Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Book WELCOME TO TARDIGRADA 2018 14TH INTERNATIONAL SYMPOSIUM ON TARDIGRADA ABSTRACT BOOK Symposi nal um tio o a n n Ta r r te d n i I g r h a t d 4 a 1 COPENHAGEN BIOCENTER, DENMARK www.tardigrada2018.org U N I V E R S I T Y O F C O P E N H A G E N FACULTY OF SCIENCE 14th International Symposium on Tardigrada ABSTRACT BOOK Keynote talks………………………………………………………………………...…….…...…. 2-6 Oral presentations …………………………………...……………………………..………….… 7-61 Poster presentations ……………………………………………………………………......…. 62-136 List of participants .……………………………………………………..........................….…137-145 Tardigrada 2018 14th International Symposium on Tardigrada CHAIR Nadja Møbjerg (University of Copenhagen, Denmark) LOCAL COMMITTEE Hans Ramløv (Roskilde University, Denmark), Jesper Guldberg Hansen (University of Copenhagen, Denmark), Jette Eibye-Jacobsen (University of Copenhagen, Denmark/ Birkerød Gymnasium), Lykke Keldsted Bøgsted Hvidepil (University of Copenhagen, Denmark), Maria Kamilari (University of Copenhagen, Denmark), Reinhardt Møbjerg Kristensen (University of Copenhagen, Denmark), Thomas L. Sørensen-Hygum (University of Copenhagen, Denmark) FRONTPAGE The Symposium logo shows six individuals of Isoechiniscoides sifae drawn by Stine Elle. | 1 14th International Symposium on Tardigrada KEYNOTE TALKS | 2 14th International Symposium on Tardigrada Another round of animal phyogenetics: known, unknowns, needs Gonzalo Giribet Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA Background: Understanding animal phylogeny has been a hot topic through more than two centuries and a major focus for methodological developments in anatomical studies, cladistics, developmental biology, and molecular systematics. With the advent of new sequencing technologies, there has been a recent shift from using morphology or a handful of genes to genome- scale data, which can now be generated at an ever-increasing rate even from the smallest metazoans. The new data, however, come with new challenges associated with defining orthology, selecting genes and taxa for analyses, and in using automated ways to generate repeatable results. Results: New analyses have been conducted using genomes and Illumina-based transcriptomes to assemble the largest metazoan data set ever put together. Our data show novel results with respect to the position of taxa such as Placozoa and Chaetognatha and show the roadmap for how to approach difficult questions in animal evolution, including the phylogenies of Lophotrochozoa (a subtaxon of Spiralia) and Ecdysozoa. Many of these challenges are due to data heterogeneity, including compositional bias in key lineages. The difficulty in using comparative morphology to infer phylogenies across the metazoan phyla is also discussed. Conclusions: While the current round of analyses using improved datasets and optimized taxon sampling are able to resolve previous conflicting animal nodes, it is also clear that rate heterogeneity among members of a clade may pose a challenge for resolving certain nodes (e.g., the non-lophotrochozoan spiralians versus the lophotrochozoan ones). We also show that despite the enormous genomic resources in two lineages of Ecdysozoa (Arthropoda and Nematoda), phylogenies remain poorly resolved for this hyperdiverse lineage, especially due to limited genomic resources in most of the other ecdysozoan phyla, including Tardigrada. Keywords: Ecdysozoa, metazoan phylogeny, phylogenomics, Spiralia | 3 14th International Symposium on Tardigrada The rise of a tardigrade-unique toolbox for extremotolerance Takekazu Kunieda Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan Background: Tardigrades are a crowned animal group renowned for their resilience against various extreme environmental stresses. Since their discovery, the amazing tolerance records have fascinated researchers, but unfortunately some intrinsic features, such as the small size of tardigrades, the difficulty in rearing to a large quantity and easy contamination of other microorganisms, hindered progress of modern molecular biological approaches. In the past decade, the situation has changed progressively, with dramatic advances in the molecular dissection of tardigrade tolerance mechanisms, which has further accelerated in recent years. Results: Efforts to find the tolerance-related factors led to the identification of several tardigrade-unique protein families. The first category, novel heat-soluble proteins were discovered in line of searching for proteins with similar property to LEA proteins, which play important roles in desiccation-tolerant plant seeds and some anhydrobiotic animals. Till now, three classes of tardigrade-unique heat- soluble proteins, CAHS, SAHS and MAHS, have been identified and proposed to protect biomolecules from desiccation as LEA proteins do. The second category is a novel DNA protection protein dubbed Dsup. Dsup can associate with DNA in vitro and colocalize with nuclear DNA in animal cells. Human cultured cells engineered to express Dsup suffered much reduced DNA damage when exposed to X-ray irradiation or oxidative stress compared to unengineered control cells. Dsup-expressing cells also exhibited better survival and retention of proliferative ability after X-ray irradiation. Besides tardigrade-unique proteins, gene repertoire analyses revealed the specific expansion of some conserved stress-ameliorating genes and the characteristic loss of some metabolic and stress-signaling pathways. Although the proportion of foreign genes falls within the normal range of an animal genome, some of them are likely related to tolerance. Mimicking these features might be beneficial to improve the tolerance in other animals. Conclusions: Our current knowledge place tardigrade-unique proteins as important clues supporting the tolerance ability of tardigrades, even functional in mammalian cells. Recent comparative genome/transcriptome analyses among tardigrade species revealed the presence of many tardigrade-unique genes correlated with tolerability, representing a potential bountiful resource of tolerance genes awaiting future functional analyses. Future studies using other species, especially heterotardigrades, are essential to complement our molecular understanding of tardigrade resilience. The elucidation of tardigrade tolerance mechanisms would not only satisfy our scientific curiosity, but also contribute to develop new technology for medical and industrial applications. Keywords: DNA protection, Dsup, genome, heat soluble protein, tolerance mechanism | 4 14th International Symposium on Tardigrada Phylogenomics, gene families and the phylogenetic position of Tardigrada within Ecdysozoa Mark Blaxter1, Dominik Laetsch1, Lewis Stevens1, Georgios Koutsovoulos1, Sujai Kumar1, Kazuharu Arakawa2, Yuki Yoshida2, David Lunt3, Lutz Bachmann4, Łukasz Michalczyk5, Shinta Fujimoto6 1Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK, 2Keio Univeristy, Japan, 3Evolutionary Biology Group, University of Hull, Hull, UK, 4Natural History Museum, University of Oslo, Norway, 5Jagiellonian University, Kraków, Poland, 6Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan Background: The superphylum Ecdysozoa includes species-rich (Nematoda, Arthropoda) and species poor (Tardigrada, Nematomorpha, Kinorhynch and others) phyla, but collectively includes most of animal diversity. Morphological analyses and some molecular datasets place Tardigrada comfortably with Arthropoda and Onychophora within Panarthropoda, with Nematoidea (Nematoda plus Nematomorpha) sister to Panarthropoda. However, several phylogenomic analyses using multi- locus datasets have resolved Tardigrada as sister to Nematoidea. Whether this is an artefact of poor modelling of sequence change or a reflection of biological truth is unclear. Results: We have used genome-scale data from a range of ecdysozoans, including new genome and transcriptome data from many tardigrades, a kinorhynch and a nematomorph, to explore this question. We have used single-organism sequencing, or sequencing of populations of wild-isolated individuals to generate draft genome assemblies for previously unsampled taxa, in particularly using advanced tools to separate contaminants (food, microbiome) from the target species. As an example, using these approaches we have identified putative alphaproteobacterial symbionts of the kinorhynch Semnoderes armiger. From the proteomes predicted from the genomes and transcriptomes, we defined orthologue groups, and explored the patterns of protein family birth and loss between the phyla. Sequence-based phylogenetic analyses using single-copy orthologues yielded heterodox phylogenies associating Tardigrada with Nematoidea. However, gene family presence-absence analyses supported the traditional Tardigrada plus Arthropoda relationship. This pattern was not universal: for example, Tardigrada have lost some of the same core HOX genes that have also been lost in Nematoda. Conclusions: Analyses based on whole genomes disagree with phylogenetic analyses based on morphology alone. Whether this is because of inadequacies in our models of sequence evolution, because of unusual convergent patterns of gene gain, loss and change in different lineages, or because the true phylogeny differs from expectations, it is clear that the internal structure of Ecdysozoa, and the phylogenetic position of the Tardigrada, remains an exciting area for investigation.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Meiofauna of the Koster-Area, Results from a Workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden)
    1 Meiofauna Marina, Vol. 17, pp. 1-34, 16 tabs., March 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 1611-7557 Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden) W. R. Willems 1, 2, *, M. Curini-Galletti3, T. J. Ferrero 4, D. Fontaneto 5, I. Heiner 6, R. Huys 4, V. N. Ivanenko7, R. M. Kristensen6, T. Kånneby 1, M. O. MacNaughton6, P. Martínez Arbizu 8, M. A. Todaro 9, W. Sterrer 10 and U. Jondelius 1 Abstract During a two-week workshop held at the Sven Lovén Centre for Marine Sciences on Tjärnö, an island on the Swedish west-coast, meiofauna was studied in a large variety of habitats using a wide range of sampling tech- niques. Almost 100 samples coming from littoral beaches, rock pools and different types of sublittoral sand- and mudflats yielded a total of 430 species, a conservative estimate. The main focus was on acoels, proseriate and rhabdocoel flatworms, rotifers, nematodes, gastrotrichs, copepods and some smaller taxa, like nemertodermatids, gnathostomulids, cycliophorans, dorvilleid polychaetes, priapulids, kinorhynchs, tardigrades and some other flatworms. As this is a preliminary report, some species still have to be positively identified and/or described, as 157 species were new for the Swedish fauna and 27 are possibly new to science. Each taxon is discussed separately and accompanied by a detailed species list. Keywords: biodiversity, species list, biogeography, faunistics 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Sweden; e-mail: [email protected], [email protected] 2 Research Group Biodiversity, Phylogeny and Population Studies, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Building D, B-3590 Diepenbeek, Belgium; e-mail: [email protected] 3 Department of Zoology and Evolutionary Genetics, University of Sassari, Via F.
    [Show full text]
  • An Introduction to Phylum Tardigrada - Review
    Volume V, Issue V, May 2016 IJLTEMAS ISSN 2278 – 2540 An Introduction to phylum Tardigrada - Review Yashas R Devasurmutt1, Arpitha B M1* 1: R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India 1*: Corresponding Author: Arpitha B M Abstract: Tardigrades popularly known as water bears are In cryptobiosis (extreme form of anabiosis), the metabolism is micrometazoans with four pairs of lobopod legs. They are the undetectable and the animal is known as tun in this phase. organisms which can live in extreme conditions and are known to Tuns have been known to survive very harsh environmental survive in vacuum and space without protection. Tardigardes conditions such as immersion in helium at -272° C (-458° F) survive in lichens and mosses, usually associated with water film or heating temperatures at 149° C (300° F), exposure to very on mosses, liverworts, and lichens. More species are found in high ionizing radiation and toxic chemical substances and milder environments such as meadows, ponds and lakes. They long durations without oxygen. [4] Figure 2 illustrates the are the first known species to survive in outer space. Tardigrades process of transition of the tardigrades[41]. are closely related to Arthropoda and nematodes based on their morphological and molecular analysis. The cryptobiosis of Figure 2: Transition process of Tardigrades Tardigrades have helped scientists to develop dry vaccines. They have been applied as research subjects in transplantology. Future research would help in more applications of tardigrades in the field of science. Keywords: Tardigrades, cryptobiosis, dry vaccines, Transplantology, space research I. INTRODUCTION ardigrade, a group of tiny arthropod-like animals having T four pairs of stubby legs with big claws, an oval stout body with a round back and lumbering gait.
    [Show full text]
  • BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK
    BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK T.C. ULUDA Ğ ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Yrd. Doç. Dr. Rah şen S. KAYA (Danı şman) YÜKSEK L İSANS TEZ İ BİYOLOJ İ ANAB İLİM DALI BURSA-2017 ÖZET Yüksek Lisans Tezi BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Uluda ğ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danı şman: Yrd. Doç. Dr. Rah şen S. KAYA Bu çalı şmada, Bursa ili limnokarasal Tardigrada faunası ara ştırılmı ş, 6 familyaya ait 9 cins içerisinde yer alan 12 takson tespit edilmi ştir. Arazi çalı şmaları 09.06.2016 ile 22.02.2017 tarihleri arasında gerçekle ştirilmi ştir. Arazi çalı şmaları sonucunda 35 lokaliteden toplanan kara yosunu ve liken materyallerinden toplam 606 örnek elde edilmi ştir. Çalı şma sonucunda tespit edilen Cornechiniscus sp., Echiniscus testudo (Doyere, 1840), Echiniscus trisetosus Cuenot, 1932, Milnesium sp., Isohypsibius prosostomus prosostomus Thulin, 1928, Macrobiotus sp., Paramacrobiotus areolatus (Murray, 1907), Paramacrobiotus richtersi (Murray, 1911), Ramazzottius oberhaeuseri (Doyere, 1840) ve Richtersius coronifer (Richters, 1903) Bursa ilinden ilk kez kayıt edilmi ştir. Anahtar kelimeler: Tardigrada, Sistematik, Fauna, Bursa, Türkiye 2017, ix+ 85 sayfa i ABSTRACT MSc Thesis THE LIMNO-TERRESTRIAL TARDIGRADA FAUNA OF BURSA PROVINCE Tufan ÇALIK Uludag University Graduate School of Natural andAppliedSciences Department of Biology Supervisor: Asst. Prof. Dr. Rah şen S. KAYA In this study, the limno-terrestrial Tardigrada fauna of Bursa province was studied and 12 taxa in 9 genera which belongs to 6 families were identified. Field trips were conducted between 09.06.2016 and 22.02.2017.
    [Show full text]
  • Will the Antarctic Tardigrade Acutuncus Antarcticus Be Able to Withstand
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb160622. doi:10.1242/jeb.160622 RESEARCH ARTICLE Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change? Ilaria Giovannini1,*, Tiziana Altiero2,*, Roberto Guidetti1 and Lorena Rebecchi1,‡ ABSTRACT continental Antarctica is permanently covered by snow or ice, with Because conditions in continental Antarctica are highly selective and the only exception being ice-free terrestrial habitats restricted to extremely hostile to life, its biota is depauperate, but well adapted to coasts and inland nunataks. The snow covers terrestrial habitats for – live in this region. Global climate change has the potential to impact much of the year, and the frequency of daily freeze thaw events on continental Antarctic organisms because of increasing temperatures land is often unpredictable, sometimes occurring over hours, and ultraviolet radiation. This research evaluates how ongoing minutes or even more frequently (Convey, 1997; Wall, 2007; climate changes will affect Antarctic species, and whether Antarctic Convey et al., 2014). Moreover, the temperature is normally close to organisms will be able to adapt to the new environmental conditions. 0°C, with a narrow daily high temperature range, so temperatures Tardigrades represent one of the main terrestrial components suitable for life cycle activities are restricted to only a few weeks of Antarctic meiofauna; therefore, the pan-Antarctic tardigrade during the Antarctic summer (Convey et al., 2014; Everatt et al., Acutuncus antarcticus was used as model to predict the fate of 2014). As a consequence of these peculiar environmental Antarctic meiofauna threatened by climate change.
    [Show full text]
  • Conference Program
    WELCOME TO TARDIGRADA 2018 14TH INTERNATIONAL SYMPOSIUM ON TARDIGRADA CONFERENCE PROGRAM Symposi nal um tio o a n n Ta r r te d n i I g r h a t d 4 a 1 COPENHAGEN BIOCENTER, DENMARK www.tardigrada2018.org U N I V E R S I T Y O F C O P E N H A G E N FACULTY OF SCIENCE WELCOME 14th International Symposium on Tardigrada Welcome to Tardigrada 2018 International tardigrade symposia take place every three years and represent the greatest scientific forum on tardigrades. We are pleased to welcome you to Copenhagen and the 14th International Symposium on Tardigrada and it is with pleasure that we announce a new record in the number of participants with 28 countries represented at Tardigrada 2018. During the meeting 131 abstracts will be presented. The electronic abstract book is available for download from the Symposium website - www.tardigrada2018.org - and will be given to conference attendees on a USB stick during registration. Organising Committee 14th International Tardigrade Symposium, Copenhagen 2018 Chair Nadja Møbjerg (University of Copenhagen, Denmark) Local Committee Hans Ramløv (Roskilde University, Denmark), Jesper Guldberg Hansen (University of Copenhagen, Denmark), Jette Eibye-Jacobsen (University of Copenhagen, Denmark/ Birkerød Gymnasium), Lykke Keldsted Bøgsted Hvidepil (University of Copenhagen, Denmark), Maria Kamilari (University of Copenhagen, Denmark), Reinhardt Møbjerg Kristensen (University of Copenhagen, Denmark), Thomas L. Sørensen-Hygum (University of Copenhagen, Denmark) International Committee Ingemar Jönsson (Kristianstad University, Sweden), Łukasz Kaczmarek (A. Mickiewicz University, Poland) Łukasz Michalczyk (Jagiellonian University, Poland), Lorena Rebecchi (University of Modena and Reggio Emilia, Italy), Ralph O.
    [Show full text]
  • Pseudechiniscus in Japan: Re-Description of Pseudechiniscus Asper
    Pseudechiniscus in Japan re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Voncina, Katarzyna; Kristensen, Reinhardt M.; Gsiorek, Piotr Published in: Zoosystematics and Evolution DOI: 10.3897/zse.96.53324 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Voncina, K., Kristensen, R. M., & Gsiorek, P. (2020). Pseudechiniscus in Japan: re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Zoosystematics and Evolution, 96(2), 527-536. https://doi.org/10.3897/zse.96.53324 Download date: 27. sep.. 2021 Zoosyst. Evol. 96 (2) 2020, 527–536 | DOI 10.3897/zse.96.53324 Pseudechiniscus in Japan: re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Katarzyna Vončina1, Reinhardt M. Kristensen2, Piotr Gąsiorek1 1 Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland 2 Section for Biosystematics, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen Ø DK-2100, Denmark http://zoobank.org/F79B0B2D-728D-4A3D-B3C3-06A1C3405F00 Corresponding author: Piotr Gąsiorek ([email protected]) Academic editor: Pavel Stoev ♦ Received 16 April 2020 ♦ Accepted 2 June 2020 ♦ Published 1 September 2020 Abstract The classification and identification of species within the genusPseudechiniscus Thulin, 1911 has been considered almost a Sisyphe- an work due to an extremely high homogeneity of its members. Only recently have several contributions made progress in the tax- onomy feasible through their detailed analyses of morphology and, crucially, by the re-description of the ancient, nominal species P.
    [Show full text]
  • A New Addition to the Tardigrada of Iceland with an Updated Checklist of Icelandic Species (Eohypsibiidae, Eutardigrada)
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 1996-11-01 Amphibolous weglarskae Dastych, a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species (Eohypsibiidae, Eutardigrada). Marley, NJ http://hdl.handle.net/10026.1/12098 Quekett Journal of Microscopy All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Quekett Journal of Microscopy, 1996, 37, 541-545 541 Amphibolus weglarskae (Dastych), a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species. (Eohypsibiidae, Eutardigrada) N. J. MARLEY & D. E. WRIGHT Department of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, England. Summary slides in the Morgan collection held at the During the examination of the extensive Tardigrada National Museums of Scotland, Edinburgh. collections held at the Royal Museums of Scotland, Due to the very sparse number of records specimens and sculptured eggs belonging to Amphibolus available on the Tardigrada from Iceland it weglarskae (Dastych) were identified in the Morgan was considered a significant find. An updated Icelandic collection. This species had not previously taxonomic checklist to Iceland's tardigrada been reported from Iceland. A checklist of Icelandic species has been included because of the Tardigrada species is also provided.
    [Show full text]
  • Extreme Secondary Sexual Dimorphism in the Genus Florarctus
    Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada Halechiniscidae) Gasiorek, Piotr; Kristensen, David Mobjerg; Kristensen, Reinhardt Mobjerg Published in: Marine Biodiversity DOI: 10.1007/s12526-021-01183-y Publication date: 2021 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Gasiorek, P., Kristensen, D. M., & Kristensen, R. M. (2021). Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae). Marine Biodiversity, 51(3), [52]. https://doi.org/10.1007/s12526- 021-01183-y Download date: 29. sep.. 2021 Marine Biodiversity (2021) 51:52 https://doi.org/10.1007/s12526-021-01183-y ORIGINAL PAPER Extreme secondary sexual dimorphism in the genus Florarctus (Heterotardigrada: Halechiniscidae) Piotr Gąsiorek1 & David Møbjerg Kristensen2,3 & Reinhardt Møbjerg Kristensen4 Received: 14 October 2020 /Revised: 3 March 2021 /Accepted: 15 March 2021 # The Author(s) 2021 Abstract Secondary sexual dimorphism in florarctin tardigrades is a well-known phenomenon. Males are usually smaller than females, and primary clavae are relatively longer in the former. A new species Florarctus bellahelenae, collected from subtidal coralline sand just behind the reef fringe of Long Island, Chesterfield Reefs (Pacific Ocean), exhibits extreme secondary dimorphism. Males have developed primary clavae that are much thicker and three times longer than those present in females. Furthermore, the male primary clavae have an accordion-like outer structure, whereas primary clavae are smooth in females. Other species of Florarctus Delamare-Deboutteville & Renaud-Mornant, 1965 inhabiting the Pacific Ocean were investigated. Males are typically smaller than females, but males of Florarctus heimi Delamare-Deboutteville & Renaud-Mornant, 1965 and females of Florarctus cervinus Renaud-Mornant, 1987 have never been recorded.
    [Show full text]
  • Tardigrades Colonise Antarctica?
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Short, Katherine A Title: Life in the extreme when did tardigrades colonise Antarctica? General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. 1 Life in the Extreme: when did 2 Tardigrades Colonise Antarctica? 3 4 5 6 7 8 9 Katherine Short 10 11 12 13 14 15 A dissertation submitted to the University of Bristol in accordance with the 16 requirements for award of the degree of Geology in the Faculty of Earth 17 Sciences, September 2020.
    [Show full text]
  • A Checklist of Norwegian Tardigrada
    Fauna norvegica 2017 Vol. 37: 25-42. A checklist of Norwegian Tardigrada Terje Meier1 Meier T. 2017. A checklist of Norwegian Tardigrada. Fauna norvegica 37: 25-42. Animals of the phylum Tardigrada are microscopical metazoans that seldom exceed 1 mm in length. They are recorded from terrestrial, limnic and marine habitats and they have a distribution from Arctic to Antarctica. Tardigrades are also named ‘water bears’ referring to their ‘walk’ that resembles a bear’s gait. Knowledge of Norwegian tardigrades is fragmented and distributed across numerous sources. Here this information is gathered and validity of some records is discussed. In total 146 different species are recorded from the Norwegian mainland and Svalbard. Among these, 121 species and subspecies are recorded in previous publications and another 25 species are recorded from Norway for the first time. doi: 10.5324/fn.v37i0.2269. Received: 2017-05-22. Accepted: 2017-12-06. Published online: 2017-12.20. ISSN: 1891-5396 (electronic). Keywords: Tardigrada, Norway, Svalbard, checklist, taxonomy, literature, biodiversity, new records 1. Prinsdalsfaret 20, NO-1262 Oslo, Norway. Corresponding author: Terje Meier E-mail: [email protected] INTRODUCTION terminating in claws or sucking disks. The first three pairs of legs are directed ventrolaterally and are used to moving over the The phylum Tardigrada (water bears) currently holds about substrate. The hind legs are directed posteriorly and are used for 1250 valid species and subspecies (Degma et al. 2007, Degma grasping. Adult Tardigrades usually range from 250 µm to 700 et al. 2017) and are found in a great variety of habitats. They µm in length.
    [Show full text]
  • Hommage À Jeanne Renaud-Mornant
    Hommage à Jeanne Renaud-Mornant Née le 8 août 1925, à Vellexon dans deuxième guerre mondiale, les écoles l’est de la France, Jeanne Renaud- de zoologie et d’écologie marine Mornant est décédée à Paris le vont développer, sous l’impul- 18 septembre 2012. Directeur de sion des travaux pionniers d’Adolf recherche honoraire au CNRS, elle Remane en baie de Kiel (Hartman avait débuté en 1951 sa carrière de 1978), un impressionnant corpus chercheur à la station marine d’Arca- de connaissances sur la méiofaune. chon, dirigée par le professeur Robert Ces recherches seront grandement Weill, après des études supérieures facilitées par l’accessibilité aux sédi- à l’Université de Bordeaux. Elle se ments grâce aux moyens logistiques passionne très tôt pour l’étude de offerts par les nombreusesstations la faune interstitielle des sédiments, marines (Helgoland, Naples, Ros- appelée aussi méiofaune, comparti- coff, Wimereux, Banyuls, Marseille, ment faunistique de micrométazoaires Plymouth, Aberdeen, Oban, Kristi- d’une taille inférieure au millimètre neberg, Klubban, Bergen, Texel, etc.) décrit par Mare (1942). et aux aides importantes apportées Elle publie ses premières contribu- par les muséums et les universités. tions sur la méiofaune des sables du Aux États-Unis, ces recherches se bassin d’Arcachon, en collaboration développent dans différents labora- avec le professeur Jean Boisseau. Elle toires de la Smithsonian Institution, obtient en 1953 une bourse Ful- de la Scripps et des stations marines bright qui lui permet de séjourner de Woods Hole, Beaufort et Friday deux années à l’Université de Miami, Harbor entr’autres. en Floride, puis en 1955 à la station Jeanne Renaud-Mornant participe marine de la Smithsonian dans l’île à Tunis à la 1re conférence interna- de Bimini, aux Bahamas, où elle tionale sur la méiofaune, organisée peut continuer les recherches com- en 1969 par Niel Hulings, Robert mencées à Arcachon.
    [Show full text]