A Smart-Dashboard Augmenting Safe & Smooth Driving
Total Page:16
File Type:pdf, Size:1020Kb
Master Thesis Computer Science Thesis no: 2010:MUC:01 Month Year 02-10 A Smart-Dashboard Augmenting safe & smooth driving Muhammad Akhlaq School of Computing Blekinge Institute of Technology Box 520 SE – 372 25 Ronneby Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science (Ubiquitous Computing). The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Muhammad Akhlaq Address: Mohallah Kot Ahmad Shah, Mandi Bahauddin, PAKISTAN-50400 E-mail: [email protected] University advisor(s): Prof. Dr. Bo Helgeson School of Computing School of Computing Internet : www.bth.se/com Blekinge Institute of Technology Phone : +46 457 38 50 00 Box 520 Fax : + 46 457 102 45 SE – 372 25 Ronneby Sweden ii ABSTRACT Annually, road accidents cause more than 1.2 million deaths, 50 million injuries, and US$ 518 billion of economic cost globally [1]. About 90% of the accidents occur due to human errors [2] [3] such as bad awareness, distraction, drowsiness, low training, fatigue etc. These human errors can be minimized by using advanced driver assistance system (ADAS) which actively monitors the driving environment and alerts a driver to the forthcoming danger, for example adaptive cruise control, blind spot detection, parking assistance, forward collision warning, lane departure warning, driver drowsiness detection, and traffic sign recognition etc. Unfortunately, these systems are provided only with modern luxury cars because they are very expensive due to numerous sensors employed. Therefore, camera-based ADAS are being seen as an alternative because a camera has much lower cost, higher availability, can be used for multiple applications and ability to integrate with other systems. Aiming at developing a camera-based ADAS, we have performed an ethnographic study of drivers in order to find what information about the surroundings could be helpful for drivers to avoid accidents. Our study shows that information on speed, distance, relative position, direction, and size & type of the nearby vehicles & other objects would be useful for drivers, and sufficient for implementing most of the ADAS functions. After considering available technologies such as radar, sonar, lidar, GPS, and video-based analysis, we conclude that video-based analysis is the fittest technology that provides all the essential support required for implementing ADAS functions at very low cost. Finally, we have proposed a Smart-Dashboard system that puts technologies – such as camera, digital image processor, and thin display – into a smart system to offer all advanced driver assistance functions. A basic prototype, demonstrating three functions only, is implemented in order to show that a full-fledged camera-based ADAS can be implemented using MATLAB. Keywords: Ubiquitous Computing, Smart Systems, Context-Awareness, Ethnography, Advanced Driver Assistance System (ADAS), Middleware, Driver-Centered Design, Image Sensors, Video-Based Analysis, Bird’s-Eye View. ACKNOWLEDGEMENTS First, I would like to thank my adviser Prof. Dr. Bo Helgeson at Blekinge Institute of Technology for his invaluable advice during the course of this thesis. Second, I would like to thank Dr. Hans Tap and Dr. Marcus Sanchez Svensson – the former program mangers for Master in Ubiquitous Computing. Their continuous administrative support made it possible for me to complete this thesis. Third, a special thank to my father Gulzar Ahmad, my mother Zainab Bibi, and my wife Sadia Bashir for their prayers and encouragement. Muhammad Akhlaq, Ronneby, 2009. ii CONTENTS 1 INTRODUCTION ........................................................................................................................... 3 1.1 BACKGROUND ........................................................................................................................... 3 1.2 CHALLENGES ............................................................................................................................ 3 1.3 RESEARCH QUESTIONS ............................................................................................................. 4 1.4 SMART SYSTEMS ....................................................................................................................... 5 1.4.1 Context-awareness............................................................................................................... 5 1.4.2 Intelligence .......................................................................................................................... 5 1.4.3 Pro-activity .......................................................................................................................... 5 1.4.4 Minimal User Interruption .................................................................................................. 6 1.5 RELATED STUDIES / PROJECTS ................................................................................................. 6 1.5.1 Advanced Driver Assistance Systems (ADAS) .................................................................... 6 1.5.2 In-Vehicle Information Systems (IVIS) ............................................................................... 8 1.5.3 Warning Systems .................................................................................................................. 8 1.5.4 Navigation and Guidance Systems ...................................................................................... 9 1.5.5 Mountable Devices and Displays ........................................................................................ 9 1.5.6 Vision-based integration of ADAS .................................................................................... 10 1.6 ANALYSIS OF THE RELATED PROJECTS .................................................................................. 10 2 BASICS OF UBIQUITOUS COMPUTING .............................................................................. 11 2.1 WHAT IS UBIQUITOUS & PERVASIVE COMPUTING? ............................................................... 11 2.1.1 Ubiquitous vs. Pervasive Computing ................................................................................ 12 2.1.2 Related Fields .................................................................................................................... 13 2.1.3 Issues and Challenges in UbiComp .................................................................................. 13 2.2 DESIGNING FOR UBICOMP SYSTEMS ...................................................................................... 16 2.2.1 Background ........................................................................................................................ 16 2.2.2 Design Models ................................................................................................................... 17 2.2.3 Interaction Design ............................................................................................................. 20 2.3 ISSUES IN UBICOMP DESIGN ................................................................................................... 22 2.3.1 What and When to Design? ............................................................................................... 22 2.3.2 Targets of the Design ......................................................................................................... 22 2.3.3 Designing for Specific Settings – Driving Environment ................................................... 22 2.3.4 UbiComp and the Notion of Invisibility ............................................................................ 23 2.3.5 Calm Technology ............................................................................................................... 23 2.3.6 Embodied Interaction ........................................................................................................ 23 2.3.7 Limitations of Ethnography ............................................................................................... 24 2.3.8 Prototyping ........................................................................................................................ 24 2.3.9 Socio-Technical Gap ......................................................................................................... 24 2.3.10 Hacking ......................................................................................................................... 24 2.4 UBICOMP AND SMART-DASHBOARD PROJECT ....................................................................... 24 2.5 CONCLUSIONS AND FUTURE DIRECTIONS .............................................................................. 25 3 ETHNOGRAPHIC STUDIES ..................................................................................................... 26 3.1 INTRODUCTION ....................................................................................................................... 26 3.2 OUR APPROACH ...................................................................................................................... 28 3.3 RESULTS .................................................................................................................................. 29 3.3.1 Results from Ethnography ................................................................................................. 29 3.3.2 Video Results ....................................................................................................................