UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Heterocycles Old and New: Carbonylazoles as Chemoselective Acylation Reagents and the Synthesis and Applications of Benzindolizinones Permalink https://escholarship.org/uc/item/3k03p8kt Author Heller, Stephen Todd Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Heterocycles Old and New: Carbonylazoles as Chemoselective Acylation Reagents and the Synthesis and Applications of Benzindolizinones by Stephen Todd Heller A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Richmond Sarpong, Chair Professor Robert G. Bergman Professor Daniel Nomura Fall 2012 1 Abstract Heterocycles Old and New: Carbonylazoles as Chemoselective Acylation Reagents and the Synthesis and Applications of Benzindolizinones By Stephen Todd Heller Doctor of Philosophy in Chemistry University of California, Berkeley Professor Richmond Sarpong, Chair Carbonylazole derivatives have been shown to be chemoselective and efficient acylating reagents under a variety of conditions. Catalysis with pyridinium salts, as well as with DBU or DABCO are discussed, as is the thermal reaction of imidazole carbamates with carboxylic acids to provide esters. The application of a protic solvent-mediated cycloisomerization approach to two isomers of benzindolizinone – a relatively unstudied heterocyclic system – and the syntheses of two Erythrina alkaloids are also discussed. Chapter 1 provides an overview of the fundamental importance of the carbonyl group in the chemistry of life, as well as in the service of man. Key processes through which these versatile groups react are illustrated with an emphasis on the chemistry of esters. The chapter concludes with a survey of the application of carbonylimidazoles as acyl donors from their first development by Staab to the present. Through another line of inquiry, it was discovered that imidazole carbamates and ureas are chemoselective esterification and amidation reagents. The optimization, substrate scope, and mechanism of esterification and amidation of carboxylic acids mediated by imidazole-based reagents are discussed in Chapter 2. The innate reactivity of carbonyl imidazole reagents with a range of nucleophiles is also explored. Following this initial discovery, it was found that pyridinium salts greatly enhance the reactivity of carbonylimidazole derivatives as acylation reargents for esterification and amidation. Chapter 3 details the development of this mode of catalysis and outlines a mechanistic proposal in which pyridinium salts act as both Brønsted acid and nucleophilic catalysts. Finally, the scope of this technology in the synthesis of difficult to access oxazolidinones, as well as esters and amides, is discussed. This work was executed in partnership with Tingting Fu. Drawing on the possibility that carbonylazole acyl donors could be potentiated through nucleophilic catalysis, a DBU-catalyzed N-acylation of indoles and oxazolidinones was devised. Chapter 4 covers the development of this reaction, as well as the subsequent finding that this 2 acylation was chemoselective even in the presence of more reactive amine and alcohol functional groups. This work was performed in collaboration with Erica Schultz. The solvent-promoted cycloisomerization of quinoline and isoquinoline propargylic carbinols to benz[e]- and benz[g]indolizinones, respectively, is described in Chapter 5. The study of the fundamental reactivity of these new heterocyclic motifs is discussed. The formal synthesis of 3- demethoxyerythratidinone using this cycloisomerization strategy, as well as its application in studies toward the synthesis of cocculidine are also detailed. i To my loving family, for all the warmth, light, and kisses ii Table of Contents Chapter One: Importance of the Carbonyl Group: Acylation and Its Applications 1.1 Carbonyls as Biological Lynchpins 1 1.2 Carbonyls in the Service of Man: A Primer on Carbonyl Reactivity 3 1.3 Acetic Acid and the Process of Acylation 5 1.4 Phosgene and the Process of Carbonylation 7 1.5 Carbonylimidazole Derivatives as Chloroformate and Acyl Chloride 11 Substitutes 1.6 Notes and References 16 Chapter Two: Carbonylimidazoles as Reagents for Esterification and Amidation 2.1 Introduction 19 2.2 The Origin of Our Interest in Carbonylimidazoles 20 2.3 Probing Novel Reactivity of Imidazole Carbamates 22 2.4 Mechanistic Investigations 26 2.5 Addressing Issues of Chemoselectivity 28 2.6 Alternative Reaction Pathways of Imidazole Carbamates 29 2.7 Extension to Amide Synthesis 32 2.8 Large Scale Synthesis of Esterification and Amidation Reagents 36 2.9 Experimental Section 37 2.10 Notes and References 55 Chapter Three: Dual Brønsted Acid/Nucleophilic Activation of Carbonylimidazoles 3.1 Introduction 58 3.2 Model System Studies 60 iii 3.3 Scope and Mechanism of Oxazolidinone Synthesis Under 64 Pyridinium Catalysis 3.4 Ester Synthesis Under Pyridinium Catalysis 67 3.5 Experimental Section 71 3.6 Notes and References 84 Chapter Four: Chemoselective N-Acylation of Indoles with Carbonylazoles 4.1 Introduction 87 4.2 Reaction Optimization and Initial Scope 90 4.3 Thermodynamic Control: Implications for Selectivity and 92 Reagent Design 4.4 Kinetic Control: Putting the Chemoselectivity Puzzle Together 96 4.5 Application to the Acylation of Oxazolidinones 98 4.6 Preliminary Mechanistic Investigations 99 4.7 Experimental Section 101 4.8 Notes and References 116 Chapter Five: Study and Synthesis of Benzindolizinones: Applications to Alkaloid Synthesis 5.1 Introduction 118 5.2 Synthesis of Indolizines and Indolizinones: A Point of Embarkation 121 5.3 Substrate Synthesis 124 5.4 Synthesis of Benz[e]indolizinones 126 5.5 Synthesis of Benz[g]indolizinones 128 5.6 Mechanistic Considerations 131 5.7 Application of the Benz[g]indolizinone Core to the Synthesis 135 of Erythrina Alkaloids iv 5.8 Formal Synthesis of (+)-3-Demethoxyerythratidinone 136 5.9 Toward the Total Synthesis of Cocculidine 141 5.10 Experimental Section 149 5.11 Notes and References 176 Appendix 1: Selected Spectra for Compounds Disclosed in Chapter 2 179 Appendix 2: Selected Spectra for Compounds Disclosed in Chapter 3 213 Appendix 3: Selected Spectra for Compounds Disclosed in Chapter 4 238 Appendix 4: Selected Spectra for Compounds Disclosed in Chapter 5 298 v Acknowledgements The Road Not Taken Two roads diverged in a yellow wood, And sorry I could not travel both And be the one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth; Then took the other, as just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same, And both that morning equally lay In leaves no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back. I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference. -Robert Frost, Mountain Interval, 1920. It is impossible to name with certainty all of the people who have contributed to the road that I have walked to this point, but these mentors in particular have cumulatively shaped my scientific and professional outlook. Professor Richmond Sarpong provided me with a lab in a dark hour, afforded subtle and effective guidance, and provided me room to take wing. Professor Bergman has acted as an invaluable resource in planning mechanistic studies; however, he has also served as a pedagogical mentor, and my teaching will forever reflect his influence. Professors Toste and Trauner took the first cuts at an unhewn chemist, and their styles and traits are indelible. Professor Rousslang inspired a young man with too many interests and instilled a flame for chemistry. Dr. Ravi Natarajan removed the yoke of corporate science and provided a safe environment for a budding chemist to whet their curiosity through original research. Over the years, I have had the good fortune to work in the company of a diverse and stimulating group of people. My Toste group classmates, Chris Boyd, Dan Gray, and Jane Wang made time in lab more fun than it should have been. Our different areas of expertise also provided a ready- made discussion group. I am grateful for their friendship, advice, and support. vi My first fall in the Sarpong group was momentous for many reasons, but the introduction of a new cast of characters was one of the most enjoyable parts of this transition. I am deeply indebted to my labmates in the corner office of Latimer: Jesse Cortez, Amy Hamlin, David Lapointe, and Raul Leal. The entire Sarpong community gave me a warm welcome and I have continued to feel blessed to work with everyone in the group. Though they didn’t have the dubious distinction of sharing a lab with me, a number of other members of the Berkeley community were key players in my experience in graduate school. Aaron Lackner and Jeff Wu have been great friends and didn’t hold it against me when I left the Toste group. They even let me come back and use the HPLC. Even though we overlapped only relatively briefly, I relished my conversations with Ethan Fisher, whether they were about old school rap, chemistry, or topics not to be mentioned in a dissertation. I want to thank Terry Lebold for all of his encouragement, kind words, and stimulating discussion. In particular, his emphasis on working collaboratively has been invaluable to the group. My horizons have been greatly expanded by working with Erica Schultz, my partner in indole crime, and a fantastic resource for the group. I look forward to the day when we are both tenured faculty members and running into each other at conferences with students in tow.
Recommended publications
  • Amide Bond Formation and Peptide Coupling
    Tetrahedron 61 (2005) 10827–10852 Tetrahedron report number 740 Amide bond formation and peptide coupling Christian A. G. N. Montalbetti* and Virginie Falque Evotec, 112 Milton Park, Abingdon OX14 4SD, UK Received 2 August 2005 Available online 19 September 2005 Contents 1. Introduction ................................................................. 10828 2. Amide bond formation: methods and strategies ....................................... 10828 2.1. Acyl halides . .......................................................... 10829 2.1.1. Acyl chlorides .................................................... 10829 2.1.1.1. Acyl chloride formation ...................................... 10829 2.1.1.2. Coupling reactions with acyl chlorides ........................... 10831 2.1.1.3. Limitations of acyl chlorides .................................. 10831 2.1.2. Acyl fluorides .................................................... 10831 2.1.3. Acyl bromides .................................................... 10832 2.2. Acyl azides . .......................................................... 10832 2.3. Acylimidazoles using CDI ................................................. 10833 2.4. Anhydrides . .......................................................... 10834 2.4.1. Symmetric anhydrides .............................................. 10834 2.4.2. Mixed anhydrides .................................................. 10834 2.4.2.1. Mixed carboxylic anhydrides .................................. 10834 2.4.2.2. Mixed carbonic anhydrides ...................................
    [Show full text]
  • Modern Organic Synthesis an Introduction
    Modern Organic Synthesis an Introduction G. S. Zweifel M. H. Nantz W.H. Freeman and Company Chapter 1 Synthetic Design • What is an ideal or viable synthesis, and how does one approach a synthetic project? • The overriding concern in a synthesis is the yield, including the inherent concepts of simplicity (fewest steps) and selectivity (chemoselectivity, regioselectivity, diastereoselectivity, and enantioselectivity). • This chapter outlines strategies for the synthesis of target molecules based on retrosynthetic analysis. 1 1.1 Retrosynthetic Analysis Basic Concept The symbol signifies a reverse synthetic step and is called atransform. The main transforms are disconnections, or cleavage of C-C bonds, and functional group interconversions (FGI) Retrosynthetic analysis involves the disassembly of a TM into available starting materials by sequential disconnections and functional group interconversions(FGI). Synthons are fragments resulting from disconnection of carbon-carbon bonds of the TM. The actual substrates used for the forward synthesis are the synthetic equivalents (SE). Synthetic design involves two distinct steps (1) Retrosynthetic analysis (2) Subsequent translation of the analysis into a “forward direction” synthesis. Chemical bonds can be cleaved heterolytically, homolytically, or through concerted transform. 2 Donor and Acceptor Synthons Acceptor synthon Æ carbocation (electrophilic) Donor synthon Æ carbanion (nucleophilic) Table 1.1 Common Acceptor Synthon Synthetic equivalents Common Acceptor Synthon Synthetic equivalents 3 Table 1.2 Common Donor Synthons Common Donor Synthon Synthetic equivalents Retrosynthetic Analysis A Synthesis A 4 Retrosynthetic Analysis B Synthesis B Alternating Polarity Disconnections The presence of a heteroatom in a molecule imparts a pattern of electrophilicity and nucleophilicity to the atom of the molecule. The concept of alternating polarities or latent polarities (imaginary chargies) often enables one to identify the best positions to make a disconnection within a complex molecule.
    [Show full text]
  • Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
    molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption.
    [Show full text]
  • Protokoll Handledarmöte 2020-02-14
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Organic Letters. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Colas, K., dos Santos, A C., Mendoza, A. (2019) i-Pr2-NMgCl·LiCl Enables the Synthesis of Ketones by Direct Addition of Grignard Reagents to Carboxylate Anions Organic Letters, 21(19): 7908-7913 https://doi.org/10.1021/acs.orglett.9b02899 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-175818 i-Pr2NMgCl·LiCl Enables the Synthesis of Ketones by Direct Addi- tion of Grignard Reagents to Carboxylate Anions Kilian Colas, A. Catarina V. D. dos Santos and Abraham Mendoza* Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm (Sweden) Supporting Information Placeholder direct Grignard - carboxylate coupling 1 R MgX + i-Pr2NMgCl•LiCl 1 MgX ( ) R * CO2 i-Pr i-Pr L L O [Mg] N O ideal ( ) * Mg Li (*) sources 1 1 2 R O Cl R R R2 L O ketone [proposed structure] products base R1 OH [in-situ from commercial] ◾ >30 examples ◾ scalable ◾ facile isotopic-labelling ABSTRACT: The direct preparation of ketones from carboxylate anions is greatly limited by the required use of organolithium reagents or activated acyl sources that need to be independently prepared. Herein, a specific magnesium amide additive is used to activate and control the addition of more tolerant Grignard reagents to carboxylate anions.
    [Show full text]
  • Amide Activation: an Emerging Tool for Chemoselective Synthesis
    Featuring work from the research group of Professor As featured in: Nuno Maulide, University of Vienna, Vienna, Austria Amide activation: an emerging tool for chemoselective synthesis Let them stand out of the crowd – Amide activation enables the chemoselective modification of a large variety of molecules while leaving many other functional groups untouched, making it attractive for the synthesis of sophisticated targets. This issue features a review on this emerging field and its application in total synthesis. See Nuno Maulide et al., Chem. Soc. Rev., 2018, 47, 7899. rsc.li/chem-soc-rev Registered charity number: 207890 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Amide activation: an emerging tool for chemoselective synthesis Cite this: Chem. Soc. Rev., 2018, 47,7899 Daniel Kaiser, Adriano Bauer, Miran Lemmerer and Nuno Maulide * It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. Received 27th April 2018 However, a significant body of research on the selective activation of amides to achieve powerful DOI: 10.1039/c8cs00335a transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product rsc.li/chem-soc-rev synthesis, highlighting the synthetic applications and the potential of this approach. Creative Commons Attribution 3.0 Unported Licence.
    [Show full text]
  • Synthesis Infographic (Revised)
    Organic Synthesis A problem–solving guide for Organic Chemistry I/II ? Goal: propose a synthesis of a target molecule H OH N using given starting materials and any other N reagents you need. starting target materials molecule These key strategies should guide your approach:1 Mapping • Systematically label all the atoms in the ? 1 starting materials, then identify those atoms in H OH N 6 N the target molecule 2 4 5 7 6 1 3 5 7 2 3 4 • Use landmarks (heteroatoms, functional groups) to help you Identifying bonds formed/broken ? and atoms added/removed H OH 1 N 6 N Having labeled atoms, it becomes easier to see: 2 4 5 7 6 1 3 5 7 2 3 4 bonds formed: C7–N2 σ, C6–O σ atoms added • where bonds have been formed/broken bonds broken: C6–C7 π atoms removed • where atoms (including protons) have been added/removed ? Regiochemical and stereochemical analysis H OH 1 N 6 N 2 4 5 7 6 • Look for regiochemical patterns that can 1 3 5 7 2 3 4 provide ideas for synthetic strategies target molecule is 1,2–difunctionalized at C6–C7 • Look for changes in configuration at C7–N2 bond formed at less substituted C of propylene stereocenters (not always applicable) reaction: base–catalyzed epoxide opening 1 OH OH 1 Synthon-based retrosynthetic analysis N + N 6 2 4 6 2 4 Construct hypothetical starting materials for 5 7 3 5 7 3 • synthons forming required bonds 1 This process is called constructing synthons, O δ- • + + HN 6 6 δ 2 4 and it is the basis of retrosynthetic analysis 5 7 5 7 3 possible reagents • Synthons are a tool for choosing reagents 1Based in part on strategies observed in successful students’ responses to synthetic Flynn Research Group 2017 – FlynnResearchGroup.com problems on exams; see: Bodé, N.
    [Show full text]
  • Bsc Chemistry
    __________________________________________________________________________________________________ Subject Chemistry Paper No and Title 14: Organic Chemistry –IV (Advance Organic Synthesis and Supramolecular Chemistry and carbocyclic rings) Module No and 2: Synthons, Synthetic equivalents and Title Retrosynthetic analysis Module Tag CHE_P14_M2 CHEMISTRY Paper No. 14: Organic Chemistry –IV (Advance Organic Synthesis and Supramolecular Chemistry and carbocyclic rings) Module No. 2: Synthons, Synthetic equivalents and Retrosynthetic analysis __________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Synthons and Synthetic equivalents 4. Retrosynthetic analysis 5. Summary CHEMISTRY Paper No. 14: Organic Chemistry –IV (Advance Organic Synthesis and Supramolecular Chemistry and carbocyclic rings) Module No. 2: Synthons, Synthetic equivalents and Retrosynthetic analysis __________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to: Know about synthons Know about synthetic equivalents Know about retrosynthetic analysis. Study the steps involved in retrosynthetic analysis. Know the routine for designing the synthesis. 2. Introduction Organic chemistry is a branch of chemistry which deals with the study of carbon and its compounds. The study includes the understanding of synthesis, structure, properties, and reactions of organic compounds.
    [Show full text]
  • CHEM 4000 Topic 2: Functional Group Oriented Bond-Sets
    CHEMISTRY 4000 Topic #2: Functional Group Oriented Bond-Sets Spring 2019 Dr. Susan Findlay Synthons for Polar Bond Formation Once we identify a bond-set (set of retrosynthetic disconnections), we have to be able to generate a corresponding set of forward reactions. (So much so that knowledge of an available set of forward reactions will have heavily influenced choice of bond-set.) Usually, the forward reaction is a polar bond formation so it involves a nucleophile and an electrophile. First, identify which of the two pieces will serve as nucleophile and which will serve as electrophile. X – X C – + H C or + 2 ? In this example, one option should appear substantially better than the other. In some cases, both options are feasible – but you still have to choose one to try first! 2 Synthons for Polar Bond Formation The functional groups in the target will tend to dictate which piece serves as the nucleophile and which serves as the electrophile (hence the term ‘functional group oriented bond-set’). Each piece is referred to as a synthon. The nucleophilic piece is the donor synthon (or d-synthon). The electrophilic piece is the acceptor synthon (or a-synthon). In the example on the previous page, the aromatic ring dictated the choice of donor and acceptor synthons. What if, instead of disconnecting next to the aromatic ring, we had chosen to disconnect at the next C-C bond in the chain? 3 Synthons for Polar Bond Formation Consider the influence of a carbonyl group on a nearby retrosynthetic disconnection. There are three reasonable choices for disconnections in the vicinity of a carbonyl: O O X – + H C 2 O O – C H 2 + X O O – + H C 2 4 See the end of this set of notes for more on reactions corresponding to the third disconnection.
    [Show full text]
  • 2614-2625 Research Article Synthon Disconnection Strategy for Th
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(5):2614-2625 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Synthon Disconnection Strategy for the Synthesis Design of “Coelenterazine”- A Bioluminescent Marine Natural Product used in Bioassays Chittaranjan Bhanja 1*, Subhendu Chakroborty 2 1Department of Chemistry, Utkal University, Bhubaneswar-751004, Odisha, India 2Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India _________________________________________________________________________________ ABSTRACT Synthon disconnection strategy is a problem solving technique in the planning of organic syntheses. This strategy, developed by Prof. E.J.Corey of Harvard University, plays vital role in the synthesis design of many bioactive natural products used in analytical biochemistry, molecular biology and drug discovery process. Keeping an overview on the published works in both journals and patent literatures, a good number of synthesis schemes have been proposed based on this strategy for a bioluminescent natural product ‘Coelenterazine’ isolated from marine organism jellyfish Aequorea victoria that finds extensive applications in bioassays. The proposed synthesis planning being a theoretical investigation, the actual laboratory execution requires the cross examination of a considerable number of factors such as reactions, reagents and order of events. In actual practice, generally that route is most feasible which is cost-effective, safe, and easy to carry out and gives maximum yield in a short reaction time. Keywords: Anti-oxidant, Bioassays, Bioluminescence, Coelenterazine, Synthon disconnection strategy, Retrosynthetic analysis. _________________________________________________________________________________ INTRODUCTION Organic synthesis is one of the major activities of organic chemists and the planning of synthesis is an intellectual task where chemist’s imagination, art, creativity and knowledge need to be explored.
    [Show full text]
  • Synthi: a New Open-Source Tool for Synthon-Based Library Design
    Preprint___________________________ SynthI: a new open-source tool for synthon-based library design Yuliana Zabolotna1, Dmitriy M.Volochnyuk3,6, Sergey V.Ryabukhin4,6, Kostiantyn Gavrylenko5,6, Dragos Horvath1, Klimchuk Olga1, Olexandre Oksiuta3,7, Gilles Marcou1, Alexandre Varnek1,2 * ____________________________________________________________________________________________ Abstract: Most of the existing computational tools for library design are focused on the generation, rational selection, and combination of promising structural motifs to form members of the new library. However, the absence of a direct link between the chemical space of the retrosynthetically generated fragments and the pool of available reagents makes such approaches appear as rather theoretical and reality-disconnected. In this context, here we present a new open-source toolkit for library design, called Synthons Interpreter or SynthI that allows merging those two chemical spaces into a single synthons space. Here synthons are defined as the actual fragments with valid valences and special labels, defining the position and nature of reactive centers. They can be issued from either the “break-up” of reference compounds according to retrosynthetic rules, or real reagents/BBs, after leaving groups transformation. Such an approach not only enables the design of synthetically accessible libraries and analogs generation but also facilitates BB analysis in the medicinal chemistry context. SynthI code is available in https://github.com/Laboratoire-de-Chemoinformatique/SynthI
    [Show full text]
  • Application in Solution Peptide Synthesis
    Molecules 2010, 15, 9403-9417; doi:10.3390/molecules15129403 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis of 2-(4,6-Dimethoxy-1,3,5-triazin-2-yloxyimino) Derivatives: Application in Solution Peptide Synthesis Tarfah I. Al-Warhi 1,*, Hassan M.A. AL-Hazimi 2, Ayman El-Faham 2,3 and Fernando Albericio 4,5,6 1 Women Students-Medical Studies and Sciences Sections, Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia 2 Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 3 Chemistry Department, Faculty of Science, Alexandria University, 426 Ibrahimia, 21321 Alexandria, Egypt 4 Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 5 CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 6 Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 29 November 2010; in revised form: 14 December 2010 / Accepted: 15 December 2010 / Published: 20 December 2010 Abstract: A new class of 1,3,5-triazinyloxyimino derivatives were prepared, characterized and tested for reactivity in solution peptide synthesis. The new triazinyloxyimino derivatives failed to activate the carboxyl group during formation of peptide bonds, but gave the corresponding N-triazinyl amino acid derivatives as a major product. The oxyma (ethyl 2-cyano-2-(hydroxyimino)acetate) uronium salt was superior to other uronium salts in terms of racemization, while 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, 9) gave the best results.
    [Show full text]
  • Acetylene in Organic Synthesis: Recent Progress and New Uses
    Review Acetylene in Organic Synthesis: Recent Progress and New Uses Vladimir V. Voronin 1, Maria S. Ledovskaya 1, Alexander S. Bogachenkov 1, Konstantin S. Rodygin 1 and Valentine P. Ananikov 1,2,* 1 Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia; [email protected] (V.V.V.); [email protected] (M.S.L.); [email protected] (A.S.B.); [email protected] (K.S.R.) 2 N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia * Correspondence: [email protected] Received: 16 August 2018; Accepted: 17 September 2018; Published: 24 September 2018 Abstract: Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule. Keywords: acetylene; vinylation; cross-coupling; addition reactions; drugs; pharmaceutical substances; biologically active molecule; monomers; polymers 1. Introduction Since the discovery of acetylene, new areas of acetylene chemistry have been continuously developed. The rich scope of chemical transformations available for a C≡C triple bond can be exemplified by coupling [1–5] and addition reactions [6,7].
    [Show full text]