Snowfall Event Characteristics from a High‑Elevation Site in the Southern

Total Page:16

File Type:pdf, Size:1020Kb

Snowfall Event Characteristics from a High‑Elevation Site in the Southern Vol. 63: 171–190, 2015 CLIMATE RESEARCH Published online May 20 doi: 10.3354/cr01291 Clim Res Snowfall event characteristics from a high-elevation site in the Southern Appalachian Mountains, USA Daniel T. Martin1, L. Baker Perry1,*, Douglas K. Miller2, Peter T. Soulé1 1Department of Geography and Planning, Appalachian State University, Rankin Science West, 572 Rivers Street, Boone, NC 28608, USA 2Department of Atmospheric Sciences, University of North Carolina at Asheville, Robinson Hall, Asheville, NC 28804, USA ABSTRACT: Accurate assessment of snowfall patterns in high-elevation remote areas is essential to providing a foundation for further climatological analyses. The Southern Appalachian Moun- tain (SAM) region of the eastern US provides a unique study area due to its low latitude and prox- imity to the Gulf of Mexico and Atlantic Ocean. Major snowstorms, such as the remnants of Hur- ricane Sandy in October 2012, can result in heavy snowfall of 100 cm or greater in favorable upslope regions. Understanding the behavior of these precipitation patterns is important due to flooding threats caused by a combination of factors including deep snowpack exposed to heavy rainfall, cloud immersion, and high dew point temperatures, further exacerbating flooding threats. To contribute to this understanding, we installed the Mobile Precipitation Research and Monitor- ing (MOPRAM) station at Roan Mountain (1875 m) on the Tennessee/North Carolina border in October 2012. MOPRAM allowed us to analyze liquid equivalent precipitation, new snowfall, snow depth, air temperature, and relative humidity at high temporal resolutions during the 2012−2013 snow season. We present the observed snowfall event characteristics (e.g. new snow- fall, liquid equivalent precipitation, atmospheric conditions, and synoptic patterns) along with how these characteristics compare to other sites in the SAM. In our 25 event dataset, we observed the following patterns: conditionally unstable upstream lapse rates; predominantly northwest winds; high-to-low elevation precipitation enhancement near a factor of 3; and 364 mm of snow liquid equivalent on Roan Mountain. An estimated 391 cm of snow fell at Roan during the 2012−2013 season using nearby snow liquid ratios as an estimate for snowfall. KEY WORDS: Orographic snowfall · New snowfall properties · Southern Appalachian Mountains Resale or republication not permitted without written consent of the publisher 1. INTRODUCTION — on the order of kilometers or less — current atmos- pheric models cannot easily resolve precipitation The dynamic multiscale forcings governing snow- patterns for a wide variety of snowfall regimes such fall rates and amounts in mountainous terrain can be as synoptically driven flows (e.g. Miller-style sys- especially difficult for forecasters and climatologists tems) or mesoscale-forced flows (e.g. upslope precip- to diagnose due to complex interactions between itation). At the climatological level, understanding physical barriers and a poorly observed atmosphere. how these fine spatial patterns are reacting to cli- What sampling does exist suffers complications from matic shifts is important for predicting the outcome of instrumentation challenges, especially when meas- many important hydrological resources. While com- uring snowfall (Rasmussen et al. 2012). Because the prehensive studies of mountain meteorology such as spatial scale of mountain influences is often very fine the Mesoscale Alpine Programme (MAP) have made *Corresponding author: [email protected] © Inter-Research 2015 · www.int-res.com 172 Clim Res 63: 171–190, 2015 important contributions (Medina et al. 2005), the cation and reliable winter weather climato logy (John- atmospheric processes and patterns in mountainous son 1987). While not dependent on natural snowfall areas remain poorly understood because of low pop- due to a high capacity for snowmaking, cold weather ulation densities and associated limited observa- and natural snow enhance the experience and often tional networks due to inaccessible locations when lead to larger crowds on the slopes. Additionally, the compared to valley, coastal, or plains regions (Barry presence of perennial snow cover in remote areas 2008). such as Roan Mountain and along the Blue Ridge One reason the Southern Appalachian Mountain Parkway often provides an environment conducive (SAM) region of the US serves as a unique test bed for cross-country skiing that attracts visitors. for the analysis of snowfall climatology is the high The diverse terrain and climate of the SAM also frequency of events at higher elevations from a vari- make possible a number of natural hazards such as ety of synoptic regimes, such as Gulf and Atlantic flooding, landslides, and potent winter storms. In lows, 500 hPa cutoff lows, and Alberta Clippers 2004, torrential rainfall, attributed to the remnants of (Perry et al. 2010). Additionally, this region is charac- Hurricanes Frances and Ivan, triggered multiple terized by considerable topographic relief leading to landslides claiming 5 lives and 16 homes (Wooten et high spatial variability of precipitation. The most al. 2008). In 1998, deadly flooding affected the town extreme of these spatial gradients is associated with of Roan Mountain; this was ultimately associated northwest flow snowfall (NWFS), which is often char- with the combination of heavy rainfall and melting of acterized by orographically enhanced precipitation the existing deep snowpack on Roan Mountain on northwest slopes in the wake of synoptic-scale (1916 m), and resulted in 7 fatalities (Hunter & Boyd subsidence behind a surface cold front (Perry 2006). 1999). While such natural phenomena cannot be pre- With an elevation range between 183 and 2037 m, vented, the appropriate warning and response can the SAM region has the greatest topographic relief in be enhanced through effective study and under- the eastern US. Key features of this domain include standing of orographic precipitation regimes in the the southeast-facing Blue Ridge Escarpment in North region. Carolina (NC), the Great Smoky Mountains National Observation networks in the SAM such as the Coop- Park (GSMNP) and Unaka Range on the borders of erative Observer (COOP) and NC Environment and NC and Tennessee, and the Black Mountains of NC, Climate Observation Network (ECONet) have grown home to Mount Mitchell, the highest point east of the in recent years (Holder et al. 2006). However, auto- Mississippi River (2037 m). Annual average snowfall mated representation of favorable upslope snow fall in the region can range from <10 cm in the southeast sites remains lacking. To address this lack of sites, we foothills to >250 cm in high-elevation windward installed the Mobile Precipitation Research and escarpment regions such as Mt. LeConte in the Monitoring (MOPRAM) station on Roan Mountain GSMNP (Perry & Konrad 2006). just south of the Tennessee border (elevation This dramatic spatial variability makes the SAM a ~1875 m) on 30 September 2012 (Fig. 1). We chose unique region in the southeastern US when com- Roan Mountain for 2 primary reasons. First, the com- pared to Piedmont regions with substantially more bination of elevation and exposure results in fre- uniform climate patterns. Consequently, understand- quent snowfall events from multiple storm tracks ing of meteorological processes in the SAM remains (Johnson 1987). Second, the site has no known clima- an integral part of the culture for both the support of tological observations at the summit (nearby COOP tourism and the prevention and assessment of natu- sites are ~1000 m or more lower in elevation). The ral hazards. The 755 km Blue Ridge Parkway spans MOPRAM station now provides hourly observations from north-central Virginia to the GSMNP in western of temperature, relative humidity, liquid precipita- NC. In 2012, over 17 million visitors travelled the tion, and snow depth within a sparsely instrumented Parkway primarily for recreation (National Park region. Service 2012). This extensive road network extends We present results from the first year of MOPRAM to elevations over 1850 m in the western portion and data, exploring in detail lesser understood contribu- as a result is subject to frequent closures due to snow tors to snowfall in the SAM such as lapse rates, wind and ice (Meyers 2006). direction, and antecedent air trajectories. Character- While the ski resorts of the western US boast istics rarely sampled in the SAM such as orographic greater acreage, trail lengths, and vertical ascents, enhancement, lee drying, and event-scale variability the SAM has remained an important winter recreation are of particular interest, and are addressed in our destination for citizens of the East due to its nearby lo- analysis. In addition, we explore 2 case studies in Martin et al.: High-elevation snowfall characteristics 173 Fig. 1. Roan Mountain Mobile Precipitation Research and Monitoring (MOPRAM) site in North Carolina, USA, with sec- ondary monitoring stations; up- stream lapse rate locations are starred. MRR: Micro Rain Radar; GSMNP: Great Smoky Mountains National Park detail — the remnants of Hurricane Sandy and a pro- 2. BACKGROUND longed late-March snowstorm — in order to analyze the atmospheric processes and associated snowfall 2.1. Observations of snowfall in mountainous patterns involved with events having relatively high regions societal impacts. The research project was largely motivated by the inter-event mesoscale variability of Mountain regions are characterized in part
Recommended publications
  • Mesoscale Modeling of Lake Effect Snow Over Lake Erie–Sensitivity To
    History of Geo- and Space Open Access Open Sciences 9th EMS Annual Meeting and 9th European Conference on Applications of Meteorology 2009 Adv. Sci. Res., 4, 15–22, 2010 www.adv-sci-res.net/4/15/2010/ Advances in © Author(s) 2010. This work is distributed under Science & Research the Creative Commons Attribution 3.0 License. Open Access Proceedings Drinking Water Mesoscale modeling of lake effect snow over LakeEngineering Erie – sensitivity to convection, microphysics andAccess Open and the Science water temperature Earth System N. E. Theeuwes, G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag Science Wageningen University, Meteorology and Air Quality Section, Wageningen, The Netherlands Received: 30 December 2009 – Revised: 3 March 2010 – Accepted: 5 March 2010 – Published: 17Access Open Data March 2010 Abstract. Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and $10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme.
    [Show full text]
  • Assessment of Potential Costs of Declining Water Levels in Great Salt Lake
    Assessment of Potential Costs of Declining Water Levels in Great Salt Lake Revised November 2019 Prepared for: Great Salt Lake Advisory Council KOIN Center 222 SW Columbia Street Suite 1600 Portland, OR 97201 503-222-6060 Salt Lake City, Utah This page intentionally blank ECONorthwest ii Executive Summary The purpose of this report is to assess the potential costs of declining water levels in Great Salt Lake and its wetlands. A multitude of people, systems, and wildlife rely on Great Salt Lake and value the services it provides. Declines in lake levels threaten current uses, imposing risks to livelihoods and lake ecosystems. This report synthesizes information from scientific literature, agency reports, informational interviews, and other sources to detail how and to what extent costs could occur at sustained lower lake levels. Water diversions from the rivers that feed Great Salt Lake have driven historical declines in lake levels. Current and future water stressors, without intervention to protect or enhance water flows to Great Salt Lake, have the potential to deplete water levels even further. Declines in lake levels threaten the business, environmental, and social benefits that Great Salt Lake provides and could result in substantial costs to surrounding local communities and the State of Utah. This report traces the pathways and resulting costs that could arise due to declines in water levels in Great Salt Lake. The potential costs evaluated in this report include those caused by reduced lake effect, increased dust, reduced lake access, increased salinity, habitat loss, new island bridges, and the spread of invasive species. Summary of Costs Each of the effects and resulting costs of declining water levels in Great Salt Lake are described in detail in this report.
    [Show full text]
  • Downloaded 10/10/21 03:43 AM UTC JULY 2013 a L C O T T a N D S T E E N B U R G H 2433
    2432 MONTHLY WEATHER REVIEW VOLUME 141 Orographic Influences on a Great Salt Lake–Effect Snowstorm TREVOR I. ALCOTT National Weather Service, Western Region Headquarters, Salt Lake City, Utah W. JAMES STEENBURGH Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah (Manuscript received 15 November 2012, in final form 1 February 2013) ABSTRACT Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use obser- vational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the ther- mally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed.
    [Show full text]
  • FACF 0394 Bluebook.Pdf
    c / NSF/NOAA ATM-8419116 I ~ ' q'-/- A c ENVIRONMENTAL INFLUENCES ON HURRICANE I NTENSI Fl CATION BY ROBERT T. MERRI LL COLORADO STATE UNIVERSITY P. L WILLIAM M. GRAY ENVIRONMENTAL INFLUENCES ON HURRICANE INTENSIFICATION By Robert T. Merrill Deparbnent of Atmospheric Science Colorado State University Fort Collins, Colorado 80523 December, 1985 Atmospheric Science Paper No. 394 ABSTRACT Though qualitatively similar in structure. different hurricanes can attain different peak intensities during their lifetimes. Forecasters and empiricists relate the intensity to the sea surface temperature and the "effectiveness" of the upper troPospheric outflow. but offer no clear explanation of how the latter operates. Numerical modelers usually ignore the surrounding flow and emphasize interaction between the convective and vortex scales exclusively. This paper examines more closely the observed upper-tropospheric environmental flow differences between hurricanes which intensify and those which fail to do so. and combines them with previously published empirical and modeling results into a general conceptual model of environmental influences on hurricane intensification. Upper troPospheric wind observations (from satellite cloud tracking. aircraft reports, and rawinsondes) are canposited for 28 hurricanes according to intensity tendency. A rotated coordinate system based on the outflow jet location is used so that the asymmetric flow structure is preserved. Little difference is observed in total outflow on the synoptic scale. However, intensifying hurricanes have a less constricted outflow with evidence or lateral connections with the surrounding flow. The asymmetric flow consists of a wave thought to be associated with barotropic instability or the anticyclonic flow above the hurricane and the juxtaposition of surrounding Clow Ceatures.
    [Show full text]
  • Climatology of Lake-Effect Precipitation Events Over Lake Champlain
    232 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 48 Climatology of Lake-Effect Precipitation Events over Lake Champlain NEIL F. LAIRD AND JARED DESROCHERS Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York MELISSA PAYER Chemical, Earth, Atmospheric, and Physical Sciences Department, Plymouth State University, Plymouth, New Hampshire (Manuscript received 29 November 2007, in final form 11 June 2008) ABSTRACT This study provides the first long-term climatological analysis of lake-effect precipitation events that de- veloped in relation to a small lake (having a surface area of #1500 km2). The frequency and environmental conditions favorable for Lake Champlain lake-effect precipitation were examined for the nine winters (October–March) from 1997/98 through 2005/06. Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Burlington, Vermont, were used to identify 67 lake-effect events. Events occurred as 1) well-defined, isolated lake-effect bands over and downwind of the lake, independent of larger-scale precipitating systems (LC events), 2) quasi-stationary lake-effect bands over the lake embedded within extensive regional pre- cipitation from a synoptic weather system (SYNOP events), or 3) a transition from SYNOP and LC lake- effect precipitation. The LC events were found to occur under either a northerly or a southerly wind regime. An examination of the characteristics of these lake-effect events provides several unique findings that are useful for comparison with known lake-effect environments for larger lakes. January was the most active month with an average of nearly four lake-effect events per winter, and approximately one of every four LC events occurred with southerly winds.
    [Show full text]
  • The Evolution of Lake-Effect Convection During Landfall and Orographic Uplift As Observed by Profiling Radars
    4422 MONTHLY WEATHER REVIEW VOLUME 143 The Evolution of Lake-Effect Convection during Landfall and Orographic Uplift as Observed by Profiling Radars JUSTIN R. MINDER AND THEODORE W. LETCHER University at Albany, State University of New York, Albany, New York LEAH S. CAMPBELL,PETER G. VEALS, AND W. JAMES STEENBURGH University of Utah, Salt Lake City, Utah (Manuscript received 27 March 2015, in final form 15 July 2015) ABSTRACT A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equiv- alent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transi- tioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more fre- quent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement.
    [Show full text]
  • P3.4 the Distribution of Precipitation Over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones
    20th Conf. on Weather Analysis and Forecasting Seattle, WA, 11–15 January 2004 P3.4 The Distribution of Precipitation over the Northeast Accompanying Landfalling and Transitioning Tropical Cyclones David P. DeLuca*, Lance F. Bosart, Daniel Keyser University at Albany, State University of New York, Albany, New York and David R. Vallee National Weather Service Forecast Office, Taunton, Massachusetts 1. INTRODUCTION United States. Approximately 3500 surface stations were analyzed for each storm period (currently: 1950– Landfalling and transitioning tropical cyclones 1991) by Ron Horwood of NWS WFO Taunton, MA. pose a significant heavy precipitation forecast challenge Obvious erroneous data were removed to obtain the most over the northeastern United States. The forecast accurate analyses possible. challenge is heightened because the heavy rainfall distribution associated with these tropical cyclones can A subset of eight storms (Fig. 1) where the be modulated significantly when the poleward-moving precipitation distribution is possibly influenced by storms interact with mobile midlatitude upper-level coastal frontogenesis was chosen from well–documented troughs and coastal fronts over regions of complex or famous cases. Detailed analyses were conducted terrain. The purpose of this paper is to document the using the four times daily (0000, 0600, 1200 and 1800 large spatial and temporal variability of heavy UTC) NCEP/NCAR reanalysis dataset (Kalnay et al. precipitation that accompanies landfalling and 1996; Kistler et al. 2001) and archived DIFAX surface transitioning tropical cyclones, and to determine the charts in an attempt to elucidate both synoptic and physical basis for the observed rainfall distribution. mesoscale processes. 2. METHODOLOGY 3. RESULTS A 38-storm dataset (Fig.
    [Show full text]
  • 5. ATLANTIC HURRICANES Tures from 700-Nib
    42 $10i\r mrAY TYESTHE R RE VIE IV Vol. 92, No. 1 washed way or buried portions ol‘ towns, and cost an estimated 5000 lives. The highest measured wind on Haiti was 120 n1.p.h. In Cuba, where 1750 lives are believed lost, winds ol‘ 70 to 100 n1.p.h. lashed eastern sections I‘or 100 or inore hours. In a 12-hr. period on October 3-4, 16 in. of rain fell at Morne Mticayu, Haiti. The storm total at Silver Hill, Jamaica was inore than 60 in. A conservative estiniate of property damage attributa- ble to Flora is $488,550,000, with some areas of Hispaniola still to be heard from. Damage to the economy of the areas worst hit is more difficult to estiiiiate but the effects ol Flora. will surely be felt for years. Hurricane Flora originated in the Tropics and remained imbedded in the tropical easterly flow for several days until it became blocked near eastern Cuba by high pressure areas to the west, north, and east. After spending nearly 5 days in the vicinity of eastern Cuba, it was picked up by westerlies in a polar trough and carried northeastward into the Atlantic. Hurricane Ginny formed in the cut-off southern section of a shearing mean trough. The storm began as a cold Low and gradually assumed tropical characteristics over warin waters of the Gulf Stream at about 34” AT. This FIGUIZE10.-Prcliminary tracks of Atlantic hurricanes and tropical storm wiis i‘xced southwestward (fig. 10) by 8 strong cyclones during October 1963.
    [Show full text]
  • Lake Effect Snows
    Wasaga Beach 2004! Tom Stefanac! Lake-Effect Snowstorms! Grand Bend 2008! Buffalo 2001! Mark Robinson! larc.hamgate.net! SC/EATS4240 GS/ESS5201 - Storms and Weather Systems 1 Impacts • Hazardous air and road travel due to near-zero visibility, gusty winds, and rapidly accumulating snow • Results in school closures and businesses, and in some cases power outages • Can last for several days • Positive impacts — skiing, snowmen, tobogganing, and work and school closures! 2 Climatology of Lake-Effect Snows Additional wintertime precipitation expressed in mm of melted precipitation attributed to the Great Lakes. Dark line is 80 km boundary around shorelines. 125 mm X 20 = 2.5 m average snow ? depth! 3 Climatology of Lake Effect Snows • Great Lake snow belts extend 50 to 80 km inland. • 80 km is the point where most of the moisture in the air has precipitated, and 80 km is well beyond the area where frictional convergence leads to lifting of air over the downwind shoreline. 4 Large Scale Weather Patterns for Lake Effect Snowstorms • Typically, extra-tropical cyclone passes over the region and cyclone’s cold front is well east of Great Lakes. • Cold air behind cold front flows southeastward across Great Lakes. • Strength of flow enhanced if Arctic High moves into the central US. 5 Cold air behind cold front flows southeastward across Great Lakes Strength of flow enhanced if Arctic high moves into the central US Cyclone’s cold front is well east of Great Lakes 6 A strong pressure gradient develops across the Great Lakes that drives cold air southeastward over the Lakes.
    [Show full text]
  • Department of Physics Weber State University Program Review Self
    Department of Physics Weber State University Program Review Self-Study February 6, 2008 WSU Program Review Self-Study Format & Standards Page 1 of 64 WSU Program Review Self-Study Format & Standards Page 2 of 64 Description of the Review Process: The Review Team members are listed below. Their resumes are included as Appendix 1 of this document. • Dr. Paula Szkody, Professor, Department of Astronomy, University of Washington, • Dr. D. Mark Riffe, Associate Professor, Department of Physics, Utah State University, • Dr. Daniel Bedford, Assistant Professor, Department of Geography, Weber State University, • Dr. H. Laine Berghout, Associate Professor, Department of Chemistry, Weber State University. The Program Review Self-Study (this document) was prepared by the Chair of the Department of Physics in consultation with the departmental faculty members. Data and information within the document were obtained from the following sources: 1. Departmental Annual Summaries for the academic years 2002/03, 2003/04, 2004/05, 2005/06, and 2006/07. 2. Data provided by Weber State University’s Division of Budget and Institutional Research. 3. Departmental assessment documents. 4. Department of Physics Program Review Self-Study document, May 2002. As described in the Semester Sequence of Program Review Activities (revised June 2004), the steps that have been, or will be taken throughout the review process include: 1. The selection of the external Review Team by the Department of Physics. The Dean of the College of Science has approved the selection of the team members. 2. On November 15, 2007, the self-study document will be submitted to the Dean of the College of Science for review and approval.
    [Show full text]
  • Climate of San Diego, California
    ,, NOAA TECHNICAL MEMORANDUM NWS WR-256 ... CLIMATE OF SAN DIEGO, CALIFORNIA Thomas E. Evans, Ill NEXRAD Weather Service Office San Diego, California Donald A. Halvorson San Diego County Air Pollution Control District National Weather Service (Retired) San Diego, California October 1998 U.S. DEPARTMENT National Oceanic and National Weather Atmospheric Administration Service OF COMMERCE 75 A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM 72 10707) 76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 7211140) 77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM 7211136) 78 Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. NOAA TECHNICAL MEMORANDA Riddiough, July 1972. (COM 72 11146) National Weather Service, Western Region Subseries 79 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM 72 10920) 80 Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. S: 1 The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for October 1972. (COM 7210021) the documentation and quick dissemination of results not appropriate, or not yet ready, for formal 81 An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington. £: publication. The series is used to report on work in progress, to describe technical procedures and Johnson, November 1972. (COM 7310150) practices, or to relate progress to a limited audience. These Technical Memoranda will report on investiga­ 82 Flash Flood Forecasting and Warning Program in the Western Region.
    [Show full text]
  • Secrets of the Greatest Snow on Earth Covers All of the Essential Topics for Utah Powder Lovers of Every Stripe
    Steenburgh “Secrets of the Greatest Snow on Earth covers all of the essential topics for Utah powder lovers of every stripe. Jim Steenburgh’s dual passion for powder skiing and the science behind the weather that pro- duces Utah’s legendary snowfall make him the ultimate authority on ‘The Greatest Snow on Earth.’ ” —Nathan Raff erty, President, Ski Utah “An entertaining, expert discussion on the science behind snow and skiing. A great read for snow lovers and ski enthusiasts alike.” —Thomas Niziol, Winter Weather Expert at The Weather Channel “Secrets of the Greatest Snow on Earth will prove to be the primer for debates and inquiries about why Wasatch snow is so great.” —Onno Wieringa, General Manager, Alta Ski Area “I have eagerly awaited the publication of Jim Steenburgh’s book. Jim is one of those popular and charismatic professors with the rare gift of being able to explain complex science in layman’s terms while also infecting his audience with his boundless enthusiasm and energy . Many of my conver- sations with him, lectures I’ve attended, and questions I’ve asked him are combined into one easy-to- understand book for the general public.” —Bruce Tremper, Utah Avalanche Center Utah has long claimed to have the greatest snow on Earth—the state itself has even trademarked the phrase. In Secrets of the Greatest Snow on Earth, Jim Steenburgh investigates Wasatch weather, exposing the myths, explaining the reality, and revealing how and why Utah’s powder lives up to its reputation. PAGES Steenburgh also examines ski and snowboard regions beyond Utah, making this book a meteorological guide to mountain weather and snow climates around the world.
    [Show full text]