Comment Export List

Total Page:16

File Type:pdf, Size:1020Kb

Comment Export List Account Name NASA's Perseverance Mars Rover Screen Name NASAPersevere NASA Mars rover. Launch: July 30, 2020. Landing: Feb. 18, 2021. Description Hobbies: Photography, collecting rocks, off-roading. Team HQ @NASAJPL Date Created 2020-02-26 21:43:46 Favourites 1047 Followers 2784199 Friends 45 Statuses 624 Verified yes Profile Image https://pbs.twimg.com/profile_images/1379527227436531712/ URL QasZP9s-_normal.jpg Profile Banner https://pbs.twimg.com/profile_banners/ URL 1232783237623119872/1620235042 Location Jezero Crater, Mars Reference Source URL Export Date https://twitter.com/ 10.5.2021 NASAPersevere/ Reply count Total Before launch reply count Exposition 101 188 75 Cruise 93 162 Landing 6 41 Mission 49 134 First Tweet Comments 32 Nickname count "team" mention Count 35 Number of Comments on live 1199 tweet launch ID Name Username Retweets Comments 1 NASA's Perseverance Mars Rover NASAPersevere 4729 437 2 NASA's Perseverance Mars Rover NASAPersevere 217 31 3 NASA's Perseverance Mars Rover NASAPersevere 233 68 4 NASA's Perseverance Mars Rover NASAPersevere 3 2 5 NASA's Perseverance Mars Rover NASAPersevere 3 1 6 NASA's Perseverance Mars Rover NASAPersevere 3 2 7 NASA's Perseverance Mars Rover NASAPersevere 184 29 8 NASA's Perseverance Mars Rover NASAPersevere 317 44 9 NASA's Perseverance Mars Rover NASAPersevere 1 10 NASA's Perseverance Mars Rover NASAPersevere 5 1 11 NASA's Perseverance Mars Rover NASAPersevere 1 1 12 NASA's Perseverance Mars Rover NASAPersevere 3352 1436 13 NASA's Perseverance Mars Rover NASAPersevere 1 3 14 NASA's Perseverance Mars Rover NASAPersevere 15 NASA's Perseverance Mars Rover NASAPersevere 1 16 NASA's Perseverance Mars Rover NASAPersevere 277 27 17 NASA's Perseverance Mars Rover NASAPersevere 1 18 NASA's Perseverance Mars Rover NASAPersevere 732 112 19 NASA's Perseverance Mars Rover NASAPersevere 394 43 20 NASA's Perseverance Mars Rover NASAPersevere 35 6 21 NASA's Perseverance Mars Rover NASAPersevere 256 38 22 NASA's Perseverance Mars Rover NASAPersevere 371 42 23 NASA's Perseverance Mars Rover NASAPersevere 162 20 24 NASA's Perseverance Mars Rover NASAPersevere 75 13 25 NASA's Perseverance Mars Rover NASAPersevere 78 9 26 NASA's Perseverance Mars Rover NASAPersevere 252 22 27 NASA's Perseverance Mars Rover NASAPersevere 197 30 28 NASA's Perseverance Mars Rover NASAPersevere 396 48 29 NASA's Perseverance Mars Rover NASAPersevere 138 16 30 NASA's Perseverance Mars Rover NASAPersevere 2841 116 31 NASA's Perseverance Mars Rover NASAPersevere 234 13 32 NASA's Perseverance Mars Rover NASAPersevere 62 8 33 NASA's Perseverance Mars Rover NASAPersevere 198 15 34 NASA's Perseverance Mars Rover NASAPersevere 1 2 35 NASA's Perseverance Mars Rover NASAPersevere 1 1 36 NASA's Perseverance Mars Rover NASAPersevere 194 15 37 NASA's Perseverance Mars Rover NASAPersevere 2 1 38 NASA's Perseverance Mars Rover NASAPersevere 214 20 39 NASA's Perseverance Mars Rover NASAPersevere 832 89 40 NASA's Perseverance Mars Rover NASAPersevere 116 13 41 NASA's Perseverance Mars Rover NASAPersevere 992 60 42 NASA's Perseverance Mars Rover NASAPersevere 675 73 43 NASA's Perseverance Mars Rover NASAPersevere 718 75 44 NASA's Perseverance Mars Rover NASAPersevere 4 2 45 NASA's Perseverance Mars Rover NASAPersevere 670 79 46 NASA's Perseverance Mars Rover NASAPersevere 740 53 47 NASA's Perseverance Mars Rover NASAPersevere 282 38 48 NASA's Perseverance Mars Rover NASAPersevere 1 49 NASA's Perseverance Mars Rover NASAPersevere 50 NASA's Perseverance Mars Rover NASAPersevere 3 1 51 NASA's Perseverance Mars Rover NASAPersevere 961 104 52 NASA's Perseverance Mars Rover NASAPersevere 1084 108 53 NASA's Perseverance Mars Rover NASAPersevere 41 7 54 NASA's Perseverance Mars Rover NASAPersevere 2 55 NASA's Perseverance Mars Rover NASAPersevere 226 43 56 NASA's Perseverance Mars Rover NASAPersevere 3 57 NASA's Perseverance Mars Rover NASAPersevere 389 161 58 NASA's Perseverance Mars Rover NASAPersevere 59 NASA's Perseverance Mars Rover NASAPersevere 1 1 60 NASA's Perseverance Mars Rover NASAPersevere 1319 98 61 NASA's Perseverance Mars Rover NASAPersevere 158 12 62 NASA's Perseverance Mars Rover NASAPersevere 154 23 63 NASA's Perseverance Mars Rover NASAPersevere 23 6 64 NASA's Perseverance Mars Rover NASAPersevere 14 3 65 NASA's Perseverance Mars Rover NASAPersevere 26 6 66 NASA's Perseverance Mars Rover NASAPersevere 29 3 67 NASA's Perseverance Mars Rover NASAPersevere 16 2 68 NASA's Perseverance Mars Rover NASAPersevere 15 2 69 NASA's Perseverance Mars Rover NASAPersevere 14 6 70 NASA's Perseverance Mars Rover NASAPersevere 15 1 71 NASA's Perseverance Mars Rover NASAPersevere 22 5 72 NASA's Perseverance Mars Rover NASAPersevere 20 6 73 NASA's Perseverance Mars Rover NASAPersevere 14 3 74 NASA's Perseverance Mars Rover NASAPersevere 47 4 75 NASA's Perseverance Mars Rover NASAPersevere 43 13 76 NASA's Perseverance Mars Rover NASAPersevere 1 2 77 NASA's Perseverance Mars Rover NASAPersevere 78 NASA's Perseverance Mars Rover NASAPersevere 326 36 79 NASA's Perseverance Mars Rover NASAPersevere 80 NASA's Perseverance Mars Rover NASAPersevere 81 NASA's Perseverance Mars Rover NASAPersevere 82 NASA's Perseverance Mars Rover NASAPersevere 1 83 NASA's Perseverance Mars Rover NASAPersevere 1 84 NASA's Perseverance Mars Rover NASAPersevere 85 NASA's Perseverance Mars Rover NASAPersevere 86 NASA's Perseverance Mars Rover NASAPersevere 87 NASA's Perseverance Mars Rover NASAPersevere 88 NASA's Perseverance Mars Rover NASAPersevere 89 NASA's Perseverance Mars Rover NASAPersevere 1 90 NASA's Perseverance Mars Rover NASAPersevere 91 NASA's Perseverance Mars Rover NASAPersevere 92 NASA's Perseverance Mars Rover NASAPersevere 93 NASA's Perseverance Mars Rover NASAPersevere 94 NASA's Perseverance Mars Rover NASAPersevere 1 95 NASA's Perseverance Mars Rover NASAPersevere 96 NASA's Perseverance Mars Rover NASAPersevere 1 97 NASA's Perseverance Mars Rover NASAPersevere 98 NASA's Perseverance Mars Rover NASAPersevere 99 NASA's Perseverance Mars Rover NASAPersevere 841 67 100 NASA's Perseverance Mars Rover NASAPersevere 40 10 101 NASA's Perseverance Mars Rover NASAPersevere 325 108 102 NASA's Perseverance Mars Rover NASAPersevere 3 103 NASA's Perseverance Mars Rover NASAPersevere 104 NASA's Perseverance Mars Rover NASAPersevere 1 105 NASA's Perseverance Mars Rover NASAPersevere 106 15 106 NASA's Perseverance Mars Rover NASAPersevere 960 92 107 NASA's Perseverance Mars Rover NASAPersevere 1 108 NASA's Perseverance Mars Rover NASAPersevere 1 109 NASA's Perseverance Mars Rover NASAPersevere 522 50 110 NASA's Perseverance Mars Rover NASAPersevere 1 1 111 NASA's Perseverance Mars Rover NASAPersevere 1694 123 112 NASA's Perseverance Mars Rover NASAPersevere 35 9 113 NASA's Perseverance Mars Rover NASAPersevere 113 12 114 NASA's Perseverance Mars Rover NASAPersevere 1 1 115 NASA's Perseverance Mars Rover NASAPersevere 1 1 116 NASA's Perseverance Mars Rover NASAPersevere 117 NASA's Perseverance Mars Rover NASAPersevere 118 NASA's Perseverance Mars Rover NASAPersevere 119 NASA's Perseverance Mars Rover NASAPersevere 1 120 NASA's Perseverance Mars Rover NASAPersevere 1 121 NASA's Perseverance Mars Rover NASAPersevere 1 122 NASA's Perseverance Mars Rover NASAPersevere 123 NASA's Perseverance Mars Rover NASAPersevere 74 13 124 NASA's Perseverance Mars Rover NASAPersevere 790 51 125 NASA's Perseverance Mars Rover NASAPersevere 2 1 126 NASA's Perseverance Mars Rover NASAPersevere 1 1 127 NASA's Perseverance Mars Rover NASAPersevere 6 2 128 NASA's Perseverance Mars Rover NASAPersevere 123 14 129 NASA's Perseverance Mars Rover NASAPersevere 194 23 130 NASA's Perseverance Mars Rover NASAPersevere 1 131 NASA's Perseverance Mars Rover NASAPersevere 71 4 132 NASA's Perseverance Mars Rover NASAPersevere 98 9 133 NASA's Perseverance Mars Rover NASAPersevere 433 39 134 NASA's Perseverance Mars Rover NASAPersevere 106 13 135 NASA's Perseverance Mars Rover NASAPersevere 1 136 NASA's Perseverance Mars Rover NASAPersevere 137 NASA's Perseverance Mars Rover NASAPersevere 138 NASA's Perseverance Mars Rover NASAPersevere 139 NASA's Perseverance Mars Rover NASAPersevere 1 140 NASA's Perseverance Mars Rover NASAPersevere 1 1 141 NASA's Perseverance Mars Rover NASAPersevere 142 NASA's Perseverance Mars Rover NASAPersevere 143 NASA's Perseverance Mars Rover NASAPersevere 1 144 NASA's Perseverance Mars Rover NASAPersevere 145 NASA's Perseverance Mars Rover NASAPersevere 146 NASA's Perseverance Mars Rover NASAPersevere 1 147 NASA's Perseverance Mars Rover NASAPersevere 148 NASA's Perseverance Mars Rover NASAPersevere 149 NASA's Perseverance Mars Rover NASAPersevere 150 NASA's Perseverance Mars Rover NASAPersevere 2 1 151 NASA's Perseverance Mars Rover NASAPersevere 152 NASA's Perseverance Mars Rover NASAPersevere 1 1 153 NASA's Perseverance Mars Rover NASAPersevere 1 154 NASA's Perseverance Mars Rover NASAPersevere 155 NASA's Perseverance Mars Rover NASAPersevere 156 NASA's Perseverance Mars Rover NASAPersevere 1 157 NASA's Perseverance Mars Rover NASAPersevere 472 19 158 NASA's Perseverance Mars Rover NASAPersevere 394 39 159 NASA's Perseverance Mars Rover NASAPersevere 1537 591 160 NASA's Perseverance Mars Rover NASAPersevere 5 1 161 NASA's Perseverance Mars Rover NASAPersevere 91 20 162 NASA's Perseverance Mars Rover NASAPersevere 75 7 163 NASA's Perseverance Mars Rover NASAPersevere 784 49 164 NASA's Perseverance Mars Rover NASAPersevere 38 17 165 NASA's Perseverance Mars Rover NASAPersevere 2163 172 166 NASA's Perseverance Mars Rover NASAPersevere 853 72 167 NASA's Perseverance Mars
Recommended publications
  • THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C
    51st Lunar and Planetary Science Conference (2020) 2663.pdf THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C. M. McKinney1, R. G. Willson1, R. G. Sellar1, D. S. Copley-Woods1, M. Valvo1, T. Goodsall1, J. McGuire1, K. Singh1, T. E. Litwin1, R. G. Deen1, A. Cul- ver1, N. Ruoff1, D. Petrizzo1, 1Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive, Pasadena, CA 91109, [email protected]). Introduction: The Mars 2020 Rover is equipped pairs (the Cachecam, a monoscopic camera, is an ex- with a neXt-generation engineering camera imaging ception). The Mars 2020 engineering cameras are system that represents a significant upgrade over the packaged into a single, compact camera head (see fig- previous Navcam/Hazcam cameras flown on MER and ure 1). MSL [1,2]. The Mars 2020 engineering cameras ac- quire color images with wider fields of view and high- er angular/spatial resolution than previous rover engi- neering cameras. Additionally, the Mars 2020 rover will carry a new camera type dedicated to sample op- erations: the Cachecam. History: The previous generation of Navcams and Hazcams, known collectively as the engineering cam- eras, were designed in the early 2000s as part of the Mars Exploration Rover (MER) program. A total of Figure 1. Flight Navcam (left), Flight Hazcam (middle), 36 individual MER-style cameras have flown to Mars and flight Cachecam (right). The Cachecam optical assem- on five separate NASA spacecraft (3 rovers and 2 bly includes an illuminator and fold mirror. landers) [1-6]. The MER/MSL cameras were built in two separate production runs: the original MER run Each of the Mars 2020 engineering cameras utilize a (2003) and a second, build-to-print run for the Mars 20 megapixel OnSemi (CMOSIS) CMOS sensor Science Laboratory (MSL) mission in 2008.
    [Show full text]
  • Forever Remembered
    July 2015 Vol. 2 No. 7 National Aeronautics and Space Administration KENNEDY SPACE CENTER’S magazine FOREVER REMEMBERED Earth Solar Aeronautics Mars Technology Right ISS System & Research Now Beyond NASA’S National Aeronautics and Space Administration LAUNCH KENNEDY SPACE CENTER’S SCHEDULE SPACEPORT MAGAZINE Date: July 3, 12:55 a.m. EDT Mission: Progress 60P Cargo Craft CONTENTS Description: In early July, the Progress 60P resupply vehicle — 4 �������������������Solemn shuttle exhibit shares enduring lessons an automated, unpiloted version of the Soyuz spacecraft that is used to ����������������Flyby will provide best ever view of Pluto 10 bring supplies and fuel — launches 14 ����������������New Horizons spacecraft hones in on Pluto to the International Space Station. http://go.nasa.gov/1HUAYbO 24 ����������������Firing Room 4 used for RESOLVE mission simulation Date: July 22, 5:02 p.m. EDT 28 ����������������SpaceX, NASA will rebound from CRS-7 loss Mission: Expedition 44 Launch to 29 ����������������Backup docking adapter to replace lost IDA-1 the ISS Description: In late July, Kjell SHUN FUJIMURA 31 ����������������Thermal Protection System Facility keeping up Lindgren of NASA, Kimiya Yui of JAXA and Oleg Kononenko of am an education specialist in the Education Projects and 35 ����������������New crew access tower takes shape at Cape Roscosmos launch aboard a Soyuz I Youth Engagement Office. I work to inspire students to pursue science, technology, engineering, mathematics, or 36 ����������������Innovative thinking converts repair site into garden spacecraft from the Baikonur Cosmodrome, Kazakhstan to the STEM, careers and with teachers to better integrate STEM 38 ����������������Proposals in for new class of launch services space station.
    [Show full text]
  • Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
    Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface Justin N. Maki Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA [email protected] Todd Litwin, Mark Schwochert Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA Ken Herkenhoff United States Geological Survey Flagstaff, AZ USA Abstract - The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface Figure 1. The Mars Exploration Spirit Rover, as viewed by coverage, and image acquisition strategies. An overview the Navcam shortly after lander egress early in the mission. of the surface imaging activities is provided, along with a presents an overview of the operation and performance of summary of the image data acquired to date. the MER Imaging System. Keywords: Imaging system, cameras, rovers, Mars, 1.2 Imaging System Design operations. The MER cameras are classified into five types: Descent cameras, Navigation cameras (Navcam), Hazard Avoidance 1 Introduction cameras (Hazcam), Panoramic cameras (Pancam), and Microscopic Imager (MI) cameras.
    [Show full text]
  • Of Curiosity in Gale Crater, and Other Landed Mars Missions
    44th Lunar and Planetary Science Conference (2013) 2534.pdf LOCALIZATION AND ‘CONTEXTUALIZATION’ OF CURIOSITY IN GALE CRATER, AND OTHER LANDED MARS MISSIONS. T. J. Parker1, M. C. Malin2, F. J. Calef1, R. G. Deen1, H. E. Gengl1, M. P. Golombek1, J. R. Hall1, O. Pariser1, M. Powell1, R. S. Sletten3, and the MSL Science Team. 1Jet Propulsion Labora- tory, California Inst of Technology ([email protected]), 2Malin Space Science Systems, San Diego, CA ([email protected] ), 3University of Washington, Seattle. Introduction: Localization is a process by which tactical updates are made to a mobile lander’s position on a planetary surface, and is used to aid in traverse and science investigation planning and very high- resolution map compilation. “Contextualization” is hereby defined as placement of localization infor- mation into a local, regional, and global context, by accurately localizing a landed vehicle, then placing the data acquired by that lander into context with orbiter data so that its geologic context can be better charac- terized and understood. Curiosity Landing Site Localization: The Curi- osity landing was the first Mars mission to benefit from the selection of a science-driven descent camera (both MER rovers employed engineering descent im- agers). Initial data downlinked after the landing fo- Fig 1: Portion of mosaic of MARDI EDL images. cused on rover health and Entry-Descent-Landing MARDI imaged the landing site and science target (EDL) performance. Front and rear Hazcam images regions in color. were also downloaded, along with a number of When is localization done? MARDI thumbnail images. The Hazcam images were After each drive for which Navcam stereo da- used primarily to determine the rover’s orientation by ta has been acquired post-drive and terrain meshes triangulation to the horizon.
    [Show full text]
  • 1 Pour Recréer Les Liens…
    Pour recréer les liens… avec les Anciennes et les Anciens 1846-1986 1986 - TEMPUS FUGIT ... C’est mon petit côté latin incrusté de vieux séminariste! Mais, qu’on le veuille ou non, le temps file et les temps changent. En mai 2001, nous produisions le premier Nouvel-AS, un journal destiné aux Anciens et Anciennes du Séminaire et de l’Académie. L’idée venait d’une rencontre des membres du conseil d’administration de la Fondation de l’Académie Antoine- Manseau qui cherchaient un moyen pour contacter les Anciens et les Anciennes de notre Alma Mater et les rejoindre dans les années à venir. Ce printemps-là, nous avons envoyé par la poste un peu plus de deux mille sept cents copies de notre journal. Pour nous, c’était un bon début. Depuis ce temps, nous avons publié deux NAS par année, un en mai et l’autre en décembre. Au cours des années suivantes, nous avons retracé de nouvelles adresses d’Anciens et d’Anciennes en plus d’ajouter à nos listes les noms des élèves des nouvelles promotions. Nous avons pris plaisir à écrire ce que vous avez vécu et parfois à vous le faire raconter. Et nous en profitions également pour parler du développement de l’Académie et des exploits de ses élèves. En décembre 2012, puisque les temps changent et que la technologie se développe à vitesse grand V, nous passions à une autre étape : plus de la moitié des Nouvel- AS est dorénavant envoyée par courriel. Et il en sera de plus en plus ainsi à chaque numéro subséquent.
    [Show full text]
  • The Mars Science Laboratory Engineering Cameras
    Space Sci Rev DOI 10.1007/s11214-012-9882-4 The Mars Science Laboratory Engineering Cameras J. Maki · D. Thiessen · A. Pourangi · P. Kobzeff · T. Litwin · L. Scherr · S. Elliott · A. Dingizian · M. Maimone Received: 21 December 2011 / Accepted: 5 April 2012 © Springer Science+Business Media B.V. 2012 Abstract NASA’s Mars Science Laboratory (MSL) Rover is equipped with a set of 12 en- gineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover cameras described in Maki et al. (J. Geophys. Res. 108(E12): 8071, 2003). Images returned from the engineering cameras will be used to navigate the rover on the Martian surface, de- ploy the rover robotic arm, and ingest samples into the rover sample processing system. The Navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The Hazard Avoidance Cameras (Hazcams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras uti- lize a 1024 × 1024 pixel detector and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer “A” and the other set is connected to rover computer “B”. The Navcams and Front Hazcams each provide similar views from either computer. The Rear Hazcams provide different views from the two computers due to the different mounting locations of the “A” and “B” Rear Hazcams.
    [Show full text]
  • Simulations of Mars Rover Traverses
    Simulations of Mars Rover Traverses •••••••••••••••••••••••••••••••••••• Feng Zhou, Raymond E. Arvidson, and Keith Bennett Department of Earth and Planetary Sciences, Washington University in St Louis, St Louis, Missouri 63130 e-mail: [email protected], [email protected], [email protected] Brian Trease, Randel Lindemann, and Paolo Bellutta California Institute of Technology/Jet Propulsion Laboratory, Pasadena, California 91011 e-mail: [email protected], [email protected], [email protected] Karl Iagnemma and Carmine Senatore Robotic Mobility GroupMassachusetts Institute of Technology, Cambridge, Massachusetts 02139 e-mail: [email protected], [email protected] Received 7 December 2012; accepted 21 August 2013 Artemis (Adams-based Rover Terramechanics and Mobility Interaction Simulator) is a software tool developed to simulate rigid-wheel planetary rover traverses across natural terrain surfaces. It is based on mechanically realistic rover models and the use of classical terramechanics expressions to model spatially variable wheel-soil and wheel-bedrock properties. Artemis’s capabilities and limitations for the Mars Exploration Rovers (Spirit and Opportunity) were explored using single-wheel laboratory-based tests, rover field tests at the Jet Propulsion Laboratory Mars Yard, and tests on bedrock and dune sand surfaces in the Mojave Desert. Artemis was then used to provide physical insight into the high soil sinkage and slippage encountered by Opportunity while crossing an aeolian ripple on the Meridiani plains and high motor currents encountered while driving on a tilted bedrock surface at Cape York on the rim of Endeavour Crater. Artemis will continue to evolve and is intended to be used on a continuing basis as a tool to help evaluate mobility issues over candidate Opportunity and the Mars Science Laboratory Curiosity rover drive paths, in addition to retrieval of terrain properties by the iterative registration of model and actual drive results.
    [Show full text]
  • Modeling Risk Perception for Mars Rover Supervisory Control: Before and After Wheel Damage Alex J
    Modeling Risk Perception for Mars Rover Supervisory Control: Before and After Wheel Damage Alex J. Stimpson Matthew B. Tucker Masahiro Ono Amanda Steffy Mary L. Cummings Humans and Humans and NASA Jet NASA Jet Humans and Autonomy Lab Autonomy Lab Propulsion Propulsion Autonomy Lab 144 Hudson Hall 144 Hudson Hall Laboratory, Laboratory, 144 Hudson Hall Durham NC 27708 Durham NC 27708 California Institute California Institute Durham NC 27708 (352) 256-7455 (919) 402-3853 of Technology of Technology (919) 660-5306 Alexander.Stimpson Matthew.b.tucker 4800 Oak Grove 4800 Oak Grove Mary.Cummings@d @duke.edu @duke.edu Drive Pasadena, CA Drive Pasadena, CA uke.edu 91109 91109 Masahiro.Ono Amanda.C.Steffy @jpl.nasa.gov @jpl.nasa.gov Abstract— The perception of risk can dramatically influence the was designed to help collect data that can be used to assess the human selection of semi-autonomous system control strategies, past or present capability to support microbial life. In short, particularly in safety-critical systems like unmanned vehicle Curiosity was sent to Mars in order to determine the planet’s operation. Thus, the ability to understand the components of risk habitability [1]. perception can be extremely valuable in developing either operational strategies or decision support technologies. To this The Curiosity rover left Earth on November 26th, 2011. end, this paper analyzes the differences in human supervisory Approximately nine months later, the MSL curiosity rover control of Mars Science Laboratory rover operation before and th after the discovery of wheel damage. This paper identifies four landed on Mars on August 6 , 2012.
    [Show full text]
  • MAHLI): Characterization and Calibration Status
    Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status Kenneth S. Edgett, Michael A. Caplinger, Justin N. Maki, Michael A. Ravine, F. Tony Ghaemi, Sean McNair, Kenneth E. Herkenhoff, Brian M. Duston, Reg G. Willson, R. Aileen Yingst, Megan R. Kennedy, Michelle E. Minitti, Aaron J. Sengstacken, Kimberley D. Supulver, Leslie J. Lipkaman, Gillian M. Krezoski, Marie J. McBride, Tessa L. Jones, Brian E. Nixon, Jason K. Van Beek, Daniel J. Krysak, and Randolph L. Kirk MSL MAHLI Technical Report 0001, version 2 version 1: 19 June 2015; version 2: 05 October 2015 Citation: Edgett, K. S., M. A. Caplinger, J. N. Maki, M. A. Ravine, F. T. Ghaemi, S. McNair, K. E. Herkenhoff, B. M. Duston, R. G. Willson, R. A. Yingst, M. R. Kennedy, M. E. Minitti, A. J. Sengstacken, K. D. Supulver, L. J. Lipkaman, G. M. Krezoski, M. J. McBride, T. L. Jones, B. E. Nixon, J. K. Van Beek, D. J. Krysak, and R. L. Kirk (2015) Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status, MSL MAHLI Technical Report 0001 (version 1: 19 June 2015; version 2: 05 October 2015). doi:10.13140/RG.2.1.3798.5447 – MSL MAHLI Tech. Rept. 0001 – Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) Technical Report 0001 Cover photo Mars Science Laboratory (MSL) rover Curiosity’s Mars Hand Lens Imager (MAHLI; center) and Dust Removal Tool (DRT; right), as observed by the Mastcam-34 camera on Sol 30 (06 September 2012) in northern Gale crater, Mars.
    [Show full text]
  • MSL Coordinate Systems for Science Instruments
    Mars Science Laboratory MSL Coordinate Systems for Science Instruments Last updated: 3 March 2013 Primary Contributions from Justin Maki 1 Minor inputs from the Remote Sensing Mast Functional Design Description by Noah Warner1 1Jet Propulsion Laboratory, California Institute of Technology Copyright 2013. California Institute of Technology. U.S. Government sponsorship acknowledged. Primary Rover Operations Coordinate Frames Mars Science Laboratory Frame Description Origin Direction Location of Origin +X +Y +Z Typical use case Name Type Type Direction Direction Direction SITE Site Frame Mars Mars Frame origin is attached to Mars, sits on North East Nadir Targeted remote fixed fixed the nominal Martian surface. New sites sensing (XYZ), target are declared by a command sent by the designation, driving. Rover Planners, typically at the end of a This is the most drive, usually associated with an commonly used frame accompanying Navcam 360‐degree in operations. panorama. RNAV Rover Rover Rover Frame origin is fixed relative to the Forward Starboard Down Pointing cameras to Navigation fixed fixed rover, located at the nominal Martian drive direction (chassis fixed locations relative Frame surface, centered under the rover turn‐ direction nadir) to the rover body in‐place rotation axis. (usually used in special cases only). LL Mars Local Rover Mars Frame origin is fixed relative to the North East Nadir Untargeted remote Level fixed fixed rover, located at the nominal Martian sensing (az/el), for Frame surface, centered under the rover turn‐ example, drive in‐place rotation axis. direction imaging, general terrain imaging, cases where accurate XYZ position is unknown 2 Definition of the RNAV Frame Mars Science Laboratory • The RNAV origin is located on the nominal • The RNAV coordinate system is right‐ (flat) surface of Mars, beneath the rover, handed, orthogonal, and defined by axes centered on the turn‐in‐place axis of rotation.
    [Show full text]
  • Mars Science Laboratory Landing
    PRESS KIT/JULY 2012 Mars Science Laboratory Landing Media Contacts Dwayne Brown NASA’s Mars 202-358-1726 Steve Cole Program 202-358-0918 Headquarters [email protected] Washington [email protected] Guy Webster Mars Science Laboratory 818-354-5011 D.C. Agle Mission 818-393-9011 Jet Propulsion Laboratory [email protected] Pasadena, Calif. [email protected] Science Payload Investigations Alpha Particle X-ray Spectrometer: Ruth Ann Chicoine, Canadian Space Agency, Saint-Hubert, Québec, Canada; 450-926-4451; [email protected] Chemistry and Camera: James Rickman, Los Alamos National Laboratory, Los Alamos, N.M.; 505-665-9203; [email protected] Chemistry and Mineralogy: Rachel Hoover, NASA Ames Research Center, Moffett Field, Calif.; 650-604-0643; [email protected] Dynamic Albedo of Neutrons: Igor Mitrofanov, Space Research Institute, Moscow, Russia; 011-7-495-333-3489; [email protected] Mars Descent Imager, Mars Hand Lens Imager, Mast Camera: Michael Ravine, Malin Space Science Systems, San Diego; 858-552-2650 extension 591; [email protected] Radiation Assessment Detector: Donald Hassler, Southwest Research Institute; Boulder, Colo.; 303-546-0683; [email protected] Rover Environmental Monitoring Station: Luis Cuesta, Centro de Astrobiología, Madrid, Spain; 011-34-620-265557; [email protected] Sample Analysis at Mars: Nancy Neal Jones, NASA Goddard Space Flight Center, Greenbelt, Md.; 301-286-0039; [email protected] Engineering Investigation MSL Entry, Descent and Landing Instrument Suite: Kathy Barnstorff, NASA Langley Research Center, Hampton, Va.; 757-864-9886; [email protected] Contents Media Services Information.
    [Show full text]
  • The Planetary Report September Equinox 2012 Volume 32, Number 3
    THE PLANETARY REPORT SEPTEMBER EQUINOX 2012 VOLUME 32, NUMBER 3 www.planetary.org SUPER ROBOT CURIOSITY OPENS A NEW ERA OF MARS EXPLORATION 50 YEARS OUT IN THE SOLAR SYSTEM C CURIOSITY’S FIRST DAYS ON MARS C OPTICAL SETI SNAPSHOTS FROM SPACE EMILY STEWART LAKDAWALLA blogs at planetary.org/blog. Photo: NASA/JPL/Cornell University/Karle Schlieff University/Karle NASA/JPL/Cornell Photo: Catching More Opportunities Rover Finds New Rocks to Explore WITH THE COMING OF ITS FIFTH Martian spring, Opportunity has been roving again, down the interior edge of the rim of Endeavour crater. At a site now named Matijevic Hill, Opportunity has discovered rocks unlike any previously seen during the mission. This outcrop, dubbed Whitewater Lake, contains myriad cracks and strange rock textures that speak of different, ancient Martian environments and the tremendous shock of the impact that created Endeavour crater. Opportunity likely will spend months exploring these new rocks. —Emily Stewart Lakdawalla SEE MORE AMATEUR-PROCESSED SPACE IMAGES PLANETARY.ORG/AMATEUR SEE MORE EVERY DAY! PLANETARY.ORG/BLOGS CONTACT US The Planetary Society 85 South Grand Avenue Pasadena, CA 91105-1602 General Calls: 626-793-5100 E-mail: [email protected] Internet: planetary.org 2 THE PLANETARY REPORT C SEPTEMBER EQUINOX 2012 SNAPSHOTS FROM SPACE CONTENTS SEPTEMBER EQUINOX 2012 COVER STORY 6 Curiosity’s First Days on Mars Bruce Betts recaps those exciting first few moments in August. 8 Planetfest 2012 Donna Stevens looks back at our celebration of Curiosity’s landing. 11 Incredible Upgrades Bruce Betts reports on upgrades to Optical SETI hardware and more.
    [Show full text]