Department of Physics Weber State University Program Review Self
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chronicle 2004
The Annual Magazine of King Edward's School, Birmingham CHRONICLE 2004 CONTENTS Hellos 5 Goodbyes 16 Features 22 Dram a 38 Trips 43 Words and Pictures 62 Music 76 Houses 80 Societies 86 Sport 90 K€S Chronicle 2004 The Editorial Team Hellos & Goodbyes Matthew Gammie Features Matthew Hosty Trips Euan Stirling & Oliver Carter Drama Peter Wozniak Music Tom Cadigan Words Charles Butler Houses Amit Sinha Societies Jamie Sunderland Sport Philip Satterthwaite, Amer Shafi, & Vidu Shanmugarajah Cover Elliot Weaver Banners Tarsem Madhar Staff Tom Hosty Editorial Chronicle is the work of a large number of people. Most immediately we have to thank Sandra Bürden at the Resources Centre, who assembles the pages on her computer and who is to thank for much of the fine detail of the magazine's final appearance: I am hugely indebted to her for her energy, initiative and attention to detail. Earlier in the chain stand the section editors, whose job is to round up copy and pictures for their sections and devise the running order and general page layouts for that section. They also have to go in for a good deal of rewriting: prolixity must be trimmed, irrelevance eliminated, errors put right and facetiousness filtered out. To be a good editor requires not only a good ear for language and a high level of compétence in written English: it also calls for patience and good humour in the actual pursuit of material. Mirabile dictu, it sometimes happens that contributors to the magazine are strong on promises but weak on performance. This year's editors have been terrifie. -
Mesoscale Modeling of Lake Effect Snow Over Lake Erie–Sensitivity To
History of Geo- and Space Open Access Open Sciences 9th EMS Annual Meeting and 9th European Conference on Applications of Meteorology 2009 Adv. Sci. Res., 4, 15–22, 2010 www.adv-sci-res.net/4/15/2010/ Advances in © Author(s) 2010. This work is distributed under Science & Research the Creative Commons Attribution 3.0 License. Open Access Proceedings Drinking Water Mesoscale modeling of lake effect snow over LakeEngineering Erie – sensitivity to convection, microphysics andAccess Open and the Science water temperature Earth System N. E. Theeuwes, G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag Science Wageningen University, Meteorology and Air Quality Section, Wageningen, The Netherlands Received: 30 December 2009 – Revised: 3 March 2010 – Accepted: 5 March 2010 – Published: 17Access Open Data March 2010 Abstract. Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and $10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme. -
Planetary Nebulae
Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies. -
DMAAC – February 1973
LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base. -
121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S. -
Viscosity from Newton to Modern Non-Equilibrium Statistical Mechanics
Viscosity from Newton to Modern Non-equilibrium Statistical Mechanics S´ebastien Viscardy Belgian Institute for Space Aeronomy, 3, Avenue Circulaire, B-1180 Brussels, Belgium Abstract In the second half of the 19th century, the kinetic theory of gases has probably raised one of the most impassioned de- bates in the history of science. The so-called reversibility paradox around which intense polemics occurred reveals the apparent incompatibility between the microscopic and macroscopic levels. While classical mechanics describes the motionof bodies such as atoms and moleculesby means of time reversible equations, thermodynamics emphasizes the irreversible character of macroscopic phenomena such as viscosity. Aiming at reconciling both levels of description, Boltzmann proposed a probabilistic explanation. Nevertheless, such an interpretation has not totally convinced gen- erations of physicists, so that this question has constantly animated the scientific community since his seminal work. In this context, an important breakthrough in dynamical systems theory has shown that the hypothesis of microscopic chaos played a key role and provided a dynamical interpretation of the emergence of irreversibility. Using viscosity as a leading concept, we sketch the historical development of the concepts related to this fundamental issue up to recent advances. Following the analysis of the Liouville equation introducing the concept of Pollicott-Ruelle resonances, two successful approaches — the escape-rate formalism and the hydrodynamic-mode method — establish remarkable relationships between transport processes and chaotic properties of the underlying Hamiltonian dynamics. Keywords: statistical mechanics, viscosity, reversibility paradox, chaos, dynamical systems theory Contents 1 Introduction 2 2 Irreversibility 3 2.1 Mechanics. Energyconservationand reversibility . ........................ 3 2.2 Thermodynamics. -
User Guide to 1:250,000 Scale Lunar Maps
CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west. -
Astrophysics in 2006 3
ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media. -
Assessment of Potential Costs of Declining Water Levels in Great Salt Lake
Assessment of Potential Costs of Declining Water Levels in Great Salt Lake Revised November 2019 Prepared for: Great Salt Lake Advisory Council KOIN Center 222 SW Columbia Street Suite 1600 Portland, OR 97201 503-222-6060 Salt Lake City, Utah This page intentionally blank ECONorthwest ii Executive Summary The purpose of this report is to assess the potential costs of declining water levels in Great Salt Lake and its wetlands. A multitude of people, systems, and wildlife rely on Great Salt Lake and value the services it provides. Declines in lake levels threaten current uses, imposing risks to livelihoods and lake ecosystems. This report synthesizes information from scientific literature, agency reports, informational interviews, and other sources to detail how and to what extent costs could occur at sustained lower lake levels. Water diversions from the rivers that feed Great Salt Lake have driven historical declines in lake levels. Current and future water stressors, without intervention to protect or enhance water flows to Great Salt Lake, have the potential to deplete water levels even further. Declines in lake levels threaten the business, environmental, and social benefits that Great Salt Lake provides and could result in substantial costs to surrounding local communities and the State of Utah. This report traces the pathways and resulting costs that could arise due to declines in water levels in Great Salt Lake. The potential costs evaluated in this report include those caused by reduced lake effect, increased dust, reduced lake access, increased salinity, habitat loss, new island bridges, and the spread of invasive species. Summary of Costs Each of the effects and resulting costs of declining water levels in Great Salt Lake are described in detail in this report. -
Cygnus Schwan
Lateinischer Name: Deutscher Name: Cyg Cygnus Schwan Atlas (2000.0) Karte Cambridge Star Kulmination um 7 Atlas Mitternacht: Benachbarte 3, 8, Sky Atlas Sternbilder: 9 Cep Dra Lac Lyr Peg 29. Juni Vul Deklinationsbereich: 27° ... 61° Fläche am Himmel: 804° 2 Mythologie und Geschichte: In der griechischen Mythologie war Kyknos (Cygnus) ein Musikerkönig und ein hingebungsvoller Freund von Phaethon, dem Sohn des Sonnengottes Helios. Eines Tages überredete Phaethon seinen Vater, ihn doch einmal den Sonnenwagen über den Himmel führen zu lassen, doch dann verlor er die Kontrolle über die Pferde und brachte Verwüstung über Himmel und Erde. Der König der Götter, Zeus, schleuderte einen seiner Donnerblitze auf Phaethon und tötete ihn dadurch augenblicklich. Sein noch schwelender Körper fiel in den Fluss Eridanus. Kyknos sprang in den Fluss, schwamm hin und her und tauchte immer wieder um den Körper seines Freundes zu finden. Man sagte, er hätte wie ein Schwan ausgesehen, der im Wasser schwamm und nach Futter tauchte. Helios schaute traurig zu und hob den treuen Freund seines Sohnes empor und setzte ihn auf einen Platz zwischen den Gestirnen am Firmament. [ay62] In einer anderen Version dieses Mythos wanderte Cygnus in einem Pappelwäldchen am Ufer es Flusses Eridanus, trauernd um den Tod seines Freundes. Schlussendlich bemitleideten ihn die Götter derart, dass sie ihn in einen Schwan aus Sternen verwandelten. Seit dann erzählt man sich, Schwäne sängen traurige Lieder wenn sie kurz vorm sterben sind. Das ist der Ursprung des Ausdrucks "Schwanengesang", welcher das letzte Werk eines Musikers oder Dichters vor seinem Tod bezeichnet. [ay62] Zu einer anderen Zeit und an einem anderen Ort der griechischen Mythologie schlüpfte Zeus in die Gestalt eines Schwans, um sich Leda, der Gemahlin des Königs Tyndareos von Sparta, die gerade ihren lieblichen Körper im Fluss badete, nähern zu können. -
Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A -
Downloaded 10/10/21 03:43 AM UTC JULY 2013 a L C O T T a N D S T E E N B U R G H 2433
2432 MONTHLY WEATHER REVIEW VOLUME 141 Orographic Influences on a Great Salt Lake–Effect Snowstorm TREVOR I. ALCOTT National Weather Service, Western Region Headquarters, Salt Lake City, Utah W. JAMES STEENBURGH Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah (Manuscript received 15 November 2012, in final form 1 February 2013) ABSTRACT Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use obser- vational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the ther- mally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed.