Improving Meteorological Information to Air Transport

Total Page:16

File Type:pdf, Size:1020Kb

Improving Meteorological Information to Air Transport FINNISH METEOROLOGICAL INSTITUTE Erik Palménin aukio 1 P.O. Box 503 FI-00101 HELSINKI 137 CONTRIBUTIONS tel. +358 29 539 1000 WWW.FMI.FI FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS No. 137 ISBN 978-952-336-031-0 (paperback) ISSN 0782-6117 Erweko Helsinki 2017 ISBN 978-952-336-032-7 (pdf) Helsinki 2017 IMPROVING METEOROLOGICAL INFORMATION TO AIR TRANSPORT JAAKKO NUOTTOKARI FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS NO. 137 IMPROVING METEOROLOGICAL INFORMATION TO AIR TRANSPORT Jaakko Nuottokari Department of Physics Faculty of Science University of Helsinki Helsinki, Finland LICENTIATE THESIS in meteorology Finnish Meteorological Institute Helsinki, 2017 Supervisor PhD Elena Saltikoff Meteorological Research Unit Finnish Meteorological Institute Reviewers Professor Heikki Järvinen and Docent Jouni Räisänen Department of Physics Faculty of Science University of Helsinki ISBN 978-952-336-031-0 (Paperback) ISBN 978-952-336-032-7 (PDF) ISSN 0782-6117 Erweko Oy Helsinki 2017 http://ethesis.helsinki.fi Helsingin yliopiston verkkojulkaisut Series title, number and report Published by Finnish Meteorological Institute code of publication Erik Palménin aukio 1, P.O. Box 503 FIN-00101 Helsinki, Finland Finnish Meteorological Institute Contributions 137, FMI-CONT-137 Date: 30 November 2017 Author: Jaakko Nuottokari Title: On improving meteorological information to air transport ABSTRACT Meteorological information and services supporting the various operations of air transport enable a safe, efficient and cost-effective operating environment for airspace users, air navigation service providers and air traffic management. The continuing pursuit towards an improved quality of observation, forecasting and decision support services is driven by an increasingly weather-sensitive society and growing impacts of hazardous weather events. This thesis provides an overview of the field of aeronautical meteorological research by introducing the organisations involved, global and regional strategies, impacts of weather on air transport, current state of the art in meteorological research and decision support systems serving air transport needs with a view of where the field should evolve next. This thesis is an attempt to highlight key findings and point the reader towards the direction of further research on the given topics. Research supporting air transport operations with the optimal use of weather information is a specialized field where advances are led by the needs of various airspace users. Research institutions for example in the United States have contributed greatly due to the severe weather impacts experienced by the National Airspace System (NAS), the ability of the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration (NOAA) to direct long-term funding to solve specific aviation-related research questions. The creation and maintenance of long-lived teams of scientists and engineers working together to produce end-to- end solutions that meet the needs of the aviation industry is the key to improving meteorological information to aviation users while university research is typically shorter duration and typical does not result in operational systems. From a global perspective, research is yet to be organised in a way that would contribute to solving aviation issues beyond single research projects and/or programmes. There is a lot more the scientific community could do to develop tailored information to decision support systems used by the aviation sector, but it would require systematic investments and the establishment of research groups focusing on the applied science questions and technology transfer. This thesis provides an overview of recommended decision support system development topics with an outline of potential milestones. Publishing unit Customer Services Classification (UDC) Keywords 656.7, 623.772, 551.509.317 Air transport, meteorological service, meteorological applications, decision support systems, civil aviation, aviation weather ISSN and series title 0782-6117 Finnish Meteorological Institute Contributions ISBN Language Pages 978-952-336-031-0 (Paperback) English 125 978-952-336-032-7 (PDF) Julkaisun sarja, numero ja raporttikoodi Julkaisija Ilmatieteen laitos Erik Palménin aukio 1, Finnish Meteorological Institute PL 503, 00101 Helsinki Contributions 137, FMI-CONT-137 Päivämäärä: 30 marraskuuta 2017 Tekijä: Jaakko Nuottokari Nimeke: Ilmailun käyttämän meteorologisen tiedon kehittämisestä TIIVISTELMÄ Tieto ilmakehän nykyisestä ja tulevasta tilasta sekä tätä tietoa ilmailun tarpeisiin tuottavat palvelut mahdollistavat turvallisen, toimivan sekä kustannustehokkaan toimintaympäristön ilmatilan käyttäjille, ilmailun palveluiden tuottajille sekä ilmatilan hallintaa toteuttaville tahoille. Vaarallisille sääilmiöille herkemmäksi kehittyvä yhteiskunta vaatii havaintojen, ennusteiden sekä päätöksenteon tukijärjestelmien jatkuvaa kehittämistä asiakkaiden tarpeisiin. Tämä lisensiaatintutkielma tarjoaa maailmanlaajuisen yleiskatsauksen ilmailun sääpalveluiden tutkimukseen ja tuotekehitykseen pyrkimyksenään esitellä keskeiset toimijat, alueelliset ja kansalliset kehittämisohjelmat ja strategiat, sään vaikutukset ilmailulle, ilmailun sääpalveluiden nykytila sekä tulevaisuuden toimintaympäristön edellyttämät uudet lentosääpalvelut. Tavoitteena on korostaa ilmailun kannalta tärkeimpiä meteorologisia kehityskohteita ja ohjata lukija jo tehdyn tutkimuksen pariin. Ilmailun toimintoja tukevien sääpalveluiden kehittämiseen tähtäävä tutkimus on hyvin soveltava erikoisala, missä asiakkaiden tarpeet määrittävät tutkimuskohteet. Kehitys on keskittynyt voimakkaasti Yhdysvaltoihin, mihin on syynä kapasiteetin äärirajoilla toimiva ilmatila sekä kyky rahoittaa pitkäkestoisia meteorologisia tutkimushankkeita ilmailun tarpeisiin. Meteorologian tutkijoiden ja insinöörien pitkäkestoinen yhteistyö tuottaa koko arvoketjun kattavia projekteja, joiden lopputuloksena syntyy asiakkaan tarpeisiin räätälöityjä palveluita hyödyntäen yliopistoissa tehtävää tutkimusta sekä tietoteknisten ratkaisujen kehittymistä. Maailmanlaajuisesti katsottuna ilmailun sääpalveluiden tutkimusta ja tuotekehitystä ei ole toistaiseksi järjestetty yhtenäisen strategian tai tavoitteiden alle. Tieteellinen yhteisö pystyisi kasvattamaan merkittävästi panostaan ilmailun turvallisuuden kehittämiseksi, mikäli tuotekehityksen rahoitus organisoitaisiin paremmin ja osaaminen keskitettäisiin soveltavan tutkimuksen ryhmiin. Tämä tutkielma sisältää suosituksia päätöksenteon tukijärjestelmiin integroitavista sääpalveluista, joiden avulla säätilan vaikutus lentotoiminnalle voidaan viedä suoraan päätöksentekotasolle. Tutkielmassa esitettyjen projektiaihioiden tarkoituksena esittää konkreettisia toimenpiteitä, joilla varmistutaan tutkimuksen soveltuvuudesta loppukäyttäjien toimintaan. Julkaisijayksikkö Asiakaspalvelut Luokitus (UDC) Avainsanat 656.7, 623.772, 551.509.317 Ilmailu, lentoliikenne, sääpalvelu, meteorologiset sovellukset, päätöksenteon tukijärjestelmät, siviili- ilmailu, lentosää ISSN ja avainnimeke 0782-6117 Finnish Meteorological Institute Contributions ISBN Kieli Sivumäärä 978-952-336-031-0 (Paperback) Englanti 125 978-952-336-032-7 (PDF) ACKNOWLEDGEMENTS Finnish Meteorological Institute (FMI), Northern Europe Aviation Meteorology Consortium (NAMCON), Finnish National Agency for Education (former Center for International Mobility, CIMO), Pohjois- Pohjalainen Osakunta and Union of geophysical sciences of Finland (GFL ry.) are acknowledged for providing funding enabling this work. Thanks to my supervisor PhD Elena Saltikoff at FMI for review and comments on this work. Thanks to James Pinto and Matthias Steiner at National Center for Atmospheric Research (NCAR) for your hospitality and discussions and Roy Rasmussen, Manuela Sauer, Wiebke Deierling, Aaron Braeckel at NCAR for inspiring personal discussions. Thanks to Professor Steven Rutledge and Professor Venkatachalam Chandrasekar at Colorado State University (CSU) for sharing your time. Many thanks to Steven Miller, Renate Brummer, Jung-Hoon Kim, Jack Dostalek, Yoo-Jeong Noh, Curtis Seaman and Dan Lindsey at the Cooperative Institute for Research in the Atmosphere (CSU-CIRA) for hosting and welcoming to your community. Special thanks to Bruce Muller at UCAR / COMET for your support. Many thanks to Dimitar Ivanov, Ian Lisk, Anu Lång and others who read this thesis and provided comments for making it better. This work is dedicated to Ainu, Nooa, Miio and Maria. ABBREVIATIONS ABI Advanced Baseline Imager ABoM Australian Bureau of Meteorology ACAPS US Air Force Weather Agency Coupled Analysis and Prediction System ACI Airports Council International ADS-B Automatic Dependent Surveillance – Broadcast ADS-C Automatic Dependent Surveillance – Contract AFWA US Air Force Weather Agency AHI Advanced Himawari Imager AIM Aeronautical Information Management AIREP Aircraft Report AIS Aeronautical information services AMDAR WMO Aircraft Meteorological Data Relay AMS American Meteorological Society ANS Air Navigation Service ANSP Air Navigation Service Provider (incl. MET) ASBU Aviation System Block Upgrade ASM Airspace Management ASOS Automated Surface Observing System (USA) ATC Air Traffic Control ATFM Air Traffic Flow Management ATM Air Traffic Management ATS Air Traffic Services AWD NextGen Weather Processor Aviation Weather Display AWOS Automated Weather Observing System BKN Broken (cloud layer 6-7/8) CANSO Civil Air Navigation Services Organisation CAPS Center for Analysis and Prediction of Storms
Recommended publications
  • Klimaforschung Mit Satelliten Satellitendaten Zum Sprechen Bringen Seit 20 Jahren Arbeitet Beim Deutschen Wetterdienst Eine Grup
    Klimaforschung mit Satelliten Satellitendaten zum Sprechen bringen Seit 20 Jahren arbeitet beim Deutschen Wetterdienst eine Gruppe von Expertinnen und Experten daran, das Klima mithilfe von Satellitendaten zu beobachten und Verän- derungen zu erfassen. Das Auswertezentrum für Satellitendaten zur Klimabeobach- tung, das so genannte Satellite Application Facility on Climate Monitoring, kurz CM SAF, stellt rund 3.500 Nutzern weltweit Datensätze zur Verfügung. Mit Hilfe dieser Da- ten können beispielsweise Photovoltaikanlagen besser geplant werden. Offenbach, 27. Mai 2019 – Sie heißen CLARA, CLAAS oder SARAH – was in der Me- teorologie zunächst nach Namen von Hochs und Tiefs klingt, entpuppt sich bei näherer Betrachtung als eine große virtuelle Karteikarte, auf der schier unendlich viele Satelli- tendaten über einen festgelegten Zeitraum zu einem Datensatz für die Klimaforschung geformt werden. Geschrieben wird eine solche Karteikarte wie CLARA, CLAAS oder SARAH vom Satellite Application Facility on Climate Monitoring, kurz CM SAF. Dieses Auswertezentrum für Satellitendaten zur Klimabeobachtung ist beim Deutschen Wet- terdienst (DWD) in der Offenbacher Zentrale angesiedelt. Es ist eines von insgesamt acht solchen Zentren, die europaweit gemeinsam von EUMETSAT, der europäischen Organisation zur Nutzung meteorologischer Satelliten, und seinen Mitgliedern betrie- ben werden. Ihre Aufgaben: Satellitendaten so zu übersetzen und darzustellen, dass sie von Wissenschaft, Forschung und Wirtschaft genutzt werden können. Beim CM SAF geht es darum, das Klima der Erde mithilfe von Satellitendaten über einen möglichst langen Zeitraum zu erfassen und zu erforschen und dabei Verände- rungen aufzuzeigen. Dazu analysieren die CM SAF-Expertinnen und -Experten aus Belgien, Deutschland, Finnland, Frankreich, Großbritannien, den Niederlanden, Schweden und der Schweiz die Rohdaten von Satelliten und schauen sich dann insbe- sondere den Energie- und Wasserkreislauf der Atmosphäre an.
    [Show full text]
  • Manual on the WMO Information System
    Manual on the WMO Information System Annex VII to the WMO Technical Regulations 2019 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1060 Manual on the WMO Information System Annex VII to the WMO Technical Regulations 2019 edition WMO-No. 1060 EDITORIAL NOTE The following typographical practice has been followed: Standard practices and procedures have been printed in bold. Recommended practices and procedures have been printed in regular font. Notes have been printed in smaller type. METEOTERM, the WMO terminology database, may be consulted at http://public.wmo.int/en/ resources/meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 1060 © World Meteorological Organization, 2019 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11060-2 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Mesoscale Modeling of Lake Effect Snow Over Lake Erie–Sensitivity To
    History of Geo- and Space Open Access Open Sciences 9th EMS Annual Meeting and 9th European Conference on Applications of Meteorology 2009 Adv. Sci. Res., 4, 15–22, 2010 www.adv-sci-res.net/4/15/2010/ Advances in © Author(s) 2010. This work is distributed under Science & Research the Creative Commons Attribution 3.0 License. Open Access Proceedings Drinking Water Mesoscale modeling of lake effect snow over LakeEngineering Erie – sensitivity to convection, microphysics andAccess Open and the Science water temperature Earth System N. E. Theeuwes, G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag Science Wageningen University, Meteorology and Air Quality Section, Wageningen, The Netherlands Received: 30 December 2009 – Revised: 3 March 2010 – Accepted: 5 March 2010 – Published: 17Access Open Data March 2010 Abstract. Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and $10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme.
    [Show full text]
  • Diapositiva 1
    The H-SAF precipitation products and their use for severe event monitoring Federico Porcù Department of Physics and Astronomy – University of Bologna Silvia Puca Italian Civil Protection Department outline • Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF); • H-SAF Precipitation Products; • H-SAF PP application to severe event monitoring; • H-SAF PP validation; • H-SAF webpage and product download. H-SAF objectives • To provide operational high quality level 2/3 products and develop new satellite products from existing and future satellites with time and space resolution to satisfy the needs of operational hydrology: o precipitation (liquid, solid, rate, accumulated); o soil moisture (large-scale, local-scale, surface, roots region); o snow parameters (cover, melting conditions, water equivalent). • To perform independent validation of the products for civil protection purposes (floods, landslides, avalanches), and for monitoring water resources. The activity includes: o downscaling/upscaling from observed/predicted fields to basin level; o fusion of satellite measurements with data from radar and raingauge networks; o assimilation of satellite-derived products in hydrological models; o assessment of the impact of the satellite-derived products on hydrological applications. H-SAF plan H-SAF Development Phase (2005-2010), completed on August 31, 2010. Continuous Development and Operation Phase (CDOP) (2010-2017): - CDOP-1 (2010-2012) ended in February 2012. To improve algorithms and processing scheme for H-SAF area (25°N to 75°N - 25°W to 45°E) ; - CDOP-2 March 2012 – February 2017. To extend algorithms and validation to Full Disk area and to new satellites. All the products are being generated routinely for the H-SAF area on a H-SAF operational chain in NRT mode.
    [Show full text]
  • Assessment of Potential Costs of Declining Water Levels in Great Salt Lake
    Assessment of Potential Costs of Declining Water Levels in Great Salt Lake Revised November 2019 Prepared for: Great Salt Lake Advisory Council KOIN Center 222 SW Columbia Street Suite 1600 Portland, OR 97201 503-222-6060 Salt Lake City, Utah This page intentionally blank ECONorthwest ii Executive Summary The purpose of this report is to assess the potential costs of declining water levels in Great Salt Lake and its wetlands. A multitude of people, systems, and wildlife rely on Great Salt Lake and value the services it provides. Declines in lake levels threaten current uses, imposing risks to livelihoods and lake ecosystems. This report synthesizes information from scientific literature, agency reports, informational interviews, and other sources to detail how and to what extent costs could occur at sustained lower lake levels. Water diversions from the rivers that feed Great Salt Lake have driven historical declines in lake levels. Current and future water stressors, without intervention to protect or enhance water flows to Great Salt Lake, have the potential to deplete water levels even further. Declines in lake levels threaten the business, environmental, and social benefits that Great Salt Lake provides and could result in substantial costs to surrounding local communities and the State of Utah. This report traces the pathways and resulting costs that could arise due to declines in water levels in Great Salt Lake. The potential costs evaluated in this report include those caused by reduced lake effect, increased dust, reduced lake access, increased salinity, habitat loss, new island bridges, and the spread of invasive species. Summary of Costs Each of the effects and resulting costs of declining water levels in Great Salt Lake are described in detail in this report.
    [Show full text]
  • Programme Book Bus No
    Table of Contents 1 Welcome ...…………………………………2 General Information ...…………………………………3 Exhibition ...…………………………………6 Location Maps ….………………………………. 7 Special Events Opening Session …….……………………………11 Plenary Round Table Discussion …….……………………………12 Medal & Awards Presentations …….……………………………13 Conference Programme Oral Conference Programme Monday …….……………………………15 Oral Conference Programme Tuesday …….……………………………25 Poster Conference Programme Tuesday …….……………………………38 Oral Conference Programme Wednesday …….……………………………49 Oral Conference Programme Thursday …….……………………………57 Poster Conference Programme Thursday …….……………………………68 Oral Conference Programme Friday …….……………………………77 Author Index …….……………………………83 9th EMS Annual Meeting & 9th ECAM: Applications of Meteorology 2 Welcome Dear colleagues, The poster presentations offer a unique opportunity to have in-depth discussions on the studies and their we are happy to welcome you to the ninth EMS results. The Programme and Science Committee Annual Meeting and the biennial ninth European was pleased to be able for the first time in many Conference on Applications of Meteorology (ECAM) years to arrange the programme such that posters that are being held jointly in Toulouse. These can all be displayed throughout the entire week, thus meetings are aimed at bringing together scientists, creating more opportunities to present and discuss service providers, users, decision makers and these. Extended Poster sessions have this year manufacturers from across Europe. And be welcome been scheduled on Tuesday and Thursday
    [Show full text]
  • Downloaded 10/10/21 03:43 AM UTC JULY 2013 a L C O T T a N D S T E E N B U R G H 2433
    2432 MONTHLY WEATHER REVIEW VOLUME 141 Orographic Influences on a Great Salt Lake–Effect Snowstorm TREVOR I. ALCOTT National Weather Service, Western Region Headquarters, Salt Lake City, Utah W. JAMES STEENBURGH Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah (Manuscript received 15 November 2012, in final form 1 February 2013) ABSTRACT Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use obser- vational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the ther- mally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed.
    [Show full text]
  • Climatology of Lake-Effect Precipitation Events Over Lake Champlain
    232 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 48 Climatology of Lake-Effect Precipitation Events over Lake Champlain NEIL F. LAIRD AND JARED DESROCHERS Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York MELISSA PAYER Chemical, Earth, Atmospheric, and Physical Sciences Department, Plymouth State University, Plymouth, New Hampshire (Manuscript received 29 November 2007, in final form 11 June 2008) ABSTRACT This study provides the first long-term climatological analysis of lake-effect precipitation events that de- veloped in relation to a small lake (having a surface area of #1500 km2). The frequency and environmental conditions favorable for Lake Champlain lake-effect precipitation were examined for the nine winters (October–March) from 1997/98 through 2005/06. Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Burlington, Vermont, were used to identify 67 lake-effect events. Events occurred as 1) well-defined, isolated lake-effect bands over and downwind of the lake, independent of larger-scale precipitating systems (LC events), 2) quasi-stationary lake-effect bands over the lake embedded within extensive regional pre- cipitation from a synoptic weather system (SYNOP events), or 3) a transition from SYNOP and LC lake- effect precipitation. The LC events were found to occur under either a northerly or a southerly wind regime. An examination of the characteristics of these lake-effect events provides several unique findings that are useful for comparison with known lake-effect environments for larger lakes. January was the most active month with an average of nearly four lake-effect events per winter, and approximately one of every four LC events occurred with southerly winds.
    [Show full text]
  • The Evolution of Lake-Effect Convection During Landfall and Orographic Uplift As Observed by Profiling Radars
    4422 MONTHLY WEATHER REVIEW VOLUME 143 The Evolution of Lake-Effect Convection during Landfall and Orographic Uplift as Observed by Profiling Radars JUSTIN R. MINDER AND THEODORE W. LETCHER University at Albany, State University of New York, Albany, New York LEAH S. CAMPBELL,PETER G. VEALS, AND W. JAMES STEENBURGH University of Utah, Salt Lake City, Utah (Manuscript received 27 March 2015, in final form 15 July 2015) ABSTRACT A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equiv- alent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transi- tioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more fre- quent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement.
    [Show full text]
  • Meteorological Services of the World
    \/\(/v) 0 1\ WORLD METEOROLOGICAL ORGANIZATION tc-tq ~-- METEOROLOGICAL SERVICES OF THE WORLD SERVICES METEOROLOGIQUES DU MONDE WMO/OMM - N° 2 ORGANISATION METEOROLOGIQUE MONDIALE (--~f ( ") '" ( )- © . World Meteorological Organization Organisation meteorologique mondiale ~ ISBN 92 - 63 - 03002 - 2 I, NOTE The designations employed and the presentation ofmaterial in this publication do not imply the I expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological I Organization concerning the legal status ofany country, territory, city or area or of its authorities, or concerning the delimitation ofits frontiers or boundaries. il Les appellations employees dans cette publication et la presentation des donnees qui y figurent il n'impliquent de la part du Secretariat de l'Organisation meteorologique mondiale aucune prise de position quant au statutjuridique des pays, territoires, villes Oll zones, Oll de leurs autorites, ni quant au I trace de leurs frontieres ou limites. ~.~. C'-'G'd I q;'1v' LI'I'I "," I L_ Supplement/Supplement Inserted by/lnsere par On/Le October/Octobre 1995 'RovNO~ Lt J 1\1\' Cj b October/Octobre 1996 S g~:r c.>/(/'~~'. /1". 11//-/. /;/" .. -I.-~~I?··l/"~ GGtOOeFJGetobre 1997 o" ... c','" October/Octobre 1998 October/Octobre 1999 IT',D' ,S Ir'll .1-r ? ~ 2> c~/ October/Oetobre 2000 2-~. I! (0 U October/Oetobre 2001 J./). J /2./1/ 101 October/Octobre 2002 'u-}) 'S 8/10/OZ October/Octobre 2003 IT<D -S =;-/III{)] October/Octobre 2004 I INTRODUCTION This publication is issued in a composite form from the language viewpoint, i.e., the information is given in either English or French according to the language in which the inform­ ation has- been supplied to the Secretariat by the respective countries.
    [Show full text]
  • Workshop on Ensemble Prediction 7 - 9 November 2007 Workshop Attendees
    Workshop on Ensemble Prediction 7 - 9 November 2007 Workshop Attendees Lecturers Jan Barkmeijer Royal Netherlands Meteorological Institute (KNMI) Postbus 201 3730 AE De Bilt, The Netherlands [email protected] Čedo Branković Meteorological and Hydrological Service of Croatia (DHMZ) Gric 3 HR-10000 Zagreb, Croatia [email protected] Roberto Buizza ECMWF Shinfield Park Reading Berks RG2 9AX, United Kingdom [email protected] Michel Deque Météo France 42, Avenue Gustave Coriolis F-31057 Toulouse Cedex 1, France [email protected] Tom Hamill NOAA Earth System Research Laboratory Physical Sciences Division R/PSD 1 325 Broadway, Boulder, Colorado 80305 USA [email protected] Peter Houtekamer Meteorological Service of Canada 2121 Trans-Canada-Highway H9P 1J3 Dorval P.Q. Canada [email protected] Trond Iversen The Norwegian Meteorological Institute P O Box 43 Blindern, Oslo 3, Norway [email protected] Christine Johnson Met Office FitzRoy Road Exeter EX1 3PB United Kingdom [email protected] In-Sik Kang Department of Atmospheric Sciences Seoul National University Seoul 151-742 Korea [email protected] Ben Kirtman IGES / COLA 4041 Powder Mill Road, Suite 302 Calverton, MD 20705-3106 USA [email protected] Page 1 Attendees Lecturers Franco Molteni ECMWF Shinfield Park Reading Berks RG2 9AX, United Kingdom [email protected] Bartolomé Orfila Instituto Nacional de Meteorologia (INM) C/ Leonardo Prieto Castro 8, Ciudad Universitaria 28040 Madrid, Spain [email protected] Suranjana Saha NOAA/ National Weather
    [Show full text]
  • Lake Effect Snows
    Wasaga Beach 2004! Tom Stefanac! Lake-Effect Snowstorms! Grand Bend 2008! Buffalo 2001! Mark Robinson! larc.hamgate.net! SC/EATS4240 GS/ESS5201 - Storms and Weather Systems 1 Impacts • Hazardous air and road travel due to near-zero visibility, gusty winds, and rapidly accumulating snow • Results in school closures and businesses, and in some cases power outages • Can last for several days • Positive impacts — skiing, snowmen, tobogganing, and work and school closures! 2 Climatology of Lake-Effect Snows Additional wintertime precipitation expressed in mm of melted precipitation attributed to the Great Lakes. Dark line is 80 km boundary around shorelines. 125 mm X 20 = 2.5 m average snow ? depth! 3 Climatology of Lake Effect Snows • Great Lake snow belts extend 50 to 80 km inland. • 80 km is the point where most of the moisture in the air has precipitated, and 80 km is well beyond the area where frictional convergence leads to lifting of air over the downwind shoreline. 4 Large Scale Weather Patterns for Lake Effect Snowstorms • Typically, extra-tropical cyclone passes over the region and cyclone’s cold front is well east of Great Lakes. • Cold air behind cold front flows southeastward across Great Lakes. • Strength of flow enhanced if Arctic High moves into the central US. 5 Cold air behind cold front flows southeastward across Great Lakes Strength of flow enhanced if Arctic high moves into the central US Cyclone’s cold front is well east of Great Lakes 6 A strong pressure gradient develops across the Great Lakes that drives cold air southeastward over the Lakes.
    [Show full text]