A Smart-Dashboard Augmenting Safe & Smooth Driving

Total Page:16

File Type:pdf, Size:1020Kb

A Smart-Dashboard Augmenting Safe & Smooth Driving Master Thesis Computer Science Thesis no: 2010:MUC:01 Month Year 02-10 A Smart-Dashboard Augmenting safe & smooth driving Muhammad Akhlaq School of Computing Blekinge Institute of Technology Box 520 SE – 372 25 Ronneby Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science (Ubiquitous Computing). The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Muhammad Akhlaq Address: Mohallah Kot Ahmad Shah, Mandi Bahauddin, PAKISTAN-50400 E-mail: [email protected] University advisor(s): Prof. Dr. Bo Helgeson School of Computing School of Computing Internet : www.bth.se/com Blekinge Institute of Technology Phone : +46 457 38 50 00 Box 520 Fax : + 46 457 102 45 SE – 372 25 Ronneby Sweden ii ABSTRACT Annually, road accidents cause more than 1.2 million deaths, 50 million injuries, and US$ 518 billion of economic cost globally [1]. About 90% of the accidents occur due to human errors [2] [3] such as bad awareness, distraction, drowsiness, low training, fatigue etc. These human errors can be minimized by using advanced driver assistance system (ADAS) which actively monitors the driving environment and alerts a driver to the forthcoming danger, for example adaptive cruise control, blind spot detection, parking assistance, forward collision warning, lane departure warning, driver drowsiness detection, and traffic sign recognition etc. Unfortunately, these systems are provided only with modern luxury cars because they are very expensive due to numerous sensors employed. Therefore, camera-based ADAS are being seen as an alternative because a camera has much lower cost, higher availability, can be used for multiple applications and ability to integrate with other systems. Aiming at developing a camera-based ADAS, we have performed an ethnographic study of drivers in order to find what information about the surroundings could be helpful for drivers to avoid accidents. Our study shows that information on speed, distance, relative position, direction, and size & type of the nearby vehicles & other objects would be useful for drivers, and sufficient for implementing most of the ADAS functions. After considering available technologies such as radar, sonar, lidar, GPS, and video-based analysis, we conclude that video-based analysis is the fittest technology that provides all the essential support required for implementing ADAS functions at very low cost. Finally, we have proposed a Smart-Dashboard system that puts technologies – such as camera, digital image processor, and thin display – into a smart system to offer all advanced driver assistance functions. A basic prototype, demonstrating three functions only, is implemented in order to show that a full-fledged camera-based ADAS can be implemented using MATLAB. Keywords: Ubiquitous Computing, Smart Systems, Context-Awareness, Ethnography, Advanced Driver Assistance System (ADAS), Middleware, Driver-Centered Design, Image Sensors, Video-Based Analysis, Bird’s-Eye View. ACKNOWLEDGEMENTS First, I would like to thank my adviser Prof. Dr. Bo Helgeson at Blekinge Institute of Technology for his invaluable advice during the course of this thesis. Second, I would like to thank Dr. Hans Tap and Dr. Marcus Sanchez Svensson – the former program mangers for Master in Ubiquitous Computing. Their continuous administrative support made it possible for me to complete this thesis. Third, a special thank to my father Gulzar Ahmad, my mother Zainab Bibi, and my wife Sadia Bashir for their prayers and encouragement. Muhammad Akhlaq, Ronneby, 2009. ii CONTENTS 1 INTRODUCTION ........................................................................................................................... 3 1.1 BACKGROUND ........................................................................................................................... 3 1.2 CHALLENGES ............................................................................................................................ 3 1.3 RESEARCH QUESTIONS ............................................................................................................. 4 1.4 SMART SYSTEMS ....................................................................................................................... 5 1.4.1 Context-awareness............................................................................................................... 5 1.4.2 Intelligence .......................................................................................................................... 5 1.4.3 Pro-activity .......................................................................................................................... 5 1.4.4 Minimal User Interruption .................................................................................................. 6 1.5 RELATED STUDIES / PROJECTS ................................................................................................. 6 1.5.1 Advanced Driver Assistance Systems (ADAS) .................................................................... 6 1.5.2 In-Vehicle Information Systems (IVIS) ............................................................................... 8 1.5.3 Warning Systems .................................................................................................................. 8 1.5.4 Navigation and Guidance Systems ...................................................................................... 9 1.5.5 Mountable Devices and Displays ........................................................................................ 9 1.5.6 Vision-based integration of ADAS .................................................................................... 10 1.6 ANALYSIS OF THE RELATED PROJECTS .................................................................................. 10 2 BASICS OF UBIQUITOUS COMPUTING .............................................................................. 11 2.1 WHAT IS UBIQUITOUS & PERVASIVE COMPUTING? ............................................................... 11 2.1.1 Ubiquitous vs. Pervasive Computing ................................................................................ 12 2.1.2 Related Fields .................................................................................................................... 13 2.1.3 Issues and Challenges in UbiComp .................................................................................. 13 2.2 DESIGNING FOR UBICOMP SYSTEMS ...................................................................................... 16 2.2.1 Background ........................................................................................................................ 16 2.2.2 Design Models ................................................................................................................... 17 2.2.3 Interaction Design ............................................................................................................. 20 2.3 ISSUES IN UBICOMP DESIGN ................................................................................................... 22 2.3.1 What and When to Design? ............................................................................................... 22 2.3.2 Targets of the Design ......................................................................................................... 22 2.3.3 Designing for Specific Settings – Driving Environment ................................................... 22 2.3.4 UbiComp and the Notion of Invisibility ............................................................................ 23 2.3.5 Calm Technology ............................................................................................................... 23 2.3.6 Embodied Interaction ........................................................................................................ 23 2.3.7 Limitations of Ethnography ............................................................................................... 24 2.3.8 Prototyping ........................................................................................................................ 24 2.3.9 Socio-Technical Gap ......................................................................................................... 24 2.3.10 Hacking ......................................................................................................................... 24 2.4 UBICOMP AND SMART-DASHBOARD PROJECT ....................................................................... 24 2.5 CONCLUSIONS AND FUTURE DIRECTIONS .............................................................................. 25 3 ETHNOGRAPHIC STUDIES ..................................................................................................... 26 3.1 INTRODUCTION ....................................................................................................................... 26 3.2 OUR APPROACH ...................................................................................................................... 28 3.3 RESULTS .................................................................................................................................. 29 3.3.1 Results from Ethnography ................................................................................................. 29 3.3.2 Video Results ....................................................................................................................
Recommended publications
  • Gesttrack3d™ Toolkit
    GestTrack3D™ Toolkit A Collection of 3D Vision Trackers for Touch-Free User Interface and Game Control Control interactive displays and digital signs from a distance. Navigate “PrimeSense™-like” 3D game worlds. Interact with virtually any computer system without ever touching it. GestureTek, the inventor and multiple patent holder of video gesture control using 2D and 3D cameras, introduces GestTrack3D™, our patented, cutting-edge, 3D gesture control system for developers, OEMs and public display providers. GestTrack3D eliminates the need for touch-based accessories like a mouse, keyboard, handheld controller or touch screen when interacting with an electronic device. Working with nearly any Time of Flight camera to precisely measure the location of people’s hands or body parts, GestTrack3D’s robust tracking enables device control through a wide range of gestures and poses. GestTrack3D is the perfect solution for accurate and reliable off-screen computer control in interactive environments such as boardrooms, classrooms, clean rooms, stores, museums, amusement parks, trade shows and rehabilitation centres. The Science Behind the Software GestureTek has developed unique tracking and gesture recognition algorithms to define the relationship between computers and the people using them. With 3D cameras and our patented 3D computer vision software, computers can now identify, track and respond to fingers, hands or full-body gestures. The system comes with a depth camera and SDK (including sample code) that makes the x, y and z coordinates of up to ten hands available in real time. It also supports multiple PC development environments and includes a library of one-handed and two-handed gestures and poses.
    [Show full text]
  • How to Use Lonsdor Toyota / Lexus Smart
    http://www.lonsdork518.com How to use Lonsdor Toyota / Lexus smart key emulator chip 39 (128bit) & 94/D4? This file is on how to use Lonsdor Toyota/Lexus the 5th emulator for Chip 39 (128 bit,SKE Orange) & chip 94/D4 (SKE Black). This help file basically includes 4 parts: Function, Operation, Attention, and Reference. Functions Operational process for all key lost Please confirm whether emulator key (SKE) is bound to K518 device beforehand. Backup EEPROM data-> Generate new data-> Dismantle immo box and write new data to EEPROM-> Generate SKE-> Add/delete smart key 1. Backup original EEPROM immo data. 2. Use backup data to generate new data. 3. System certify and generate new data automatically, and program SKE to become an available key,which can open dashboard.,before key programming. 4. Add a smart key. 5. Delete programmed key. 6. Bind SKE: Require to bind all SKE to K518 for the first use. Operation Operational process for all key lost Please confirm whether K518 is bound to emulator key (SKE). 1. Backup EEPROM data--> 2. Generate emulator key (SKE)--> 3. Use SKE to switch ignition ON--> 4. Add smart key Operation 1. Backup EEPROM immo data. 2. Generate a SKE for emergency use. 3. Put the SKE close to start button and dashboard will be lit up. 4. Add a smart key. 5. Delete a smart key. Bind emulator key 1. This function can bind emulator key (SKE-LT series) to K518 host. 2. Please insert key to be bound into the host slot. 3. System is binding..
    [Show full text]
  • PROJECTION – VISION SYSTEMS: Towards a Human-Centric Taxonomy
    PROJECTION – VISION SYSTEMS: Towards a Human-Centric Taxonomy William Buxton Buxton Design www.billbuxton.com (Draft of May 25, 2004) ABSTRACT As their name suggests, “projection-vision systems” are systems that utilize a projector, generally as their display, coupled with some form of camera/vision system for input. Projection-vision systems are not new. However, recent technological developments, research into usage, and novel problems emerging from ubiquitous and portable computing have resulted in a growing recognition that they warrant special attention. Collectively, they represent an important, interesting and distinct class of user interface. The intent of this paper is to present an introduction to projection-vision systems from a human-centric perspective. We develop a number of dimensions according to which they can be characterized. In so doing, we discuss older systems that paved the way, as well as ones that are just emerging. Our discussion is oriented around issues of usage and user experience. Technology comes to the fore only in terms of its affordances in this regard. Our hope is to help foster a better understanding of these systems, as well as provide a foundation that can assist in making more informed decisions in terms of next steps. INTRODUCTION I have a confession to make. At 56 years of age, as much as I hate losing my hair, I hate losing my vision even more. I tell you this to explain why being able to access the web on my smart phone, PDA, or wrist watch provokes nothing more than a yawn from me. Why should I care? I can barely read the hands on my watch, and can’t remember the last time that I could read the date on it without my glasses.
    [Show full text]
  • Altroz.Tatamotors.Com
    11189812 TATA-A-OWNER’S MANUAL Cover page 440 mm X 145 mm OWNER’S MANUAL Call us:1-800-209-7979 Mail us: [email protected] Visit us: service.tatamotors.com 5442 5840 9901 Developed by: Technical Literature Cell,ERC. altroz.tatamotors.com OWNER’S MANUAL CUSTOMER ASSISTANCE In our constant endeavour to provide assistance and complete You can also approach nearest TATA MOTORS dealer. A sepa- service backup, TATA MOTORS has established an all India cus- rate Dealer network address booklet is provided with the tomer assistance centre. Owner’s manual. In case you have a query regarding any aspect of your vehicle, TATA MOTORS’ 24X7 Roadside Assistance Program offers tech- our Customer Assistance Centre will be glad to assist you on nical help in the event of a breakdown. Call the toll-free road- our Toll Free no. 1800 209 7979 side assistance helpline number. For additional information, refer to "24X7 Roadside Assis- tance" section in the Owner’s manual. ii Dear Customer, Welcome to the TATA MOTORS family. We congratulate you on the purchase of your new vehicle and we are privileged to have you as our valued customer. We urge you to read this Owner's Manual carefully and familiarize yourself with the equipment descriptions and operating instruc- tions before driving. Always carry out prescribed service/maintenance work as well as any required repairs at an authorized TATA MOTORS Dealers or Authorized Service Centre’s (TASCs). Use only genuine parts for continued reliability, safety and performance of your vehicle. You are welcome to contact our dealer or Customer Assistance toll free no.
    [Show full text]
  • A 0.13 Μm CMOS System-On-Chip For
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 50, NO. 1, JANUARY 2015 303 A0.13μm CMOS System-on-Chip for a 512 × 424 Time-of-Flight Image Sensor With Multi-Frequency Photo-Demodulation up to 130 MHz and 2 GS/s ADC Cyrus S. Bamji, Patrick O’Connor, Tamer Elkhatib, Associate Member, IEEE,SwatiMehta, Member, IEEE, Barry Thompson, Member, IEEE, Lawrence A. Prather,Member,IEEE, Dane Snow, Member, IEEE, Onur Can Akkaya, Andy Daniel, Andrew D. Payne, Member, IEEE, Travis Perry, Mike Fenton, Member, IEEE, and Vei-Han Chan Abstract—We introduce a 512 × 424 time-of-flight (TOF) depth Generally, 3-D acquisition techniques can be classified into image sensor designed in aTSMC0.13μmLP1P5MCMOS two broad categories: geometrical methods [1], [2], which in- process, suitable for use in Microsoft Kinect for XBOX ONE. The clude stereo and structured light, and electrical methods, which 10 μm×10μm pixel incorporates a TOF detector that operates using the quantum efficiency modulation (QEM) technique at include ultrasound or optical TOF described herein. The oper- high modulation frequencies of up to 130 MHz, achieves a mod- ating principle of optical TOF is based on measuring the total ulation contrast of 67% at 50 MHz and a responsivity of 0.14 time required for a light signal to reach an object, be reflected by A/W at 860 nm. The TOF sensor includes a 2 GS/s 10 bit signal the object, and subsequently be detected by a TOF pixel array. path, which is used for the high ADC bandwidth requirements Optical TOF methods can be classified in two subcategories: of the system that requires many ADC conversions per frame.
    [Show full text]
  • Real-Time Depth Imaging
    TU Berlin, Fakultät IV, Computer Graphics Real-time depth imaging vorgelegt von Diplom-Mediensystemwissenschaftler Uwe Hahne aus Kirchheim unter Teck, Deutschland Von der Fakultät IV - Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften — Dr.-Ing. — genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Olaf Hellwich Berichter: Prof. Dr.-Ing. Marc Alexa Berichter: Prof. Dr. Andreas Kolb Tag der wissenschaftlichen Aussprache: 3. Mai 2012 Berlin 2012 D83 For my family. Abstract This thesis depicts approaches toward real-time depth sensing. While humans are very good at estimating distances and hence are able to smoothly control vehicles and their own movements, machines often lack the ability to sense their environ- ment in a manner comparable to humans. This discrepancy prevents the automa- tion of certain job steps. We assume that further enhancement of depth sensing technologies might change this fact. We examine to what extend time-of-flight (ToF) cameras are able to provide reliable depth images in real-time. We discuss current issues with existing real-time imaging methods and technologies in detail and present several approaches to enhance real-time depth imaging. We focus on ToF imaging and the utilization of ToF cameras based on the photonic mixer de- vice (PMD) principle. These cameras provide per pixel distance information in real-time. However, the measurement contains several error sources. We present approaches to indicate measurement errors and to determine the reliability of the data from these sensors. If the reliability is known, combining the data with other sensors will become possible. We describe such a combination of ToF and stereo cameras that enables new interactive applications in the field of computer graph- ics.
    [Show full text]
  • A Category-Level 3-D Object Dataset: Putting the Kinect to Work
    A Category-Level 3-D Object Dataset: Putting the Kinect to Work Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario Fritz, Kate Saenko, Trevor Darrell UC Berkeley and Max-Plank-Institute for Informatics fallie, sergeyk, jiayq, barron, saenko, [email protected], [email protected] Abstract Recent proliferation of a cheap but quality depth sen- sor, the Microsoft Kinect, has brought the need for a chal- lenging category-level 3D object detection dataset to the fore. We review current 3D datasets and find them lack- ing in variation of scenes, categories, instances, and view- points. Here we present our dataset of color and depth image pairs, gathered in real domestic and office environ- ments. It currently includes over 50 classes, with more images added continuously by a crowd-sourced collection effort. We establish baseline performance in a PASCAL VOC-style detection task, and suggest two ways that in- ferred world size of the object may be used to improve de- tection. The dataset and annotations can be downloaded at http://www.kinectdata.com. Figure 1. Two scenes typical of our dataset. 1. Introduction ously published datasets. The latest version of the dataset is available at http://www.kinectdata.com Recently, there has been a resurgence of interest in avail- able 3-D sensing techniques due to advances in active depth As with existing 2-D challenge datasets, our dataset has sensing, including techniques based on LIDAR, time-of- considerable variation in pose and object size. An impor- flight (Canesta), and projected texture stereo (PR2). The tant observation our dataset enables is that the actual world Primesense sensor used on the Microsoft Kinect gaming size distribution of objects has less variance than the image- interface offers a particularly attractive set of capabilities, projected, apparent size distribution.
    [Show full text]
  • Freehand Interaction on a Projected Augmented Reality Tabletop Hrvoje Benko1 Ricardo Jota1,2 Andrew D
    Session: Curves & Mirages: Gestures & Interaction with Nonplanar Surfaces May 5–10, 2012, Austin, Texas, USA MirageTable: Freehand Interaction on a Projected Augmented Reality Tabletop Hrvoje Benko1 Ricardo Jota1,2 Andrew D. Wilson1 1Microsoft Research 2VIMMI / Inesc-ID One Microsoft Way, IST / Technical University of Lisbon Redmond, WA 98052 1000-029 Lisbon, Portugal {benko | awilson}@microsoft.com [email protected] Figure 1. MirageTable is a curved projection-based augmented reality system (A), which digitizes any object on the surface (B), presenting correct perspective views accounting for real objects (C) and supporting freehand physics-based interactions (D). ABSTRACT Author Keywords Instrumented with a single depth camera, a stereoscopic 3D interaction; spatial augmented reality; projector-camera projector, and a curved screen, MirageTable is an system; projective textures; depth camera; 3D digitization; interactive system designed to merge real and virtual worlds 3D teleconferencing; shared task space; into a single spatially registered experience on top of a table. Our depth camera tracks the user’s eyes and performs ACM Classification Keywords a real-time capture of both the shape and the appearance of H.5.2 [Information Interfaces and Presentation]: User any object placed in front of the camera (including user’s Interfaces - Graphical user interfaces; body and hands). This real-time capture enables perspective stereoscopic 3D visualizations to a single user that account INTRODUCTION for deformations caused by physical objects on the table. In Overlaying computer generated graphics on top of the real addition, the user can interact with virtual objects through world to create a seamless spatially-registered environment physically-realistic freehand actions without any gloves, is a core idea of Augmented Reality (AR) technology.
    [Show full text]
  • Human Factors Research on Seat Belt Assurance Systems DISCLAIMER
    DOT HS 812 838 February 2020 Human Factors Research On Seat Belt Assurance Systems DISCLAIMER This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Bao, S., Funkhouser, D., Buonarosa, M. L., Gilbert, M., LeBlanc, D., & Ward, N. (2020, February). Human factors research on seat belt assurance systems (Report No. DOT HS 812 838). Washington, DC: National Highway Traffic Safety Administration. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 838 Title and Subtitle 5. Report Date Human Factors Research on Seat Belt Assurance Systems February 2020 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Shan Bao, Dillon Funkhouser, Mary Lynn Buonarosa, Mark Gilbert, Dave LeBlanc, all UMTRI, and Nicholas Ward, Western Transportation Institute, Montana State University Performing Organization Name and Address 10. Work Unit No. (TRAIS) University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road DTNH22-11-D-00236, Task Order Ann Arbor, MI 48109-2150 #13 12.
    [Show full text]
  • Using Head-Up Display for Vehicle Navigation
    DESCOMPOSING THE MAP: USING HEAD-UP DISPLAY FOR VEHICLE NAVIGATION Dane Harkin, William Cartwright, and Michael Black School of Mathematical and Geospatial Science RMIT University, Melbourne, Australia ABSTRACT The mobility of people is ever increasing, with a sense of being able to travel to any destination they wish. Utilising the GPS and computer technology created for the use within vehicles for guidance purposes allows people to do this, without the thought of Where am I? or Where do I go now? These systems warrant the need to look at the display for excessive periods of time, causing drivers to remove their vision from the road. A possible solution could be the introduction of military aviation technology, specifically Head-Up Display (HUD), to compliment the current system, by presenting modified navigational information on the windscreen. This paper looks at background theory associated with the technology being investigated and its proposed implementation. It then provides an overview of the information obtained to date. Problems that may occur with such an implementation are discussed and further research to be undertaken outlined. INTRODUCTION Since the introduction of the first motor vehicle, crafted independently by Germany’s Gottlieb Daimler and Carl Benz in 1886 (Mercedes-Benz, 2003), there has been a general improvement in personal mobility. The motor vehicle allowed people to travel to destinations of choice, and they usually navigated there with the aid of a map or map book. Over the years, navigation tools improved as new cartographic techniques were developed and employed. During the 1970s, “… efforts to develop in-vehicle route guidance systems were initiated” (Adler and Blue, 1998, p.
    [Show full text]
  • UC Santa Cruz UC Santa Cruz Previously Published Works
    UC Santa Cruz UC Santa Cruz Previously Published Works Title Probabilistic Phase Unwrapping for Single-Frequency Time-of-Flight Range Cameras Permalink https://escholarship.org/uc/item/5425z76f Authors Crabb, Ryan Manduchi, Roberto Publication Date 2014-11-17 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Probabilistic Phase Unwrapping for Single-Frequency Time-of-Flight Range Cameras Under Active Illumination Model Ryan Crabb Roberto Manduchi Dept. of Computer Engineering Dept. of Computer Engineering University of California, Santa Cruz University of California, Santa Cruz [email protected] [email protected] Abstract—This paper proposes a solution to the 2-D precise 3D measurements of large static scenes. In phase unwrapping problem, inherent to time-of-flight comparison to stereo-based range imaging it requires range sensing technology due to the cyclic nature of much less computation, is not dependent upon a heavily phase. Our method uses a single frequency capture textured surface, and not effected by ambient light. period to improve frame rate and decrease the However, it is again limited in range and resolution as presence of motion artifacts encountered in multiple well as requiring more power for the active illumination. frequency solutions. We present a probabilistic On the other hand, in comparison to structured light framework that considers intensity image in addition methods, ToF offers other advantages: because the setup to the phase image. The phase unwrapping problem is is confocal it suffers no occlusion, and its resolution of cast in terms of global optimization of a carefully measurement is independent of the hardware’s geometry.
    [Show full text]
  • Realms As Entity Location Services
    Realms as Entity Location Services Realms as Entity Location Services A study of object orientation for the conceptual structure of the Internet Oliver F. J. Snowden for The Nuffield Foundation © 2004 Oliver Snowden Page: 1 of 93 Realms as Entity Location Services Summary New methods for organising the Internet need to be investigated and a new interface concept called Realms explored. It is hoped that Realms will enable access to a variety of devices not typically accessible over the Internet. This is needed since the Internet is rapidly expanding and huge numbers of devices are expected to be connected simultaneously (e.g. electricity meters, TVs, washing machines, individual lights, pipeline sensors). This introduces many difficulties, especially in referencing and organising such vast numbers of devices. Without efficient organisation current priority services, such as telephony, will be degraded. We have researched the following topics: • Current and potential Internet devices • Current and planned structure of the Internet • The Internet as an Object Oriented distributed database • The Realm concept with respect to the conceptual structure of the Internet. In addition we have • Ascertained any potential increase in productivity from Internet users using this concept • Conducted interviews with potential end-users and experts • Studied realm interfaces, and written critical analyses of • The Realm concept for the Internet structure • The Realm concept for widening access. The results of this study suggest that the scope of the devices connected to the Internet is likely to increase and that there are mechanisms which can facilitate the increased number of devices, both physically and virtually. Object Orientation (OO) was explained briefly to help highlight the benefits it can bring to users and computational systems.
    [Show full text]