Nueva Estrategia Del Grupo Sulzer

Total Page:16

File Type:pdf, Size:1020Kb

Nueva Estrategia Del Grupo Sulzer UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior de Ingenieros Industriales TESIS DOCTORAL MODELIZACIÓN DE REDES VIRTUALES DE FABRICACIÓN GLOBAL EN LA INDUSTRIA AERONÁUTICA José Ramón Vilana Arto Ingeniero Industrial 2010 UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior de Ingenieros Industriales Departamento Ingeniería de Organización, Administración de Empresas y Estadística TESIS DOCTORAL MODELIZACIÓN DE REDES VIRTUALES DE FABRICACIÓN GLOBAL EN LA INDUSTRIA AERONÁUTICA José Ramón Vilana Arto Ingeniero Industrial Director Carlos Rodríguez Monroy Doctor Ingeniero Industrial Licenciado en Ciencias Económicas y Empresariales Licenciado en Derecho y Ciencias Políticas 2010 Tribunal nombrado por el Magnífico y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día ______ de ________________ de 2010 Presidente: Vocal: Vocal: Vocal: Secretario: Suplente: Suplente: Realizado el acto de defensa de la tesis el día ________ de _____________ de 2010 en la E.T.S.I.I. Calificación: ________________________________ EL PRESIDENTE LOS VOCALES EL SECRETARIO A mis lazos fuertes. ÍNDICE GENERAL Índice General iii Índice de Figuras viii Índice de Tablas xi Resumen. xiii Abstract xv 1. Introducción y Objetivos ………..……………………………………………………… 1 1.1 Introducción ……..………..…………………………………………………… 1 1.2. Objetivos ……..…………..…………………………………………………… 3 1.3. Ámbito ………..….……………….…………………………………………… 4 1.4 Estructura de la Tesis ….…..………………………………………………… 5 2. Origen de las Redes Virtuales de Fabricación Global ..………..…………………… 10 2.1. Antecedentes Históricos: La Corporación Industrial como Paradigma Dominante en la Organización Industrial ...……………………………...... 10 2.2. La Desintegración de la Cadena de Valor y la “Externalización” de Procesos .……………………………………………………………………… 14 2.3. La Aparición de las Redes Virtuales de Fabricación Global (RVFGs) .… 16 2.4. Causas de la Aparición de las RVFGs …..………………………………… 17 2.5. Perspectivas en el Estudio de las RVFGs ………………………………… 19 2.5.1. La Teoría de los Costes de Transacción ...…………..………… 20 2.5.2. La Integración Social (Social Embeddedness) …………...…… 20 2.5.3. La Conducta Estratégica ……..…………………………..……… 21 2.5.4. El Aprendizaje Organizacional .……...…………………..……… 22 2.5.5. El Dilema Social …………………………………………………… 22 2.6. Aspectos Básicos que Constituyen las RVFGs ...………………………… 23 3. Estructura ……..…………..………………………………………………………..…… 27 3.1. Introducción …………………………………………………………...……… 27 3.2. Naturaleza de los Actores …………………………………………………... 28 3.2.1. Actores Tipo 1: OEMs …………………………………………..… 29 3.2.2. Actores Tipo 2: Proveedores …………………………………….. 30 3.2.3. Actores Tipo 3: Nuevos Actores …………………………….…… 30 3.3. La Fabricación Subcontratada en las RVFGs …..………………………… 31 3.4. Tipos de Relaciones entre los Actores de la Red ………………………… 35 3.4.1. La Fortaleza de los Lazos Débiles …..………………………….. 37 3.4.2. Tipos de Colaboración entre Actores de una RVFG ………….. 38 3.5. Localización de sus Nodos ……….………………………………………… 40 iii 3.6. Cadenas de Suministro dentro de la RVFG …….………………………… 43 3.7. Tipología de Redes ……..…………………………………………………… 44 3.7.1. Tipologías Generales …………………………………..……….… 44 3.7.2. Tipologías Específicas ………..………………………..………… 46 3.8. Características Intrínsecas ..………………………………………………… 48 3.9. La Importancia de los Lazos Débiles, Lazos Indirectos y Agujeros Estructurales …………..……………………………………………………… 50 3.10. Tipología Prescriptiva de Redes …..……………………………………… 52 3.11. Resumen y Conclusiones ……..……………………………...…………… 56 4. Cultura ……..…………...………………………………………………….……..……… 59 4.1. Introducción ….…………..…………………………………………………… 59 4.2. Marco Teórico de Mecanismos Culturales en las RVFGs ………………. 60 4.3. Fundamentos de la Cultura Organizacional ….…………………………… 62 4.4. Las Similitudes de Prácticas Culturales en las RVFGs ……..…………… 63 4.5. La Integración Social en las Redes (Social Embeddedness) …………… 66 4.6. La Importancia de la Confianza en las Redes …….……………………… 67 4.7. Transferencia de Conocimiento Tácito ………..………………………...… 70 4.8. Marco Conceptual de Mecanismos Culturales en las RVFGs ……..…… 72 4.8.1. Influencia Mutua de los Mecanismos Culturales …….....……… 73 4.8.2. Beneficios de los Mecanismos Culturales ………………..…….. 74 4.9. Discusión y Conclusiones ………..…………………………………….....… 75 5. Estrategia ……..…………..………………..……………………………………….…… 78 5.1. Introducción ….…………..…………………………………………………… 78 5.2. La Paradoja Estratégica De Las RVFGs ……...………...………………… 79 5.3. Perspectiva Estratégica Nodal ……………………………………………… 81 5.3.1. Matriz De Posicionamiento Estratégico ……….……………...… 82 5.4. Perspectiva Estratégica Diádica ..…..……………………………………… 85 5.4.1. Convergencia de las Estrategias Nodales en una Colaboración Diádica …..……….…..……………………..……. 86 5.4.2. Colaboración con Competidores ….…………………………..… 87 5.4.3. El Dilema Social y el Riesgo de Conducta Oportunista ………. 88 5.4.3.1. Enfoque Estructural …………………………….……… 90 5.4.3.2. Enfoque Motivacional …….…………………….……… 94 5.5. Perspectiva Estratégica a Nivel de Red …………………………………… 96 5.5.1. La “Co-especialización” y la Trampa de la Reina Roja ……….. 97 5.6. Dinámica de Funcionamiento del Modelo de Triple Perspectiva Estratégica ……………………………………………………………………. 99 iv 5.7. Identificación de la Perspectiva Estratégica de las RVFGs ..………….… 103 5.8. Resumen y Conclusiones del Capítulo .…………………………………… 104 6.- Dinámica ………….…..…………..………………………………….…….…………… 107 6.1. Introducción ……….……..…………………………………………………… 107 6.2. Tecnologías de Información y Comunicación en las RVFGs……….…… 108 6.2.1. El Paradigma de las TICs en las RVFGs ………………………. 110 6.2.2. Componente Dinámica de las RVFGs en sus Relaciones Horizontales: Las Organizaciones Virtuales ………………….. 111 6.2.2.1. Las Mallas de Fabricación como Soporte de las Relaciones Horizontales en las RVFGs ......………… 114 6.2.3. Componente Dinámica de las RVFGs en sus Relaciones Verticales: Las Redes Globales de Suministro ..……………... 116 6.2.3.1. La Tecnología Multiagente en las RVFGs ………..…. 118 6.2.4. Mapa de Necesidades de las TICs en las RVFGs ……………. 122 6.3. Dinámica de los actores de la RVFG ……………………………………… 124 6.3.1.Dinámica de los OEMs ……………………………………………. 124 6.3.1.1. ¿Pero Quién Dirige las RVFGs? ……………………… 124 6.3.2. Dinámica de los Proveedores ……………………………..…….. 129 6.3.3. Dinámica de los Nuevos Actores en la Red …………………… 132 6.4. Discusión y Conclusiones ……………………………………….………….. 133 7. Modelo Conceptual de RVFGs y Planteamiento de Hipótesis ………………….…. 136 7.1. Introducción …………………………………………………………………... 136 7.2. Estructura ……………………………………………………………………... 137 7.3. Cultura ………………………………………………………………………… 137 7.4. Estrategia ……………………………………………………………………... 138 7.5. Dinámica ……………………………………………………………………… 139 7.6. Mapa Conceptual ……………………………………………………………. 141 7.7. Premisas del Modelo Conceptual ………………………………………….. 143 7.8. Propuesta de Hipótesis y Modelo Conceptual de las RVFGs …………... 146 7.9. Metodología Utilizada para Validar el Modelo Conceptual ……………… 150 7.9.1. Eficiencia en las Redes de Empresas ………………………….. 150 7.9.2. Metodología Cualitativa y Cuantitativa …………………………. 151 7.9.3. Recogida de datos ………………………………………………… 153 8. La RVFG de la Industria de Motores Aeronáuticos ……………………………….… 154 8.1. Introducción……..…………..………………………………………………… 154 8.2. Evolución Histórica de la Industria Aeronáutica ……...……………..…… 155 v 8.3. La Industria Actual de Fabricación de Motores Aeronáuticos ………….. 160 8.4. Enfoque Cualitativo ………………………………………………………….. 164 8.4.1. Caso Nº 1: La Estrategia Nodal del Fabricante de Motores Aeronáuticos Rolls Royce ……………………………….……… 164 8.4.1.1. Estrategia Nodal ……….…………………..…………… 164 8.4.1.2. Estrategia de Colaboraciones Externa ………….…… 165 8.4.1.3. Matriz de Posicionamiento Estratégico de RR ……… 168 8.4.1.4. Banda de Variación según Tipología de Colaboraciones ………………………………………… 169 8.4.1.5. El Encaje de Actividades de RR …………….…...…… 171 8.4.2. Caso Nº 2: Colaboración entre GE y SNECMA en la Fabricación del Motor CFM56 ………….…………….………… 174 8.4.2.1. La Importancia de los Mecanismos Culturales en la Colaboración GE-SNECMA …………………………... 177 8.5. Enfoque Cuantitativo ……………………………………………………….... 180 8.5.1. Ámbito ……….....………………………………………………...… 180 8.5.2. Matriz de Colaboraciones en la Red …………..…………...…… 181 8.5.3. Tipología de Actores en la Red ……………...……………..…… 183 8.5.4. Tipología de Relaciones entre Actores de la Red …….……..… 184 8.5.5. Definición de Variables ……….………………………….…..…… 186 8.5.6. Descripción de Variables ..…………………………………..…… 193 8.5.7. Representación de la RVFG de Fabricantes de Motores Aeronáuticos ………..……………………………………………. 195 8.5.8. Variable de “Co-especialización” ...…..……………................… 197 8.5.9. Variables de la RVFG de la Industria de Motores Aeronáuticos 203 8.5.10. Análisis de Datos …….………………………………………..… 205 8.5.11. Relaciones entre Variables ……..…………..……………..…… 209 8.5.12. Modelo de Regresión Logística Binaria y Multinomial Logit … 214 8.6. Discusión y Conclusiones del Capítulo ….………………………………… 224 9. Conclusiones y Evolución Futura de las RVFGs ……….…………………………… 230 9.1. Evolución Futura de las RVFGs ….……..……………………..…………… 230 9.1.1. Hacia una Perspectiva Sistémica ……………………………….. 231 9.1.2. Diversificación Relacionada: Colaboración con Otros Sectores 233 9.1.3. Convergencia entre las redes virtuales de fabricación global y 234 sistemas de personalización en masa ………………………… 9.2. Conclusiones Generales ……………………………………………………. 236 9.3. Aportaciones Originales …………………………………………………….. 240 9.4. Líneas Futuras de Investigación …………………………………………… 242 9.5. Ponencias y Publicaciones …………………………………………………. 244 vi Anexo I: Bibliografía ……………………………………………………………………….. A-1 Anexo II. Matriz
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine)
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-4 Issue-4, September 2015 A Study of Technology Used and Comparison Between Traditional and Hf120 (Advanced Aero Engine) Vivek Kumar, Rajeshwar Prasad Singh, Vikash Kumar Abstract- Paper includes detailed study of the HF120 turbofan The two companies began talks in 2003 with the goal of engine, which is the first product from GE Honda Aero providing durable and economical engines for business Engines. This paper is to showcase state of art technology aviation. The idea was to combine the strengths of each involved in gas turbine engines and to bring out various aspects and future trends in field of propulsion technology. parent company in technology leadership, manufacturing Paper also includes development in gas turbine engine that have expertise, and performance engine tradition to provide helped to achieve great fuel efficiency and less noise, increased modern business aviation engines with the performance power, thrust and also advancements made in the field of and availability of large commercial engines. A strategic materials have contributed in a major way in gas turbine in alliance between the two companies lead to planning of accordance to the future trends that have come up in recent 50/50 project intended to develop, certify and market the years. The paper reviews the evolutionary process that has taken place over the years with reference to the different design Honda engine. The HF120, product from GE Honda Aero concepts used for aero engines. At General Electric, the official Engines, utilizes Honda's world-renowned expertise in corporate slogan is “Imagination at work.” At Honda, it’s “The manufacturing, research and development and GE's power of dreams.” Two of the world's most respected names in experience in aerospace technology, durability, and propulsion have come together to design and manufacture certification.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Rolls-Royce / Itp Regulation
    EUROPEAN COMMISSION DG Competition Case M.8242 - ROLLS-ROYCE / ITP Only the English text is available and authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 6(1)(b) in conjunction with Art 6(2) Date: 19/04/2017 In electronic form on the EUR-Lex website under document number 32017M8242 EUROPEAN COMMISSION Brussels, 19.04.2017 C(2017) 2613 final In the published version of this decision, some information has been omitted pursuant to Article PUBLIC VERSION 17(2) of Council Regulation (EC) No 139/2004 concerning non-disclosure of business secrets and other confidential information. The omissions are shown thus […]. Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party: Subject: Case M.8242 – Rolls-Royce / ITP Commission decision pursuant to Article 6(1)(b) in conjunction with Article 6(2) of Council Regulation No 139/20041 and Article 57 of the Agreement on the European Economic Area2 Dear Sir or Madam, (1) On 24 February 2017, the European Commission received notification of a proposed concentration pursuant to Article 4 of the Merger Regulation by which the undertaking Rolls-Royce Holdings plc ("Rolls-Royce", United Kingdom) acquires within the meaning of Article 3(1)(b) of the Merger Regulation control of the whole of the undertaking Industria de Turbo Propulsores SA ("ITP", Spain) by way of a purchase of shares (the "Transaction").3 Rolls-Royce is designated hereinafter as the "Notifying Party", and Rolls-Royce and ITP are together referred to as the "Parties". 1 OJ L 24, 29.1.2004, p.
    [Show full text]
  • Design of a Light Business Jet Family David C
    Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber.
    [Show full text]
  • CAA - Airworthiness Approved Organisations
    CAA - Airworthiness Approved Organisations Category BCAR Name British Balloon and Airship Club Limited (DAI/8298/74) (GA) Address Cushy DingleWatery LaneLlanishen Reference Number DAI/8298/74 Category BCAR Chepstow Website www.bbac.org Regional Office NP16 6QT Approval Date 26 FEBRUARY 2001 Organisational Data Exposition AW\Exposition\BCAR A8-15 BBAC-TC-134 ISSUE 02 REVISION 00 02 NOVEMBER 2017 Name Lindstrand Technologies Ltd (AD/1935/05) Address Factory 2Maesbury Road Reference Number AD/1935/05 Category BCAR Oswestry Website Shropshire Regional Office SY10 8GA Approval Date Organisational Data Category BCAR A5-1 Name Deltair Aerospace Limited (TRA) (GA) (A5-1) Address 17 Aston Road, Reference Number Category BCAR A5-1 Waterlooville Website http://www.deltair- aerospace.co.uk/contact Hampshire Regional Office PO7 7XG United Kingdom Approval Date Organisational Data 30 July 2021 Page 1 of 82 Name Acro Aeronautical Services (TRA)(GA) (A5-1) Address Rossmore38 Manor Park Avenue Reference Number Category BCAR A5-1 Princes Risborough Website Buckinghamshire Regional Office HP27 9AS Approval Date Organisational Data Name British Gliding Association (TRA) (GA) (A5-1) Address 8 Merus Court,Meridian Business Reference Number Park Category BCAR A5-1 Leicester Website Leicestershire Regional Office LE19 1RJ Approval Date Organisational Data Name Shipping and Airlines (TRA) (GA) (A5-1) Address Hangar 513,Biggin Hill Airport, Reference Number Category BCAR A5-1 Westerham Website Kent Regional Office TN16 3BN Approval Date Organisational Data Name
    [Show full text]
  • EASA AD No.: 2018-0211
    EASA AD No.: 2018-0211 Airworthiness Directive AD No.: 2018-0211 Issued: 28 September 2018 Note: This Airworthiness Directive (AD) is issued by EASA, acting in accordance with Regulation (EU) 2018/1139 on behalf of the European Union, its Member States and of the European third countries that participate in the activities of EASA under Article 129 of that Regulation. This AD is issued in accordance with Regulation (EU) 748/2012, Part 21.A.3B. In accordance with Regulation (EU) 1321/2014 Annex I, Part M.A.301, the continuing airworthiness of an aircraft shall be ensured by accomplishing any applicable ADs. Consequently, no person may operate an aircraft to which an AD applies, except in accordance with the requirements of that AD, unless otherwise specified by the Agency [Regulation (EU) 1321/2014 Annex I, Part M.A.303] or agreed with the Authority of the State of Registry [Regulation (EU) 2018/1139, Article 71 exemption]. Design Approval Holder’s Name: Type/Model designation(s): CFM INTERNATIONAL S.A. CFM56-7B engines Effective Date: 05 October 2018 TCDS Number(s): EASA.E.004 Foreign AD: Not applicable Supersedure: This AD supersedes EASA AD 2018-0109 dated 17 May 2018. ATA 72 – Engine – Fan Blades – Inspection Manufacturer(s): SAFRAN Aircraft Engines, formerly SNECMA (France); General Electric Aircraft Engines (United States) Applicability: CFM56-7B20, CFM56-7B22, CFM56-7B22/B1, CFM56-7B24, CFM56-7B24/B1, CFM56-7B26, CFM56-7B26/B1, CFM56-7B26/B2, CFM56-7B27, CFM56-7B27/B1, CFM56-7B27/B3, CFM56-7B20/2, CFM56-7B22/2, CFM56-7B24/2, CFM56-7B26/2,
    [Show full text]
  • ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics
    National Research University Higher School of Economics Institute for Statistical Studies and Economics of Knowledge Big Data Augmented Horizon Scanning: Combination of Quantitative and Qualitative Methods for Strategic and Marketing Analytics [email protected] [email protected] XIX April International Academic Conference on Economic and Social Development Moscow, 11 April 2018 Outline - Role of artificial intelligence and big data in modern analytics - System of Intelligent Foresight Analytics iFORA - Combined quantitative and qualitative analysis methodology and software solutions - Use cases - Conclusion and discussion 2 Growing interest in Artificial Intelligence, Big Data and Machine Learning International analytical reports & news feed 12000 10000 8000 Artificial Intelligence 6000 Big Data Machine Learning 4000 2000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Russian analytical reports & news feed 800 700 600 500 Artificial Intelligence 400 Big Data 300 Machine Learning 200 100 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 3 Source: System of Intelligent Foresight Analytics iFORA™ (ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics AI-related tasks Tracking latest and challenges trends, technologies, drivers, barriers Market forecasting Trend analysis Understanding S&T modern skills and Instruments for Customers Market Intelligence competences analysis feedback knowledge discovery HR policy Vacancy Feedback mining
    [Show full text]
  • Propulsione Aeronautica 2020/2021 Francesco Barato
    PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE
    [Show full text]
  • An Analysis of Coast Guard HH-65 Engine Reliability: a Comparison of Malfunctions to Component Removals
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2004 An Analysis of Coast Guard HH-65 Engine Reliability: A Comparison of Malfunctions to Component Removals Donna L. Cottrell Follow this and additional works at: https://scholar.afit.edu/etd Part of the Applied Mathematics Commons, Aviation Commons, and the Systems Engineering Commons Recommended Citation Cottrell, Donna L., "An Analysis of Coast Guard HH-65 Engine Reliability: A Comparison of Malfunctions to Component Removals" (2004). Theses and Dissertations. 4082. https://scholar.afit.edu/etd/4082 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. AN ANALYSIS OF COAST GUARD HH-65 ENGINE RELIABILITY: A COMPARISON OF MALFUNCTIONS TO COMPONENT REMOVALS THESIS Donna L. Cottrell, Commander, USCG AFIT/GIR/ENC/04-01 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, United States Coast Guard, Department of Defense, Department of Homeland Security, or the United States Government. AFIT/GIR/ENC/04-01 AN ANALYSIS OF COAST GUARD HH-65 ENGINE RELIABILITY: A COMPARISON OF MALFUNCTIONS TO COMPONENT REMOVALS THESIS Presented to the Faculty Department of Mathematics and Statistics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Resource Management Donna L.
    [Show full text]
  • TRUST the POWER of JET AVIATION for YOUR HONEYWELL HTF7000 ENGINE Unscheduled Checks
    TRUST THE POWER OF JET AVIATION FOR YOUR HONEYWELL HTF7000 ENGINE Unscheduled checks. Line and base maintenance. AOG emergencies. All services for almost all models in production, on a wide range of approvals. For over 50 years, Jet Aviation has been supporting business jet operators worldwide. Operators have come to rely on Jet Aviation to ensure their aircraft remains airworthy, while minimizing the impact on availability, performance and passenger satisfaction caused by unplanned maintenance events. Jet Aviation is proud to be an authorized You will benefit from working with Honeywell service center for the HFT7000 one of the largest OEM-authorized series engine. As an approved Minor service centers – with access to our Maintenance service center, Jet Aviation global support network, new OEM- can perform all routine minor inspections, approved parts, personalized service up to 8,000 hours of inspection. from OEM-trained technicians, and current maintenance manuals and We serve operators of HFT7000 aircraft engine technical support — all equipped Bombardier CL300, CL350 and backed by over 50 years of expertise. Gulfstream G280 from our state-of-the- art repair facility in Basel, Switzerland, As an authorized Honeywell Service supported by our dedicated AOG Mobile Center, we are committed to meeting and PROJECT MANAGER, Repair Team who are trained, equipped exceeding our customer expectations. SERVICE CENTER HAWKER and authorized to provide troubleshooting, This means efficient processes to ensure “I want to inform you that our emergency warranty and maintenance minimum engine downtime, a large parts engine successfully passed the services, anywhere in the world. inventory, including exchange units vibration survey today.
    [Show full text]