Downloader.Figshare.Com/Files/3686040
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Consequences Artificial Night Lighting
Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” -
Stuttgarter Beiträge Zur Naturkunde
download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Naturkunde ^ Serie A (Biologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser.A Nr. 537 101 S. Stuttgart, 31.5. 1996 Die Kopulationsorgane des Maikäfers Melolontha melolontha (Insecta: Coleoptera: Scarabaeidae). - Ein Beitrag zur vergleichenden und funktionellen Anatomie der ektodermalen Genitalien der Coleoptera The Copulatory Organs of the Cockchafer Melolontha melolontha (Insecta: Coleoptera: Scarabaeidae). - A Contribution to Comparative and Functional Anatomy of Ectodermal Genitalia of the Coleoptera Von Frank-Thorsten Kr eil, Würzburg o^\tHS0/V% Mit 49 Abbildungen und 1 Tabelle ._„, \ APR 4.1997 Xv S u m m a r y \JJBRARl£5- Sclerites, mcmbranes and muscles of male and female copulatory apparatus of the cockcha- fer Melolontha melolontha (Linnacus, 1758) (Insecta: Coleoptera: Scarabaeidae: Melo- lonthinae) are dcscribcd at rcst and during copulation. For the tust ume, the course ol copu lation of Melolontha is dcscribed complctely. By comparing resting position, copulation and supposed oviposition the functions of Single parts of the copulatory organs are inferred. I>\ means of a functional morphological scenario the functioning of copulation is depicted. \ possiblc strategy of the female to stop copulation before Insemination Starts is described (cryptic female choicc). At rest, the aedeagus lies on its lateral side ("deversement"). The course of cjaculatory duct and trachcae indicate a "retournement", a longitudinal IST rota *) Dissertation zur Erlangung des Grades eines 1 )oktors der Natura issensc haften dei tat für Biologie der Eberhard -Karls-Unn ersität Tübingen. - Herrn Dr. (ii kiiakd Mickoi in (Tübingen) zum 65. ( leburtstag gewidmet. -
Coleoptera: Lampyridae) with New Ohio Records and Regional Observations for Several Firefly Species
Ohio Biological Survey Notes 9: 16–34, 2019. © Ohio Biological Survey, Inc. Life History and Updated Range Extension of Photinus scintillans (Coleoptera: Lampyridae) with New Ohio Records and Regional Observations for Several Firefly Species LYNN F. FAUST¹, LAURA S. HUGHES2, MARK H. ZLOBA3, AND HEATHER L. FARRINGTON4 1Lynn F. Faust, 11828 Couch Mill Rd, Knoxville, TN 37932, [email protected]; 2Laura S. Hughes, 365 Shawnee Loop South, Pataskala, Ohio. [email protected]; 3Mark H. Zloba, Ecological Manager, Cincinnati Museum Center, Edge of Appalachia Preserve System, 4274 Waggoner Riffle Rd., West Union, Ohio 45693, [email protected]; 4Heather L. Farrington, Cincinnati Museum Center, Curator of Zoology, 1301 Western Avenue, Cincinnati, Ohio 45203, [email protected]. Abstract: Photinus scintillans (Say) has long been considered the Photinus species with one of the smallest ranges in North America. In field studies conducted between 2016 and 2019 in Ohio and Indiana, we discovered new, thriving P. scintillans populations, tripling the east-west range from 550 km to 1820 km when combined with more recent collection records by firefly researchers Lloyd, Stanger-Hall, and Lower. We describe in new detail flight behaviors, nocturnal timing of activity, flash pattern, lantern coloration changes, courtship, and mating habits. We present the first evidence of the presence of spermatophore-producing spiral glands and prolonged mating with the brachypterous females; oviposition behaviors; larval eclosion and appearance; and seasonality with habitat variations and commonalities. We provide the first report with photos of possible phoresy by a springtail (Collembola) on a firefly. In addition, we offer new Ohio state (and nearby Indiana and Kentucky) firefly records, including the extremely rare P. -
A Molecular Phylogeny of Lampyridae with Insight Into Visual and Bioluminescent Evolution
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-12-01 A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin Jon Martin Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Martin, Gavin Jon, "A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution" (2014). Theses and Dissertations. 5758. https://scholarsarchive.byu.edu/etd/5758 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin J. Martin A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Seth M. Bybee, Chair Michael F. Whiting Marc A. Branham Department of Biology Brigham Young University December 2014 Copyright © 2014 Gavin J. Martin All Rights Reserved ABSTRACT A Molecular Phylogeny of Lampyridae with Insight into Visual and Bioluminescent Evolution Gavin J. Martin Department of Biology, BYU Master of Science Fireflies are some of the most captivating organisms on the planet. Because of this, they have a rich history of study, especially concerning their bioluminescent and visual behavior. Among insects, opsin copy number variation has been shown to be quite diverse. However, within the beetles, very little work on opsins has been conducted. Here we look at the visual system of fireflies (Coleoptera: Lampyridae), which offer an elegant system in which to study visual evolution as it relates to their behavior and broader ecology. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough. substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author (fid not send UMI a complete manuscript and there are missing pages, these wilt be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographicaity in this copy. Higher quality 6’ x 9“ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE EVOLUTION OF LAMPYRIDAE, WITH SPECIAL EMPHASIS ON THE ORIGIN OF PHOTIC BEHAVIOR AND SIGNAL SYSTEM EVOLUTION (COLEOPTERA: LAMPYRIDAE) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Marc A. -
Mate Recognition and Choice in Photinus Fireflies
Ann. Zool. Fennici 41: 809–821 ISSN 0003-455X Helsinki 20 December 2004 © Finnish Zoological and Botanical Publishing Board 2004 Mate recognition and choice in Photinus fireflies Sara M. Lewis1,*, Christopher K. Cratsley2 & Kristian Demary1 1) Department of Biology, Tufts University, Medford MA 02155, USA (*e-mail: [email protected]) 2) Department of Biology, Fitchburg State College, Fitchburg MA 01420, USA Received 27 Apr. 2004, revised version received 29 Sep. 2004, accepted 29 May 2004 Lewis, S. M., Cratsley, C. K. & Demary, K. 2004: Mate recognition and choice in Photinus fireflies. — Ann. Zool. Fennici 41: 809–821. This paper offers a view of firefly mate recognition and choice seen through the lens of recognition system theory. We review the expression and perception of firefly bio- luminescent signals, and describe the photic cues used by Photinus fireflies (Coleop- tera: Lampyridae) in the processes of species recognition (identifying conspecifics) and mate-quality recognition (discriminating among potential conspecific mates). The signal characters used by Photinus females to discriminate among potential mates include flash pulse rate and pulse duration, similar temporal characters to those assessed by females in acoustically signaling insects. We also review male nuptial gift production and transfer, and describe the relationship found between male flash sig- nals and nuptial gift size for Photinus ignitus. We present evidence of mate choice by Photinus males, which appear to allocate limited resources by rejecting low fecundity females. We assess the potential for postcopulatory female choice to mediate mate acceptance errors by increasing paternity success of higher quality mates, or blocking fertilizations by low quality mates. -
Insects of Western North America
INSECTS OF WESTERN NORTH AMERICA 11. BIOLUMINESCENT BEHAVIOR OF NORTH AMERICAN FIREFLY LARVAE (COLEOPTERA: LAMPYRIDAE) WITH A DISCUSSION OF FUNCTION AND EVOLUTION Contributions of the C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University INSECTS OF WESTERN NORTH AMERICA 11. BIOLUMINESCENT BEHAVIOR OF NORTH AMERICAN FIREFLY LARVAE (COLEOPTERA: LAMPYRIDAE) WITH A DISCUSSION OF FUNCTION AND EVOLUTION By Lawrent L. Buschman Department of Entomology, Kansas State University, Manhattan, Kansas USA 60605. Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado USA 80523. Current Address: 963 Burland Dr., Bailey, Colorado 80421, Phone: 303-838-4968 Email: [email protected] March 10, 2019 Contributions of the C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University 2 Cover: Image: A photograph of a Photuris pupa showing the glow coming from two oval light organs and bright body glow from the body. (Photo by David Liittschwaer, extended time exposure, used with permission). ©Copyright Lawrent L. Buschman 2019 All Rights Reserved ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences & Pest management Colorado State University Fort Collins, Colorado 80523-1177 3 Table of Contents Abstract 5 General Introduction 6 Chapter 1: Description of Larval -
BIOLOGY and BIOLUMINESCENCE of SELECTED FIREFLIES in THREE GENERA: P YRAC TOMENA, PHOTINUS and PHOTURI^ (COLEOPTERA: Lampyridael
BIOLOGY AND BIOLUMINESCENCE OF SELECTED FIREFLIES IN THREE GENERA: P_YRAC_TOMENA, PHOTINUS AND PHOTURI^ (COLEOPTERA: LAMPYRIDAEl By LAWRENT LEE BUSCHMAN A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1977 Larva of Pyr actomen a lucifera feeding on a snail. In memory of my mother, Clara D. (Lohrenz) Buschman who died June 26, 1976. Official emblem of the Florida Entomological Society designed by Lawrent L. Buschman ACKNOWLEDGEMENTS This dissertation could not have been completed without the support and assistance of my wife, Rose. I am particularly grateful for her editorial assistance and for typing the manuscript. I would like to express appreciation to the professors who served on my graduate and examining committees: J. E. Lloyd (chairman), J. E. Brogdon, P. S. Callahan, D. H. Habeck, S. H. Kerr, J. Reiskind, R. E. Waites, and T. J. Walker. I also acknowledge the extensive discussions with J. E. Lloyd and T. J. Walker which have influenced this research. The following individuals provided taxonomic determinations: F. W. Mead (Hemiptera, Homoptera) and R. E. Woodruff (Coleoptera) , Dept. Agric. & Cons. Services, Division of Plant Industry, Gainesville, Florida; M. J. Westfall (Odonata) and J. Reiskind (Spiders), Dept. of Zoology; D. H. Habeck (Lepidoptera ) , L. A. Hetrick (Lepidoptera, Bibionidae), J. E. Lloyd (Lampyridae), L. P. Kish (Fungi), G. B. Edwards (Spiders), Dept. of Entomology and Nematology; and Richard Franz (Snails), Florida State Museum, University of Florida, Gainesville. IV TABLE OF CONTENTS ACKNOWLEDGEMENTS TV LIST OF TABLES ix LIST OF FIGURES xi i i ABSTRACT . -
On Quantifying Mate Search in a Perfect Insect 211 on RESEARCH and ENTOMOLOGICAL EDUCATION IV
Lloyd: On Quantifying Mate Search in a Perfect Insect 211 ON RESEARCH AND ENTOMOLOGICAL EDUCATION IV: QUANTIFYING MATE SEARCH IN A PERFECT INSECT— SEEKING TRUE FACTS AND INSIGHT (COLEOPTERA: LAMPYRIDAE, PHOTINUS) JAMES E. LLOYD Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611 ABSTRACT Male Photinus collustrans LeConte fireflies fly over their grassland habitats flash- ing and seeking their flightless females. I followed individual males, measured, and took note of various aspects of their behavior. Then, from a sample of 255 male runs, with a total distance of 13.9 miles and 10,306 flashes, various sets of these males, those seemingly directed by other than search flight-plans, were removed to leave a sample to characterize “pure” search flight. Fireflies are good subjects for students to study foraging ecology and sexual selection, and from studies of common grassland fireflies it will be clear to students that even simple behavior by males of a single spe- cies, under seemingly uncomplicated and homogeneous conditions, can be complex, but provide opportunity for theoretical and empirical exploration. Among factors identified here as influencing male mate-seeking behavior were ambient tempera- ture, ambient light level, and time of night. Other influencing factors, enigmas, and student explorations are indicated. Key Words: Lampyridae, Photinus, mate search, sexual selection, foraging, teaching RESUMEN Las luciérnagas machos de la especie Photinus collustrans LeConte vuelan sobre los pastizales destellando su luz y buscando a las hembras que no pueden volar. Seguí a los machos, los medí y tome notas de varios aspectos de su comportamiento. Luego, de una muestra de 255 vuelos de los machos, con una distancia total de 13,9 millas y de 10.306 destellos, varios grupos de estos machos, esos dirigidos aparentemente por alguna otra razón que la de un vuelo de búsqueda, fueron removidos para formar una muestra que caracterice el vuelo de búsqueda “puro”. -
Reproductive Systems, Transfer and Digestion of Spermatophores in Two Asian Luciolinae Fireflies (Coleoptera: Lampyridae)
insects Article Reproductive Systems, Transfer and Digestion of Spermatophores in Two Asian Luciolinae Fireflies (Coleoptera: Lampyridae) Xinhua Fu 1,2,3,* and Lesley Ballantyne 4 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China 2 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Wuhan 430070, China 3 Firefly Conservation Research Centre, 1 Shizishan Street, Wuhan 430070, China 4 School of Agricultural and Wine Sciences, Charles Sturt University, P.O. Box 588, Wagga Wagga 2678, Australia; [email protected] * Correspondence: firefl[email protected] Simple Summary: During mating, fireflies may transfer sperm to the female wrapped in food materials (spermatophores). We investigate in two firefly species structures in both male and female that indicate production and receipt of spermatophores. Their structure, how they attach and discharge the sperm inside the female, and how long they persist might indicate if these fireflies mate only once or more. Potential differences between males and females of both fully winged and species with flightless females are determined. An overview of present knowledge of female reproductive anatomy is given. An argument is mounted suggesting direct observation of biological structures like spermatophores might be the only reliable way of determining their presence. Abstract: The internal reproductive anatomy of males and females of two Asian Luciolinae fireflies Emeia pseudosauteri (Geisthardt, 2004) and Abscondita chinensis (L., 1767) is described, and the time Citation: Fu, X.; Ballantyne, L. course for spermatophore transfer and digestion examined. E. pseudosauteri is sexually dimorphic, Reproductive Systems, Transfer and with a flightless female, and Abs. chinensis is sexually monomorphic, with the female flighted. -
Correlated Evolution of Female Neoteny and Flightlessness with Male Spermatophore Production in Fireflies (Coleoptera: Lampyridae)
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01199.x CORRELATED EVOLUTION OF FEMALE NEOTENY AND FLIGHTLESSNESS WITH MALE SPERMATOPHORE PRODUCTION IN FIREFLIES (COLEOPTERA: LAMPYRIDAE) Adam South,1,2 Kathrin Stanger-Hall,2,3 Ming-Luen Jeng,4 and Sara M. Lewis1,5 1Department of Biology, Tufts University, Medford, Massachusetts 02155 3Department of Plant Biology, University of Georgia, Athens, Georgia 30602 4National Museum of Natural Science, Taichung, Taiwan 5E-mail: [email protected] Received June 30, 2009 Accepted October 12, 2010 The beetle family Lampyridae (fireflies) encompasses 100 genera worldwide with considerable diversity in life histories and ∼ signaling modes. Some lampyrid males use reproductive accessory glands to produce spermatophores, which have been shown to increase female lifetime fecundity. Sexual dimorphism in the form of neotenic and flightless females is also common in this family. Amajorgoalofthisstudywastotestahypothesizedlinkbetweenfemaleflightabilityandmalespermatophoreproduction.We examined macroevolutionary patterns to test for correlated evolution among different levels of female neoteny (and associated loss of flight ability), male accessory gland number (and associated spermatophore production), and sexual signaling mode. Trait reconstruction on a molecular phylogeny indicated that flying females and spermatophores were ancestral traits and that female neoteny increased monotonically and led to flightlessness within multiple lineages. In addition, male spermatophore production was lost multiple times. Our evolutionary trait analysis revealed significant correlations between increased female neoteny and male accessory gland number, as well as between flightlessness and spermatophore loss. In addition, female flightlessness was positively correlated with the use of glows as female sexual signal. Transition probability analysis supported an evolutionary se- quence of female flightlessness evolving first, followed by loss of male spermatophores. -
Building Twilight “Light Sensors” to Study the Effects of Light Pollution on Fireflies
ONLINE HOW-TO-DO-IT Building Twilight “Light Sensors” To Study the Effects of Light Pollution on Fireflies A NCHANA T HANCHAROEN M ARC A. B RANHAM J AMES E. L LOYD ighthouses and illuminated skyscrapers attract chemistry combines the enzyme luciferase and a substrate called migratingL birds, thousands of which crash into them and die. luciferin, along with ATP (adenosine triphosphate) and oxygen. Night active insects accumulate around lights on bridges, some- The ON and OFF of a firefly’s flash is ultimately controlled times piling knee-deep under them. Street lights disorient sea through the availability of oxygen at the source of the chemical turtle hatchlings en route to the sea as well as females seeking reaction, i.e., the firefly light organ (Trimmer et al., 2001). The egg-laying sites. And fireflies, their mating signals drowned in flash patterns of adult fireflies are species specific and are used showers of photons from a variety of human sources, disappear for sexual communication; that is, as mating signals for males from the landscape. These are just a few examples of some of the and females of the same species to recognize and locate each effects of “light pollution.” Light pollution is currently defined as other. Most North American fireflies producing flash patterns in unnecessary artificial light from manmade sources such as illu- flight are males; females generally perch on grass or other veg- minated billboards, factories, residential porch lights, and street etation below the male activity space and do not flash until they lights, negatively affecting nocturnal organisms. Stray light not see an appropriate male flash pattern, which they then answer only wastes energy but creates problems for astronomical obser- in their species specific manner (McDermott, 1917; Lloyd, 1966; vations, can interfere with natural cycles and rhythms as well as Branham & Greenfield, 1996).