Cyperaceae) Through the Southern Hemisphere 1

Total Page:16

File Type:pdf, Size:1020Kb

Cyperaceae) Through the Southern Hemisphere 1 American Journal of Botany 100(12): 2494–2508. 2013. R ADIATION AND REPEATED TRANSOCEANIC DISPERSAL OF SCHOENEAE (CYPERACEAE) THROUGH THE SOUTHERN 1 HEMISPHERE J AN-ADRIAAN V ILJOEN 2,9 , A. MUTHAMA M UASYA 2 , R USSELL L. BARRETT 3–5 , J EREMY J. BRUHL 6 , A DELE K. GIBBS 6 , J ASPER A . S LINGSBY 7,2 , K AREN L . W ILSON 8,6 , AND G. ANTHONY V ERBOOM 2 2 Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; 3 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, West Perth, Western Australia 6005, Australia; 4 School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia; 5 Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia; 6 Botany, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; 7 South African Environmental Observatory Network, Fynbos Node, Private Bag X7, Rhodes Drive, Newlands 7735, South Africa; and 8 National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, Australia • Premise of the study: The broad austral distribution of Schoeneae is almost certainly a product of long-distance dispersal. Owing to the inadequacies of existing phylogenetic data and a lack of rigorous biogeographic analysis, relationships within the tribe remain poorly resolved and its pattern of radiation and dispersal uncertain. We employed an expanded sampling of taxa and markers and a rigorous analytic approach to address these limitations. We evaluated the roles of geography and ecology in stimulating the initial radiation of the group and its subsequent dispersal across the southern hemisphere. • Methods: A dated tree was reconstructed using reversible-jump Markov chain Monte Carlo (MCMC) with a polytomy prior and molecular dating, applied to data from two nuclear and three cpDNA regions. Ancestral areas and habitats were inferred using dispersal–extinction–cladogenesis models. • Key results: Schoeneae originated in Australia in the Paleocene. The existence of a “hard” polytomy at the base of the clade refl ects the rapid divergence of six principal lineages ca. 50 Ma, within Australia. From this ancestral area, Schoeneae have traversed the austral oceans with remarkable frequency, a total of 29 distinct dispersal events being reported here. Dispersal rates between landmasses are not explicable in terms of the geographical distances separating them. Transoceanic dispersal generally involved habitat stasis. • Conclusions: Although the role of dispersal in explaining global distribution patterns is now widely accepted, the apparent ease with which such dispersal may occur has perhaps been under-appreciated. In Schoeneae, transoceanic dispersal has been remarkably frequent, with ecological opportunity, rather than geography, being most important in dictating dispersal patterns. Key words: biogeography; Cyperaceae; dispersal–extinction–cladogenesis; habitat shift; niche conservatism; polytomy prior; Schoeneae; transoceanic dispersal. Biologists since the time of Hooker have been intrigued by the more recent evidence from fossils and molecular dating ( Sanmartín phytogeographic affi nities of Australia, southern Africa, and South and Ronquist, 2004 ; Linder et al., 2003 ; Cook and Crisp, 2005 ; America ( Hooker, 1853 ; Levyns, 1964 ; Crisci et al., 1991 ; Crisp Pirie et al., 2008 ; Sauquet et al., 2009 ) has made it clear that many et al., 1999 ; Galley and Linder, 2006 ; Moreira-Muñoz, 2007 ). Vi- plant lineages showing this disjunct distribution originated after cariance associated with the break up of Gondwana by ca. 120 Ma the break up, implicating long-distance dispersal ( Raven and ( Ali and Krause, 2011 ) was previously considered to be the leading Axelrod, 1974 ; de Queiroz, 2005 ; but see Heads, 2011 ). The cause of this pattern ( Levyns, 1964 ; Raven and Axelrod, 1974 ), but schoe noid sedges (Cyperaceae: Schoeneae) are one such group: the sedge family as a whole has a crown age of ca. 75 Ma ( Janssen and Bremer, 2004 ; Besnard et al., 2009 ), and tribe Schoeneae (over 1 Manuscript received 17 March 2013; revision accepted 25 September 450 species) is distributed throughout the southern continents, with 2013. particularly high endemism in Australia and South Africa (data The authors thank M. Britton, J. Henning, P. Musili, and R. Skelton for the from Govaerts et al., 2011 ). Verboom (2006) concluded that at sequences they generated, I. Larridon and C. Ah-Peng for plant material least fi ve transoceanic dispersal events must have taken place in from Madagascar and Mauritius, M. Donoghue and S. Smith for advice on Schoeneae over the last 40 Ma. The precise number and direction biogeographic models in Lagrange, A. Lewis and the ICTS High-Performance of these dispersal events remains unclear, however, due to incon- Cluster at UCT, as well as the CIPRES Science Gateway, for assuming some gruence between published phylogenies, incomplete resolution, of the computational burden, and B. Gehrke, an anonymous reviewer, and the associate editor, whose comments substantially improved the manuscript. and the lack of rigorous biogeographic analysis. We address these This work was funded by the National Research Foundation (RSA). issues by presenting robust phylogenetic and biogeographic recon- 9 Author for correspondence ([email protected]) structions for the tribe. Morphological classifi cation has been problematic in many doi:10.3732/ajb.1300105 clades of Cyperaceae owing to the severe reduction of fl oral American Journal of Botany 100(12): 2494–2508, 2013 ; http://www.amjbot.org/ © 2013 Botanical Society of America 2494 December 2013] VILJOEN ET AL.—SCHOENOID SEDGES: RADIATION AND TRANSOCEANIC DISPERSAL 2495 parts and the rampant convergence of traits in the family, em- limited by dispersal ability. On the other hand, they are almost phasizing the utility of molecular phylogenies in sedge system- entirely confi ned to the southern hemisphere and are most prev- atics ( Muasya et al., 1998 , 2009b ). The cpDNA phylogenies of alent on oligotrophic soils in temperate rather than tropical Verboom (2006) and Muasya et al. (2009a) and the cpDNA + zones, leading us to postulate a signifi cant role for habitat fi lter- ITS tree of Jung and Choi (2013) demonstrate that Schoeneae, ing (i.e., ecological constraints on where populations can be as defi ned by both Bruhl (1995) and Goetghebeur (1998) , is established; Endler, 1982 ; Cavender-Bares et al., 2006 ) in their not monophyletic, on account of their inclusion of Cladium , biogeographic history. Carpha , and Trianoptiles . Schoeneae sensu Goetghebeur The specifi c aims of the present study were to re-evaluate the (1998) contains fi ve further genera shown by Muasya et al. monophyly of the Schoeneae, particularly with regard to the (2009a) to fall outside the core Schoeneae clade. These are placement of the Carpha and Scleria clades, by adding nuclear Arthrostylis , Actinoschoenus , Trachystylis , Pleurostachys , and sequence data to existing chloroplast data sets and by increas- the large genus Rhynchospora , which, on the basis of cpDNA ing taxon sampling; to resolve the relationships of the principal data, belongs in a separate clade containing Cypereae and Ca- schoenoid lineages or else to evaluate whether their polytomous riceae. The Cyperaceae tree of Hinchliff and Roalson (2013) relationship is “hard”, refl ecting rapid divergence; to estimate agrees with the exclusion of these fi ve genera from Schoeneae, (taking phylogenetic uncertainty into account) the times of di- but supports the inclusion of Cladium , Carpha , and Cryptangi- vergence of the principal lineages and the timing and direc- eae in Schoeneae. Support for the monophyly of Schoeneae tionality of transoceanic dispersal events in Schoeneae; to test s.s. is also equivocal. The maximum-parsimony tree of Muasya whether differentiation of the principal schoenoid lineages co- et al. (2009a) , based on rbcL and trnL–F data, found no sup- incided with intercontinental dispersal and/or specialization to port for Schoeneae as a clade, or even for their stricter “Schoe- different habitats (i.e., whether the radiation was adaptive); and neae 1” group, which includes Carpha + Trianoptiles and to explore the roles of geography vs. habitat conservatism on Scleria. In contrast, Verboom’s (2006) Bayesian tree, based on dispersal in Schoeneae. rbcL , rps16 , and trnL–F , weakly supported the monophyly of Schoeneae excluding Carpha + Trianoptiles and Scleria (pos- terior probability [PP] = 0.96), a circumscription of Schoeneae MATERIALS AND METHODS not recovered by Muasya et al. (2009a) . This clade was recov- ered by Jung and Choi (2013) and Hinchliff and Roalson Species and marker sampling — Species were selected in such a way as to (2013) , with PP = 1.00 in the former but with very weak sup- ensure that the concatenated sequence matrix was as complete as possible and port in the latter (bootstrap proportion [BP] = 0.58). These con- that genera (or monophyletic portions of genera) were represented proportion- ally to their size while capturing their biogeographic distribution ( Table 1 ). We fl icting interpretations of the tribal limits of Schoeneae based sampled at least one taxon from each major nonschoenoid lineage of Cyper- on cpDNA data indicate the need for data from independently aceae
Recommended publications
  • A Biological Survey of the Southern Mount Lofty Ranges
    Southern Mount Lofty Ranges Biological Survey APPENDIX I DESCRIPTION OF ENVIRONMENTAL ASSOCIATIONS OCCURRING IN SURVEY REGION BOUNDARY. Part 1. Environmental associations in study area occurring within FLEURIEU IBRA sub-region Environmental Total % of Description Association Area vegetation (ha) remaining 3.2.1 Mt. Rapid 12,763 3.9 Hills and ridges on interbedded shale and arkose, locally overlain by tillite. Relict fans form broad flat surfaces near Cape Jervis where some coastal cliffs occur. Open parkland with sown pasture is used for livestock grazing. The scenery of the coastline is dominated by tall cliffs that vary in form and steepness, the amount of rock outcrop and vegetative cover. 3.2.2 Deep Creek 12,984 30.2 A long dissected ridge of phyllite and greywacke with cliffs, or beaches and dunes along the coastline. The cover is predominantly open parkland over sown pasture with widespread remnants of woodland and forest. Inland views tend to be middle-ground panoramic, featuring grassy ridge crests and valley floors with bracken and reed or remnant forest vegetation. 3.2.3 Fleurieu 30,389 15.6 An undulating to hilly dissected tableland on lateritized sandstone. There is a mixed cover of open parkland, forest plantation and woodland. 3.2.4 Inman 37,130 4.4 A series of low dissected ridges and spurs on tillite and arkose, with dunes and beaches or Valley cliffs along the coast. The cover is open parkland over sown pastures and cereal crops. 3.2.5 Bob Tiers 15,761 21.3 Ridges on schist and gneiss with dissected slopes and remnantsof laterite-capped tableland.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Ficha Catalográfica Online
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA – IB SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE CAMPINAS, SÃO PAULO 2018 SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Plant Biology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Biologia Vegetal ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA Suzana Maria dos Santos Costa E ORIENTADA PELA Profa. Maria do Carmo Estanislau do Amaral (UNICAMP) E CO- ORIENTADA pelo Prof. William Wayt Thomas (NYBG). Orientadora: Maria do Carmo Estanislau do Amaral Co-Orientador: William Wayt Thomas CAMPINAS, SÃO PAULO 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 142322/2015-6; CAPES Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Suzana Maria dos Santos, 1987- C823s CosSystematic studies in Cryptangieae (Cyperaceae) / Suzana Maria dos Santos Costa. – Campinas, SP : [s.n.], 2018. CosOrientador: Maria do Carmo Estanislau do Amaral. CosCoorientador: William Wayt Thomas. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Savanas. 2. Campinarana. 3. Campos rupestres. 4. Filogenia - Aspectos moleculares. 5. Cyperaceae. I. Amaral, Maria do Carmo Estanislau do, 1958-. II. Thomas, William Wayt, 1951-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título.
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Species of Interest in Braxton Mire
    Species of Interest in Braxton Mire Table of Contents Introduction 1 Aporostylis bifolia 2 Bulbinella angustifolia 3 Carpha alpina 4 Celmisia gracilenta 5 Chionochloa rubra subsp. cuprea 6 Coprosma rugosa 7 Dracophyllum longifolium var. longifolium 8 Drosera spatulata 9 Empodisma minus 10 Gaultheria macrostigma 11 Gleichenia dicarpa 12 Herpolirion novae­zelandiae 13 Leptospermum scoparium var. scoparium 14 Lobelia angulata 15 Machaerina tenax 16 Oreobolus pectinatus 17 Thelymitra cyanea 18 Glossary 19 Made on the New Zealand Plant Conservation Network website – www.nzpcn.org.nz Copyright All images used in this book remain copyright of the named photographer. Any reproduction, retransmission, republication, or other use of all or part of this book is expressly prohibited, unless prior written permission has been granted by the New Zealand Plant Conservation Network ([email protected]). All other rights reserved. © 2017 New Zealand Plant Conservation Network Introduction About the Network This book was compiled from information stored on the The Network has more than 800 members worldwide and is website of the New Zealand Plant Conservation Network New Zealand's largest non­governmental organisation solely (www.nzpcn.org.nz). devoted to the protection and restoration of New Zealand's indigenous plant life. This website was established in 2003 as a repository for information about New Zealand's threatened vascular The vision of the New Zealand Plant Conservation Network is plants. Since then it has grown into a national database of that 'no indigenous species of plant will become extinct nor be information about all plants in the New Zealand botanic placed at risk of extinction as a result of human action or region including both native and naturalised vascular indifference, and that the rich, diverse and unique plant life of plants, threatened mosses, liverworts and fungi.
    [Show full text]
  • Can Isoprenoids in Leaves and Roots of Plants Serve As Biomarkers for Past Vegetation Changes? a Case Study from the Ecuadorian Andes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Soil (2007) 291:181–198 DOI 10.1007/s11104-006-9185-1 ORIGINAL PAPER Can isoprenoids in leaves and roots of plants serve as biomarkers for past vegetation changes? A case study from the Ecuadorian Andes Boris Jansen Æ Klaas G. J. Nierop Æ Femke H. Tonneijck Æ Frans W. M. van der Wielen Æ Jacobus M. Verstraten Received: 18 October 2006 / Accepted: 15 December 2006 / Published online: 17 January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Large-scale clear-cutting and burning suitable records. Such biomarkers could help caused the altitude of the natural upper forest line establish past vegetation dynamics including the (UFL) in the Northern Ecuadorian Andes to UFL position. For an isoprenoid to be a biomar- decline to the point that its ‘natural’ position is ker in soils normally it must be absent from the now uncertain. To obtain a detailed reconstruc- roots of a plant species as roots do not enter soils tion of the dynamics of the UFL over the last few in chronological order. For peat deposits this thousand years, traditional proxies alone do not criteria only needs to be met for the peat species suffice. For instance, pollen analysis suffers from themselves as only roots from peat species will be a low altitudinal resolution due to the large wind- present. Two diterpenes, four phytosterols and six blown component. In an attempt to find new, pentacyclic triterpenoids met the criteria for additional proxies to study past UFL dynamics in biomarker in peat records.
    [Show full text]
  • Diversidad De Plantas Y Vegetación Del Páramo Andino
    Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1).
    [Show full text]
  • Vegetation of Andean Wetlands (Bofedales) in Huascarán National Park, Peru
    Vegetation of Andean wetlands (bofedales) in Huascarán National Park, Peru M.H. Polk1, K.R. Young1, A. Cano2 and B. León1,2 1Department of Geography & the Environment, The University of Texas at Austin, USA 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú _______________________________________________________________________________________ SUMMARY Hybrid terrestrial-aquatic ecosystems in the Andes, commonly known as bofedales, consist of both peatlands and wet meadows and line valley floors at elevations > 3800 m. Compared with similar ecosystems at lower altitudes and higher latitudes, the ecosystem processes and spatial patterns of bofedales are only just beginning to be understood. The research presented here provides the first exploratory and descriptive analysis of the biodiversity and place-to-place variation of vegetation in bofedales in three valleys inside Peru’s Huascarán National Park. Through vegetation surveys, we recorded 112 plant species in 29 families. Over a short geographical distance, a valley-to-valley comparison showed high dissimilarity in terms of species composition. Based on dominant life form and species composition, vegetation in bofedales can be grouped into five assemblages. Our preliminary analysis suggests that several abiotic factors could influence the floristic composition of bofedales: elevation, bulk density, percent organic matter, and cation exchange capacity. The findings of high valley-to-valley variation in species, soil and elevation influences may be useful to land managers of high mountain landscapes that are undergoing transformation related to glacier recession. While our findings advance research on tropical Andean bofedales, they also highlight the need for additional comprehensive investigations to fill gaps in knowledge about the tropical mountains of Latin America.
    [Show full text]
  • Genetic Diversity in the Andes
    Edinburgh Research Explorer Genetic diversity in the Andes Citation for published version: Gómez-Gutiérrez, MC, Pennington, RT, Neaves, LE, Milne, RI, Madriñán, S & Richardson, JE 2017, 'Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae)', Alpine Botany, vol. 127, no. 2, pp. 155-170. https://doi.org/10.1007/s00035-017-0192-z Digital Object Identifier (DOI): 10.1007/s00035-017-0192-z Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Alpine Botany Publisher Rights Statement: © Swiss Botanical Society 2017 The final publication is available at link.springer.com via http://dx.doi.org/10.1007/s00035-017-0192-z General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 Manuscript Click here to download Manuscript Gomez-Gutierrez et al Genetic diversity in Oreobolus R2.docx Click here to view linked References 1 2 3 4 1 GENETIC DIVERSITY IN THE ANDES: 5 6 2 VARIATION WITHIN AND BETWEEN THE 7 8 3 SOUTH AMERICAN SPECIES OF OREOBOLUS 9 10 4 R.
    [Show full text]
  • Nzbotsoc No 80 June 2005
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 80 JUNE 2005 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Aaron Wilton Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2005 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2005 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the September 2005 issue (81) is 25 August 2005. Please post contributions to: Joy Talbot 17 Ford Road Christchurch 8002 Send email contributions to [email protected] or [email protected]. Files are preferably in MS Word (Word 2003 or earlier) or saved as RTF or ASCII.
    [Show full text]
  • Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours .............................................................................................................
    [Show full text]
  • Using the Checklist N W C
    Using the checklist • The arrangement of the checklist is alphabetical by family followed by genus, grouped under Pteridophyta, Gymnosperms, Monocotyledons and Dicotyledons. • All species and synonyms are arranged alphabetically under genus. • Accepted names are in bold print while synonyms or previously-used names are in italics. • In the case of synonyms, the currently used name follows the equals sign (=), and only refers to usage in Zimbabwe. • Distribution information is included under the current name. • The letters N, W, C, E, and S, following each listed taxon, indicate the known distribution of species within Zimbabwe as reflected by specimens in SRGH or cited in the literature. Where the distribution is unknown, we have inserted Distr.? after the taxon name. • All species known or suspected to be fully naturalised in Zimbabwe are included in the list. They are preceded by an asterisk (*). Species only known from planted or garden specimens were not included. Mozambique Zambia Kariba Mt. Darwin Lake Kariba N Victoria Falls Harare C Nyanga Mts. W Mutare Gweru E Bulawayo GREAT DYKEMasvingo Plumtree S Chimanimani Mts. Botswana N Beit Bridge South Africa The floristic regions of Zimbabwe: Central, East, North, South, West. A checklist of Zimbabwean vascular plants A checklist of Zimbabwean vascular plants edited by Anthony Mapaura & Jonathan Timberlake Southern African Botanical Diversity Network Report No. 33 • 2004 • Recommended citation format MAPAURA, A. & TIMBERLAKE, J. (eds). 2004. A checklist of Zimbabwean vascular plants.
    [Show full text]