Igneous Rocks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2013 Annual Rep Nnual Report 2013
Annual Report 2013 IMER Answering the challenge of sustainable and efficient use of global resources The Institute for Mineral and Energy Resources (IMER) is part of the University of Adelaide, Australia. IMER undertakes interdisciplinary research that addresses scientific, technological, environmental and social challenges in the provision of mineral and energy commodities globally. Established in 2008, IMER aims to become a leading research and postgraduate training facility for the mining and energy sectors in the Asia-Pacific region. The University of Adelaide is unique within Australia for its strong research and teaching groups in geology and geophysics, petroleum engineering, mining engineering and energy technology. These groups form the Institute’s core. Vision Key fields of research IMER’s vision is that interdisciplinary research is Earth sciences: geology, geochemistry, key to the sustainable use and development of the geosequestration, geophysics and physical geography. world’s mineral and energy resources for the benefit Energy technology: fluid mechanics and turbulence, of society, industry and the environment. thermal process modelling, alternative fuels, materials and nanotechnology, power systems and devices. Mission Resource engineering: petroleum and mining IMER’s mission is to be recognised globally as a centre engineering. of excellence for interdisciplinary research, innovation and technology transfer in mineral and energy resources. Interdisciplinary research is also conducted in geothermal energy, decision analysis, industry Objectives and socio-economic studies and environmental impacts specifically related to energy and mineral • Advance the science and technology required resource developments. to enhance the prospectivity, discovery and Some of the University of Adelaide schools and extraction of mineral and energy resources, faculties involved with IMER include the Australian including petroleum and geothermal resources. -
Mineral Mania
The Rock Factory A Pre-Visit Information Guide for Teachers Meets Next Generation Science Standards: 5-PS1-3; MS LS4-1,2; MS ESS1-4; MS-ESS2-1 How does our Earth create so many different types of rocks? Learn about the different processes that form and reform rocks as you identify many types of rocks, minerals and fossils. Students will learn to think like geologists as they move through interactive investigation stations packed with specimens from the Museum’s collections. OBJECTIVES The Rock Cycle: Students will examine the three types of rocks - igneous, metamorphic and sedimentary – and discover the processes that create them. Tracing the connections between shale and slate, limestone and marble, students will discover how the rock cycle changes the very ground beneath our feet! Characteristics of Rocks Students will learn how to observe and identify rocks through their unique characteristics, looking for telling clues such as layering, crystal size, fossils, magnetism, and more. Students will practice their observational skills as they describe the Museum’s unique rock and mineral specimens. Investigation Stations: Students will explore Museum geology specimens up close at investigation stations to answer such questions as: “Why do fossils form only in certain rocks?” “How do rocks form from volcanic eruptions?” “How can I recognize different types of rocks?”. ACTIVITIES Teachers are encouraged to conduct pre-visit and post-visit classroom discussions and activities with their classes to make the most of their experience. Encourage your students to start a classroom rock collection, and create an exhibit with the rocks organized by type – igneous, sedimentary and metamorphic. -
Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock. -
Longitude 131° | an Introduction Uluru-Kata Tjuta National Park at a Glance
Longitude 131° | An Introduction Timeless and enriching, Baillie Lodges’ Longitude 131° offers guests immersion in the World Heritage listed wilderness of Uluru-Kata Tjuta National Park, complete with earthy luxury and private views of Uluru (Ayers Rock). Since initially opening under Voyages management in June 2002, Longitude 131° has attracted widespread international and domestic acclaim. It was one of the first developments approved under the Commonwealth Environment Protection & Biodiversity Conservation Act and has established world best practices that ecotourism operators around the world now strive to match. Longitude 131° was approved following extensive consultations with the Central Land Council and Aboriginal Areas Protection Authority that included cultural mapping studies to confirm there were no sacred sites in the area. In depth flora and fauna surveys were also undertaken to protect vulnerable species such as the Mulgara (a small native marsupial), the Great Desert Skink and the Marsupial Mole. Devastated by bushfires in October 2003, the property was re-built with meticulous attention to detail. In particular, the use and transport of prefabricated structures and light-weight machinery minimised impacts on the delicate ecology, which was in a vital stage of regeneration. Longitude 131° is arguably one of the finest and most exclusive luxury wilderness camps in the world, offering discerning travellers an experience unlike any other in Australia. It is also accredited as ‘Advanced ecoCERTIFIED’ under Ecotourism Australia’s internationally recognised certification program. Longitude 131° joined the Baillie Lodges portfolio of luxury lodges in 2013, as a sister to Capella Lodge, Lord Howe Island and Southern Ocean Lodge, Kangaroo Island. -
Exploring Origins of Pitted/Vesicular Rocks in Perseverance Valley, Endeavour Crater
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2327.pdf EXPLORING ORIGINS OF PITTED/VESICULAR ROCKS IN PERSEVERANCE VALLEY, ENDEAVOUR CRATER. A. W. Tait1*, C. Schröder1, W. H Farrand2, J. W. Ashley3, B. A. Cohen4, R. Gellert5, J. Rice6, L. C. Crumpler7, B. Jolliff8, 1Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK ([email protected]), 2Space Science Institute, Boulder, CO, USA, 3Jet Propulsion Laboratory, California In- stitute of Technology, Pasadena, CA, USA, 4NASA Goddard Space Flight Centre, Greenbelt, MD, USA, 5Department of Physics, University of Guelph, Ontario, Canada, 6Planetary Science Institute, Tucson, AZ, USA, 7NM Museum of Natural History & Science, Albuquerque, NM, USA, 8Washington University in St. Louis, MO, USA. Introduction: Since sol 4780, the NASA Mars Ex- ploration Rover (MER) Opportunity has been traversing down Perseverance Valley (PV), a linear, negative-re- lief feature trending perpendicular to the western flank of Endeavour crater. The goal of the current investiga- tion is to understand PVs geomorphology and chemical composition to determine its mode of formation and ap- proximate age. Formation hypotheses include debris or fluid flow, and wind sculpting, all while intersecting possible Noachian lithologies [1]. Rover observations confirms orbital data that there exists a dextral off-set, indicating a structural origin to the valleys formation [2]. This faulting may have allowed for fluids to interact with the rocks [3]. On sol ~5000 Opportunity started to investigate a train of dark pitted/vesicular rocks with an unusual morphology, texture, and composition enriched in Al and Si. Here we describe the rock facies, and ex- plore preliminary formation/alteration hypotheses. -
Periodic Report on the State of Conservation of Uluru-Kata Tjuta
----------------------------------------------------------------------------------------------------------------------- AUSTRALIAN NATIONAL PERIODIC REPORT SECTION II Report on the State of Conservation of Uluru – Kata Tjuta National Park ------------------------------------------------------------------------------------------------------------------------------------ Periodic Report 2002 - Section II Uluru - Kata Tjuta National Park 1 ----------------------------------------------------------------------------------------------------------------------- II.1. INTRODUCTION a. State Party Australia b. Name of World Heritage property Uluru - Kata Tjuta National Park c. Geographical coordinates to the nearest second Uluru - Kata Tjuta National Park is located in Central Australia, in the south-western corner of the Northern Territory, at latitude 25°05’ - 25°25’ south and longitude 130°40’ - 131° east. d. Date of inscription on the World Heritage List Uluru - Kata Tjuta National Park was nominated and inscribed on the World Heritage List for natural values in 1987 under natural criteria (ii) and (iii). Uluru - Kata Tjuta National Park was renominated and inscribed on the World Heritage List as a Cultural Landscape in 1994 under cultural criteria (v) and (vi). e. Organization(s) or entity(ies) responsible for the preparation of the report This report was prepared by Parks Australia, in association with the Heritage Management Branch of the Department of the Environment and Heritage. II.2. STATEMENT OF SIGNIFICANCE Criteria Uluru - Kata Tjuta -
Structure of the Earth
And the ROCK CYCLE Structure of the Earth Compositional (Chemical) Layers Crust: Low density High in silicon (Si) and oxygen (O) Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel (Ni) and Iron (Fe) Heat Flow in the Earth Heat sources: latent heat from the formation of the Earth Radioactive decay in the core and mantle Temperature in the core: 3000- 5000° C Cooling processes: Convection currents: in outer core and asthenosphere transport heat to the surface Plate tectonics releases heat through the crust (volcanoes) Convection cells in the mantle and core transport heat from the interior of earth to the surface and also return cooler material back into the earth. Mechanical (Physical) Layers of the Earth Lithosphere: Crust and upper, solid part of the mantle; “plates” in plate tectonics Asthenosphere: Partially molten part of mantle; location of convection current that drive plates Outer core: Liquid Inner core: Solid Greatest temperatures, solid due to intense pressure Comparing Compositional Layers to Mechanical Layers Moho What is a Rock? A group of minerals bound together Three major groups: 1) Igneous: Solidified Molten Magma 2) Sedimentary: formed by cementing of sediments. Sediments come from the erosion of other rocks. 3) Metamorphic: Heat and pressure change a rock into something new, without melting. Rock Types Igneous: Solidified molten magma 2 types of Igneous: 1) Extrusive (volcanic) = erupted lava Cools more quickly, so only small crystals form. 2) Intrusive (plutonic) = never erupted magma Cools more slowly within the earth, so larger crystals can form. -
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Extrusive Igneous Rocks- a Rock Formed on the Earth’S Surface
Rocks What is a rock? • Rock- naturally formed, consolidated materials composed of one or more minerals. • There are 3 types of rocks: • Igneous • Sedimentary • Metamorphic Igneous Rocks What are Igneous Rocks? • Magma vs. Lava • Magma- molten rock below the Earth’s surface. • Lava- magma on the Earth’s surface. • Igneous Rock- rocks made from cooling magma or lava. • They can be intrusive or extrusive. Intrusive vs. Extrusive • Intrusive Igneous Rocks- a rock that forms below the Earth’s surface. • Normally made from magma • Extrusive Igneous Rocks- a rock formed on the Earth’s surface. • Normally made from lava. Extrusive rock The white rock is intrusive. Intrusive Igneous Rocks • We cannot see these rocks be formed. • They typically have large crystal minerals. • The rock itself can give you a lot of information about how it was formed. Extrusive Igneous Rocks • You can see them form: • Lava flow • Ash Flow • Lava that cools down very quickly so all you see is ask coming out • Pyroclastic Flow • Clouds flowing downhill like a huge avalanche. • Data from these rocks can be used to interpret ancient volcanic activity. Igneous Rock Textures • The crystal size of the rock is related to the speed of the rock cooling. • Fast gives you small crystals and slow cooling gives you large crystals. • Also the rocks can appear: • Glassy- look like a piece of glass. • From the magma/lava cooling too quickly. • Vesicular- has air bubbles in it. This is vesicular. • From air bubbles getting trapped in the magma/lava. • Fragmental- they look jagged and angular. This is glassy and fragmental. -
Lavas. Understanding Volcanism Provides a Background for Theories
lavas. Understanding volcanism provides a background for theories relating to mountain building, the development and evolution of continental and oceanic crt~st,and how the crust is deformed. Our observations of volcanic activity fit nicely into plate-tectonic theory as described in chapter 11. The May 18, 1980 eruption of Mount St. Helens (box 10.1) was a spectacular release of energy from the earth's interior. The plate-tectonic explanation is that North America, moving weritwa~d,is overriding a portion of the Pacific Ocean Aoor. Melting of previously solid rock takes place at depth, just above the subduction zone. (Thii was described briefly in chapter 1 and more thoroughly in chapter 11.) At least some of the magma (molten rock or liquid that is mostly silica) works its way upward to the earth's surface to erupt. Magma does not always reach the earth's surface before solidifying, but when it does it is called lava. At Mount St. Helens the lava solidified quickly as it was blasted explosively by gases into the air, producing rock frag- ments known as pyrodasw (from the Greekpyro, "fire," and clart, "broken"). Pyroclastic debris is also known as tcphra. Elsewhere in the world (notably Hawaii) lava extrudes out of Flgulr 10.1 fissures in the ground as lava flows. Pyrodastic debris and Volcanic eruptions in Hawaii, 1969. A lava fountain is supply11 rock formed by solidification of lava are collectively regarded the lava cascading over the cliff. as emwive rock, surface rock resulting from volcanic Photo by D A Swanson, US Geolog~calSurvey acrivity. -
Igneous Petrology
IGNEOUS PETROLOGY PRESENTED BY Dr.A.BALUKKARASU Associate Professor Centre for Remote Sensing Bharathidasan University Thiruchirappalli-620 023 India. mail id:[email protected] MTIGT0403: IGNEOUS & METAMORPHIC PETROLOGY 1. Forms and Structures of Igneous rocks - Intrusives and their relation to Geological Structures (Concordant and Discordant forms - Multiple Intrusions – Composite Intrusions) - Composition and Constitution of Magmas - Structure and Texture of Igneous Rocks- Formation of Igneous rocks: Crystallization of Unicomponent Magma -Phase Equilibria studies of Binary and Ternary Silicate system - Crystallisation of Basaltic magma. 12 Hrs. 2. Classification of Igneous rocks – Microtextures and Structures of Igneous rocks and their Petrogenetic Significance - Petrography of Igneous rocks – Tabular Classification - Petrography of Acid-Intermediate - Basic and Ultrabasic rocks - Diversity of Igneous rocks - Reaction Principle - Magmatic Crystallization – Assimilation – Petrographic province and various diagrams - Plate Tectonics and Magmatic Evolution – Fluid Inclusion studies of Igneous rocks. Evolution of Basalts -Petrogenesis of Granites, Pegmatities, Alkaline rocks, Monomineralic rocks, Charnockites and Ultramafics. 14 Hrs. 3. Definition of Metamorphism - Scope of Metamorphism – Controlling factors of Metamorphism - Kinds of Metamorphism and its Products - Classification and Nomenclature - Petrography of Metamorphic rocks (Schists – Gneisses – Granulites) - Metamorphic textures and Microstructures and their relation to Metamorphic -
The Building Blocks of Rocks What Is a Mineral
Minerals The Building Blocks of Rocks What is a Mineral 6 C 12 FeS2 SiO2 NaCl Properties of Minerals • Color • Hardness • Streak • Cleavage/Fracture • Crystal Form • Density • Luster • Other Properties How Do Minerals Form Process Example Description Groups of Minerals Rocks Igneous Metamorphic Sedimentary Three Types of Rocks Igneous – Rocks that form when magma or lava harden Sedimentary – Rocks that form from the compaction and cementation of sediments Metamorphic – Rocks that form as a result of heat and/or pressure without ever becoming molten material Igneous Rocks Types of Igneous Rock Extrusive – Lava cooling on the surface Intrusive – Magma cooling below the surface Formation of Igneous Rock Bowen’s Reaction Series Different minerals crystallize at different times as the magma cools As minerals crystallize, the composition of the magma changes Igneous Rocks Classification of Igneous Rock Texture Large Crystals vs Small Crystals Cools Slowly vs. Cools Quickly Intrusive vs. Extrusive Rock Composition Made of Silica vs. Iron and Magnesium Sedimentary Rocks Formation of Sedimentary Rock Weathering – The breaking of rock into smaller pieces called sediment Erosion – The movement of sediment from one place to another Deposition – When the sediments are dropped into a new place Compaction – Sediment is squeezed and space between sediment is reduced Cementation – Sediments are glued together by minerals deposited by water Sedimentary Rocks Classification of Sedimentary Rock Chemical Sedimentary Rock Forms from minerals dissolved in water