-grained gabbro from sheared dike---___----------_-------_--------__--------_ 42 17. Photomicrograph of dikecemented breccia..--_________ 46 18. Photograph of a xenolith of coarse-grained granite in lamprophyre dike-------_-----__-_-_---____. 47 19-23. Photomicrographs: 19. Typical dark diabase dike without xenocrysts... 54 20. Composite lamprophyre dike. ________________ 56 21. Typical dark lamprophyre dike that cuts com­ posite dike ___-__-__-___-_-._______-____.. 58 ^ 22. Lamprophyre dike from area of beryllium ^^ deposits on the Rapid River__.._____-.___-. 59 23. Hornblende lamprophyre from dike near the granite at Tin Creek______-__-_-_-______-_ 60 24. Diagram showing compositional trends in the igneous rocks of the central York Mountains._______________ 61 25. Photograph of cryptocrystalline veinlets of curdy white chyrsoberyl and diaspore cutting fluorite-beryllium rock.___________________________________________ 66 26. Photomicrographs of cryptocrystalline veinlet of curdy white chrysoberyl and diaspore cutting fluorite- beryllium rock._---___----_______--_-__--_._-____ 66 27. Photograph of rhythmically banded skarn_____________ 70 28. Photomicrograph of chrysoberyl separated from fluorite- f- beryllium ore from the Rapid River area____.--___._ 71 29. Photomicrographs showing texture of typical fluorite- beryllium ore, Rapid River area..__________________ 72 j 30. Photograph of a cross section of a nodule from the Camp Creek deposits_------_----_____-_________________ 74 31. Photograph of beryllium-fluorite ore from veinlets in marble on the south side of the granite at Tin Creek. _ 75 32. Cross sections showing probable configuration of ore localized beneath thrust faults__._________-_.____. 82 33. Distribution of zones, minerals, and elements in zoned tin-beryllium deposits.._-______-_____.___-_-____. 85 VI CONTENTS TABLES Page TABLE 1. Measured section in Lower Ordovician argillaceous lime­ stone and limestone, west of mouth of Koteebue Creek. 16 2. Measured section in Lower Ordovician limestone and argillaceous limestone.____________________________ 21 3. Fossils with stratigraphic value from the quiet-water facies (Lower Ordovician limestone and argillaceous limestone), Central York Mountains________________ 27 4. Fossils from the upper Lower and lower Middle Ordovi­ cian limestone and shale, and the Middle Ordovician limestone, central York Mountains.________________ 31 5. Chemical composition of granites of the western Seward Peninsula_ _____________________________________ 44 6. Chemical and mineral composition of diabase dikes, lamprophyre dikes, granite xenolith, and alkalic basalt, western Seward Peninsula.________________________ 49 7. Tin and tungsten reserves of the Lost River mine-___-_ 63 8. Quantitative spectrographic analyses of beryllium ores and ratio of fluorine to beryllium in beryllium ores, Lost
Recommended publications
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Redalyc.Mineralogical Study of the La Hueca Cretaceous Iron-Manganese
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Corona Esquivel, Rodolfo; Ortega Gutiérrez, Fernando; Reyes Salas, Margarita; Lozano Santacruz, Rufino; Miranda Gasca, Miguel Angel Mineralogical study of the La Hueca Cretaceous Iron-Manganese deposit, Michoacán, south-western Mexico Revista Mexicana de Ciencias Geológicas, vol. 17, núm. 2, 2000, pp. 142-151 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57217206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas, volumen 17, número 2, 143 2000, p. 143- 153 Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F MINERALOGICAL STUDY OF THE LA HUECA CRETACEOUS IRON- MANGANESE DEPOSIT, MICHOACÁN, SOUTHWESTERN MEXICO Rodolfo Corona-Esquivel1, Fernando Ortega-Gutiérrez1, Margarita Reyes-Salas1, Rufino Lozano-Santacruz1, and Miguel Angel Miranda-Gasca2 ABSTRACT In this work we describe for the first time the mineralogy and very briefly the possible origin of a banded Fe-Mn deposit associated with a Cretaceous volcanosedimentary sequence of the southern Guerrero terrane, near the sulfide massive volcanogenic deposit of La Minita. The deposit is confined within a felsic tuff unit; about 10 meters thick where sampled for chemical analysis. Using XRF, EDS and XRD techniques, we found besides todorokite, cryptomelane, quartz, romanechite (psilomelane), birnessite, illite-muscovite, cristobalite, chlorite, barite, halloysite, woodruffite, nacrite or kaolinite, and possibly hollandite-ferrian, as well as an amorphous material and two unknown manganese phases.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Pamphlet to Accompany Scientific Investigations Map 3131
    Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data By Alison B. Till, Julie A. Dumoulin, Melanie B. Werdon, and Heather A. Bleick Pamphlet to accompany Scientific Investigations Map 3131 View of Salmon Lake and the eastern Kigluaik Mountains, central Seward Peninsula 2011 U.S. Department of the Interior U.S. Geological Survey Contents Introduction ....................................................................................................................................................1 Sources of data ....................................................................................................................................1 Components of the map and accompanying materials .................................................................1 Geologic Summary ........................................................................................................................................1 Major geologic components ..............................................................................................................1 York terrane ..................................................................................................................................2 Grantley Harbor Fault Zone and contact between the York terrane and the Nome Complex ..........................................................................................................................3 Nome Complex ............................................................................................................................3
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Study of the Structure Model of Todorokite
    Title Study of the Structure Model of Todorokite Author(s) Miura, Hiroyuki Citation 北海道大学理学部紀要, 23(1), 41-51 Issue Date 1991-07 Doc URL http://hdl.handle.net/2115/36772 Type bulletin (article) File Information 23-1_p41-51.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Jour. Fac. Sci., Hokkaido Univ., Ser. IV, vol. 23, no. 1, July., 1991, pp. 41 -51 STUDY OF THE STRUCTURE MODEL OF TODOROKITE by Hiroyuki Miura (with 5 text-figures and 3 tables) Abstract The X - ray diffraction study of todorokite from Japan was carried out and appropriate struc­ tural model was calculated by Rietveld method. The calculation of the theoretical diffraction pattern was done for a layer structural model and the calculated results show that the layer model can explain the observed diffraction data. Some of the properties of todorokite such as superstructure or shrinkage of c-axis on heating can be explained by the layer model which con­ tains random H 20 between the [MnOs] layers. Introduction Todorokite is a manganese oxide mineral having H 20 in its structure. It was reported first from the Todoroki gold mine, Hokkaido, Japan (Yoshimura, 1934) . This mineral occurs as aggregate of fine acicular crystals. It also contains H20, Ca, Ba and Mg. The X -ray powder diffraction data of todorokite clearly show diffraction peaks of 9.6, 4.8, 3.2, 2.45 and 1.42 A. Since 1934 there has been many reports of todorokite like minerals from all over the world (Frondel, 1953; Frondel et aI. , 1960; Ljunggren, 1960; Straczek et aI., 1960; Faulring, 1961 ; Larson, 1962; Radtke et aI., 1967; Lawrence et aI., 1968; Harada, 1982; Siegel and Turner, 1983) .
    [Show full text]
  • Todorokite and Pyrolusite from Vermlands Taberg
    NOTES AND NEWS THE AMERICAN MINERALOGIST, VOL. 45, JANUARY_FEBRUARY, 1960 TODOROKITE AND PYROLUSITEFROM VERMLANDS TABERG, SWEDEN Poxrus L;uNccnnN, Unioersity oJ Lund,, Lund., Swed.en During the courseof an examination of the soft iron ore of Vermlands Taberg in western Sweden (P. Ljunggren, 1958) manganesemineraliza- tion was found to have taken place both in the goethitized iron ore and in the argillized wall-rock. The manganeseoxides are found as veins in the soft iron ore, as impregnations in the argillized wall-rock and in secondary calcite veins. A formation of dendrites of manganeseoxides is also very common. This rnanganesemineralization is mainly concen- trated to the border zone between the soft iron ore and the argillized skarn and leptite rocks. The width of the manganiferous veins hitherto found, often less than ten centimetres, is too small to allow any pro- fitable mining of manganeseore. The quite predominating manganeseoxide mineral in these veins is pyrolusite. In a secondary calcite vein cutting the soft iron ore another manganese oxide mineral was found and identified as todorokite (T. Yoshimura, 1934; C. Frondel, 1953).An examination of the pyrolusite and the todorokite is given in the present paper. Tooonoxtrs The todorokite is found as black aggregatesin a 5 cm. wide secondary calcite vein in the soft iron ore. The aggregatesconsist of small needle- shapedcrystals (maximum size0.2X0.01 mm.) arrangedspherulitically or dendritically in the calcite vein. The mineral was found upon ,-ray examination to be identical with todorokite (Mn, Ba, Ca, Mg) MnaOz.HsO, as describedby C. Frondel in 1953 and T. Yoshimura in 1934.
    [Show full text]
  • Cr-Hollandite: Breaking Tradition with Todorokite-Type Manganese Oxides Stanton Ching Connecticut College, [email protected]
    Connecticut College Digital Commons @ Connecticut College Chemistry Faculty Publications Chemistry Department 8-2012 Cr-Hollandite: Breaking Tradition with Todorokite-type Manganese Oxides Stanton Ching Connecticut College, [email protected] Jonathan P. Franklin Carley M. Spencer Follow this and additional works at: http://digitalcommons.conncoll.edu/chemfacpub Part of the Chemistry Commons Recommended Citation Ching, S. S., Franklin, J. P., & Spencer, C. M. Cr-hollandite: Breaking tradition with todorokite-type manganese oxides. Polyhedron, 2012, doi:10.1016/j.poly.2012.07.099 This Article is brought to you for free and open access by the Chemistry Department at Digital Commons @ Connecticut College. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. Elsevier Editorial System(tm) for Polyhedron Manuscript Draft Manuscript Number: POLY-D-12-00837R1 Title: Cr-Hollandite: Breaking Tradition with Todorokite-type Manganese Oxides Article Type: Michelle Millar Issue Keywords: manganese oxide chromium hollandite hydrothermal synthesis Corresponding Author: Dr. Stanton Ching, Corresponding Author's Institution: Connecticut College First Author: Stanton Ching Order of Authors: Stanton Ching; Jonathan P Franklin; Carley M Spencer Manuscript Region of Origin: USA Graphical Abstract (synopsis) (for review) Click here to download high resolution image *Manuscript Click here to view linked References Cr-Hollandite: Breaking Tradition with Todorokite-type Manganese Oxides Stanton Ching,* Jonathan P. Franklin, and Carley M. Spencer Department of Chemistry, Connecticut College, New London, CT 06320, USA * Corresponding author. Tel.: 860-439-2753; fax 860-439-2477; E-mail address: [email protected] This contribution is dedicated to the memory of Michelle M.
    [Show full text]
  • FEB 2 1965 Rt:.- LR
    Uoo) UNITED STATES DEPARTMENT OP THE INTERIOR Geological Survey FEB 2 1965 rt:.- LR Planetable maps and drill logs of fluorite and beryllium deposits, Lost River area, Alaska By C. L. Sainsbury 1965 OPEN FILE Planetable maps and drill logs of fluorite and beryllium deposits, Lost River area, Alaska by C. L. Sainsbury Introduction The actual planetable mapping was done by J. M. Kelly and D. W. Peters, who traced units delineated by Sainsbury. On both maps additions, such as the Mary Lou and Camp Creek faults, were made by Sainsbury. Hence, map units used and major faults are the responsibility of Sainsbury, but actual placement of the contacts and float zones of ore are the responsibility of Kelly and Peters. The logs of the 16 holes drilled by the U.S. Bureau of Mines were made by the author. In the descriptions of the drill core the word "same," followed by additional comments, means that the general lithology of the core is the sane as that in the previous interval, but that details differ as described. The term "CaF2-Be rock" is used throughout to describe a rock that may be varied locally, but for the most part consists of a fine-grained intergrowth of fluorite, mica, tourmaline, diaspora, chrysoberyl, and traces to small amounts of numerous other minerals. Camp Creek area i Geology The map of this area was prepared principally for delineation of the geology of the fluorite-beryllium deposits drilled by the U.S. Bureau of Mines in 1964. The tin deposits were discussed fully in U.S.
    [Show full text]
  • Land Resource Regions and Major Land Resource Areas of Alaska
    United States Department of Agriculture Land Resource Natural Resources Regions and Major Conservation Service Land Resource October 2004 Areas of Alaska Land Resource Regions and Major Land Resource Areas of Alaska October 2004 USDA—NRCS Alaska 800 W. Evergreen Avenue, Suite 100 Palmer, Alaska 99645-6539 This document is available on the NRCS Alaska Web site: http://www.ak.nrcs.usda.gov/technical/lrr.html Edited by: Darrell R. Kautz, Vegetation Ecologist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Pam Taber, Editorial Assistant, NRCS, Alaska MLRA Region 17, Palmer, Alaska Contributors: Joseph P. Moore, State Soil Scientist/MLRA Office Leader, NRCS, Palmer, Alaska Dennis Moore, Soil Data Quality Specialist, Alaska MLRA Region 17, Palmer, Alaska Mark Clark, Soil Scientist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Darrell R. Kautz, Vegetation Ecologist, NRCS, Alaska MLRA Region 17, Palmer, Alaska Dennis Mulligan, Soil Scientist, NRCS, Alaska MLRA Region 17, Fairbanks, Alaska Michael Mungoven, Soil Scientist, NRCS, Alaska MLRA Region 17, Homer, Alaska David K. Swanson, Soil Scientist, NRCS, Alaska Douglas Van Patten, Soil Scientist, NRCS, Alaska Cover Looking north along the Toklat River in Denali National Park with the Wyoming Hills in the background. This area is within the Interior Alaska Mountains Major Land Resource Area (228), a part of the Interior Alaska Major Land Resource Region (X1). The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).
    [Show full text]
  • United States Geological Survey
    Bulletin No. 229 Series A, Economic Geology, 36 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY . CHARLES D. WALCOTT, DIRECTOR THE BY ARTHUR, J. COLLIER WASHINGTON GOVERNMENT PRINTING OFFICE 1904 o CONTENTS. Page. Letter of transmittal .............................^........................ 7 Introduction .............................................. ...^.......... 9 Geographic position .............................................. 9 History of recent exploration and development..................'... 10 Purpose of this bulletin ........................................... 12 General geology.......................................................... 12 Sedimentary rocks ..........-....-------...-..---.-.--.-.--.--...-..- 12 Surficial deposits...................'..........................-... 14 ** Igneous rocks........................--..-...-......-.----.....------ 15 ^ Economic geology.....................--...---...-.-.-.-...---.-.-....... 16 General statement ...................................................... 16 I Localities where lode tin has been fouhd............................... 17 Lost Eiver........................................................ 17 Cape Mountain .................................................. 23 Localities from which lode tin has been reported ....................... 25 * Diomede Islands................................................. 25 Brooks Mountain................................................. 26 * Don River....................................................... 26 , Ear Mountain...................................................
    [Show full text]