1 Zinc-Finger Endonuclease Targeting PSIP-1 Inhibits HIV-1 Integration 1 2

Total Page:16

File Type:pdf, Size:1020Kb

1 Zinc-Finger Endonuclease Targeting PSIP-1 Inhibits HIV-1 Integration 1 2 AAC Accepts, published online ahead of print on 12 May 2014 Antimicrob. Agents Chemother. doi:10.1128/AAC.02690-14 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 Zinc-finger endonuclease targeting PSIP-1 inhibits HIV-1 integration 2 3 Roger Badia, Eduardo Pauls, Eva Riveira-Munoz, Bonaventura Clotet, José A. Esté* 4 and Ester Ballana 5 6 IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de 7 Barcelona, 08916 Badalona, Spain. 8 9 Running title: ZFN targeting PSIP1 inhibits HIV-1 integration 10 11 12 13 * Corresponding author mailing address: 14 José A. Esté 15 IrsiCaixa, Hospital Germans Trias i Pujol, C. Canyet s/n, 08916 Badalona, Spain 16 Phone: 34 934656374 17 FAX: 34 934653968 18 E-mail: [email protected] 19 20 Key words 21 Zinc finger endonuclease, Ledgf/p75, integrase, HIV-1 22 1 23 ABSTRACT 24 Genome editing using zinc-finger nucleases (ZFN) has been successfully 25 applied to disrupt CCR5 or CXCR4 host factors, inhibiting viral entry and infection. 26 Gene therapy using ZFN to modify PSIP1 gene, encoding for LEDGF protein, might 27 restrain an early step of viral replication cycle at the integration level. ZFNs targeting 28 the PSIP1 gene (ZFNLEDGF) were designed to specifically recognize the sequence after 29 the integrase binding domain (IBD) of LEDGF/p75 protein. ZFNLEDGF 30 successfully recognized the target region of the PSIP1 gene in TZM-bl cells by 31 heteroduplex formation and DNA sequence analysis. Gene editing induced a frame 32 shift of the coding region and resulted in the abolishment of LEDGF expression at 33 mRNA and protein level. Functional assays revealed that infection with HIV-1 R5 BaL 34 or X4 NL4-3 viral strains was impaired in LEDGF/p75 knock-out cells regardless of 35 entry tropism, due to a blockade in HIV-1 provirus integration into host genome. 36 However, residual infection was detected in LEDGF knock-out cells. Indeed, LEDGF 37 knock-out restriction was overcome at high multiplicity of infection, suggesting 38 alternative mechanisms for HIV-1 genome integration rather than LEDGF/p75. 39 Observed residual integration was, however, sensitive to the integrase inhibitor 40 Raltegravir. These results demonstrate that the described ZFNLEDGF effectively targets 41 PSIP1 gene which is involved at early steps of viral replication cycle and thus 42 ZFNLEDGF may become a potential antiviral agent to restrict HIV-1 integration. 43 Moreover, LEDGF knock-out cells represent a potent tool to elucidate the role of HIV 44 integration cofactors in virus replication. 45 2 46 INTRODUCTION 47 Human immunodeficiency virus (HIV) requires the host cellular machinery to 48 successfully replicate (1). Developing of genome editing tools, such as zinc finger 49 endonucleases (ZFNs) (2), transcription activator-like [TAL] effector nuclease 50 (TALEN) (3) or clustered regulatory interspaced short palindromic repeat (CRISPR) 51 (4-6) become a promising alternative to modify essential host factors along the 52 replication cycle of HIV (7, 8). ZFNs have demonstrated their applicability to 53 reproduce in vitro the CCR5Δ32 phenotype by successfully cleaving the CCR5 gene, 54 generating human CD4+ T cells refractory to HIV-1 infection (9-12). Similarly, ZFNs 55 approach successfully cleaved the alternative HIV-1 coreceptor CXCR4 in CD4+ T 56 cells from humanized mice model resulting in impaired HIV-1 infection (13). Genome 57 editing as anti-HIV therapy is currently under study in at least 2-3 clinical trials using 58 ZFNs targeting CCR5. However, similar strategies targeting host cellular factors 59 affecting later steps of the virus replication cycle have not been evaluated. 60 A crucial step of the viral replication cycle is exerted by the lens epithelium- 61 derived growth factor (LEDGF/p75), a member of the hepatoma-derived growth factor 62 (HDGF) related protein (HRP) family. HRPs are characterized by a conserved N- 63 terminal PWWP domain, an ,90– to 135–amino acid module found in a variety of 64 nuclear proteins (14). Six human HRP family members have been described: HDGF, 65 HRP1, HRP2, HRP3, LEDGF/p75, and LEDGF/p52. Two of them, LEDGF/p75 and 66 HRP2, possess affinity for HIV-1 integrase (IN), given by a second evolutionary 67 conserved domain within their C-termini that mediates the interaction with HIV-1 IN, 68 hence the term ‘‘IN-binding domain (IBD)’’(15). Initially identified as IN associated 69 protein (16), LEDGF/p75 was revealed as a lentivirus-specific cellular cofactor 70 required for HIV integration into the host genome (see references (17, 18) and (19) for 71 review). LEDGF/p75 directly interacts with viral HIV-IN, tethering viral preintegration 72 complex into active transcription units of the cellular chromatin. The role of 73 LEDGF/p75 in HIV-1 replication was studied using RNA interference (RNAi) 74 targeting LEDGF/p75 and LEDGF KO murine embryonic fibroblasts (MEF). Although 75 both strategies potently downregulate or completely abolished LEDGF/p75 expression, 76 residual replication was observed. Thus, all studies point to a key but not essential role 77 for LEDGF/p75 in lentiviral replication and suggested that the existence of alternative 78 cellular cofactors, such as HRP2, were responsible for the residual replication observed 79 in the absence of LEDGF/p75 (20, 21). 3 80 Nevertheless, the LEDGF/p75 interaction with HIV-IN has been suggested as valid 81 target for antiviral therapy (22-24). In that sense, recently developed allosteric 82 LEDGF/p75-IN interaction inhibitors (LEDGINs and ALLINIS) have been proved to 83 target the LEDGF/p75 binding pocket of HIV-IN and to inhibit the catalytic activity of 84 the IN. Moreover, LEDGINs and ALLINIS also exert antiviral activity by promoting 85 IN multimerisation. Aberrant IN complexes lead to the formation of defective regular 86 cores during the maturation process, resulting in an impaired the infectivity of the new 87 viral particles (25-27) 88 On the other hand, a series of PSIP1 single nucleotide polymorphisms (SNP) 89 were associated to HIV-1 disease progression in cohorts of African and Caucasian 90 HIV-1 positive individuals (28) (29). In addition, two missense mutations were 91 identified in two samples belonging to a LTNP cohort (30). All missense mutations 92 identified are located in the helix-turn-helix (HTH) motifs at the C-terminal region of 93 the protein, after the IBD domain. Although none of the mutations restricted HIV 94 replication in vitro (29, 31, 32), these findings suggested that genetic variation in PSIP1 95 may influence susceptibility to HIV-1 infection and disease progression. 96 Here, we describe a novel genome editing ZFN that specifically disrupt the 97 PSIP1 gene encoding LEDGF/p75 in its C-terminus, after all relevant functional 98 domains and nearby the missesense mutations described in patients (ZFNLEDGF). 99 ZFNLEDGF was able to generate LEDGF/p75 cells expressing a truncated protein that 100 become refractory to HIV-1 integration. Generated LEDGF/p75 knock-out cells 101 represent a potent tool to further investigate the function of LEDGF/p75 protein and 102 may help to elucidate the role of HIV integration cofactors in virus replication. 103 Moreover, the ZFNLEDGF may become a potential antiviral strategy to restrict HIV-1 104 integration and virus replication in vivo. 105 106 107 4 108 MATERIALS AND METHODS 109 Vectors. CompoZr™ Knockout Zinc Finger Nucleases targeting the PSIP1 gene 110 (ZFNLEDGF) were obtained from Sigma-Aldrich Biotechnology (St. Louis, Missouri, 111 USA). Briefly, ZFNLEDGF were designed to target the sequence 112 AACATGTTCTTGGTTGGTGAAGGAGATTCCGTG (Fig. 1A), according to 113 Mussolino and Cathomen guidelines (33) to ensure minimal homology of ZFN DNA- 114 binding domain to any other site in the genome. The FokI and zinc finger domains of 115 each ZFNs pair were assembled as previously described (34). Next, ZFNLEDGF pairs 116 were cloned into the pLVX-IRES-ZsGreen1 vector (Clontech, Takara Bio Company), 117 by replacing the EcoRI-XbaI fragment, to obtain ZFNLEDGF tagged with the green 118 fluorescent reporter gene (pLVX-ZFNLEDGF-ZsGreen). 119 120 Cells. Human K562 cells were obtained from ATCC (CCL-243) and grown in Iscove’s 121 Modified Dulbecco’s Medium, supplemented with 10% FBS and 2 mM L-glutamine. 122 TZM-bl cell line (NIH AIDS Research and Reference Program), was grown in 123 Dulbecco's modified Eagle's medium (DMEM, Gibco, Life Technologies, Madrid, 124 Spain) supplemented with 10% of heat-inactivated foetal calf serum (FCS, Gibco, 125 Thermofisher, Madrid, Spain) and antibiotics 100 U/ml penicillin, 100 μg/ml 126 streptomycin (Life Technologies) and maintained at 37ºC in a 5% CO2 incubator. 127 128 ZFN Transfection. TZM-bl cells were transfected with ZFNLEDGF expressing plasmids 129 as described previously (35, 36). Briefly, 1.5x105 cells were seeded in 24 well plates. 130 After overnight culture, 0.5μg of each ZFNLEDGF plasmids was mixed with 131 Lipofectamine 2000 reagent (Invitrogen) in serum-free medium OptiMEM (Invitrogen) 132 and then added to previously washed cells. Media was replaced by fresh DMEM 4 133 hours after transfection and left in the incubator for 3 days, when ZsGreen positive cells 134 were sorted were sorted using a FACSAria II (BD Biosciences) flow cytometer. Single 135 cell clones were obtained by limiting dilution seeding of sorted cells in 96-well plates. 136 137 Analysis of PSIP1 disruption by Cel-I Assay. The effect of ZFN on PSIP1 alleles 138 was assessed by performing PCR surrounding ZFN target site followed by digestion 139 with the Surveyor (Cel-1) nuclease assay (Transgenomic, Omaha, NE, USA), which 140 cleaves DNA heteroduplex at mismatch sites. Generated fragments were resolved by 141 10% polyacrylamide electrophoresis as previously described (10, 12). 5 142 Sequence analysis of targeted PSIP1 gene in TZMbl cells.
Recommended publications
  • Multiple Cellular Proteins Interact with LEDGF/P75 Through a Conserved Unstructured Consensus Motif
    ARTICLE Received 19 Jan 2015 | Accepted 1 Jul 2015 | Published 6 Aug 2015 DOI: 10.1038/ncomms8968 Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif Petr Tesina1,2,3,*, Katerˇina Cˇerma´kova´4,*, Magdalena Horˇejsˇ´ı3, Katerˇina Procha´zkova´1, Milan Fa´bry3, Subhalakshmi Sharma4, Frauke Christ4, Jonas Demeulemeester4, Zeger Debyser4, Jan De Rijck4,**, Va´clav Veverka1,** & Pavlı´na Rˇeza´cˇova´1,3,** Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors. 1 Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic. 2 Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.
    [Show full text]
  • Duplication 9P and Their Implication to Phenotype
    Guilherme et al. BMC Medical Genetics (2014) 15:142 DOI 10.1186/s12881-014-0142-1 RESEARCH ARTICLE Open Access Duplication 9p and their implication to phenotype Roberta Santos Guilherme1, Vera Ayres Meloni1, Ana Beatriz Alvarez Perez1, Ana Luiza Pilla1, Marco Antonio Paula de Ramos1, Anelisa Gollo Dantas1, Sylvia Satomi Takeno1, Leslie Domenici Kulikowski2 and Maria Isabel Melaragno1* Abstract Background: Trisomy 9p is one of the most common partial trisomies found in newborns. We report the clinical features and cytogenomic findings in five patients with different chromosome rearrangements resulting in complete 9p duplication, three of them involving 9p centromere alterations. Methods: The rearrangements in the patients were characterized by G-banding, SNP-array and fluorescent in situ hybridization (FISH) with different probes. Results: Two patients presented de novo dicentric chromosomes: der(9;15)t(9;15)(p11.2;p13) and der(9;21)t(9;21) (p13.1;p13.1). One patient presented two concomitant rearranged chromosomes: a der(12)t(9;12)(q21.13;p13.33) and an psu i(9)(p10) which showed FISH centromeric signal smaller than in the normal chromosome 9. Besides the duplication 9p24.3p13.1, array revealed a 7.3 Mb deletion in 9q13q21.13 in this patient. The break in the psu i(9) (p10) probably occurred in the centromere resulting in a smaller centromere and with part of the 9q translocated to the distal 12p with the deletion 9q occurring during this rearrangement. Two patients, brother and sister, present 9p duplication concomitant to 18p deletion due to an inherited der(18)t(9;18)(p11.2;p11.31)mat.
    [Show full text]
  • Association of Polymorphisms in the LEDGF/P75 Gene (PSIP1) with Susceptibility to HIV-1 Infection and Disease Progression
    Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression Paradise Madlalaa,b, Rik Gijsbersc, Frauke Christc, Anneleen Hombrouckc, Lise Wernerd, Koleka Mlisanad, Ping Ane, Salim S. Abdool Karimd, Cheryl A. Winklere, Zeger Debyserc and Thumbi Ndung’ua,d Objective: LEDGF/p75, encoded by the PSIP1 gene, interacts with HIV-1 integrase and targets HIV-1 integration into active genes. We investigated the influence of poly- morphisms in PSIP1 on HIV-1 acquisition and disease progression in black South Africans. Methods: Integrase binding domain of LEDGF/p75 was sequenced in 126 participants. Four haplotype tagging SNPs rs2277191, rs1033056, rs12339417 and rs10283923 referred to as SNP1, SNP2, SNP3 and SNP4, respectively, and one exonic SNP rs61744944 (SNP5, Q472L) were genotyped in 195 HIV-1 seronegative, 52 primary and 403 chronically infected individuals using TaqMan assays. LEDGF/p75 expression was quantified by real-time RT-PCR. The impact of Q472L mutation on the interaction with HIV_1 IN was measured by AlphaScreen. Results: rs2277191 (SNP1) A was more frequent among seropositives (P ¼ 0.06, Fish- er’s exact test). Among individuals followed longitudinally SNP1A trended towards association with higher likelihood of HIV-1 acquisition [relative hazard (RH) ¼ 2.21, P ¼ 0.08; Cox model] and it was also associated with rapid disease progression (RH ¼ 5.98, P ¼ 0.04; Cox model) in the recently infected (primary infection) cohort. rs12339417 (SNP3)C was associated with slower decline of CD4þ T cells (P ¼ 0.02) and lower messenger RNA (mRNA) levels of LEDGF/p75 (P < 0.01).
    [Show full text]
  • Twenty Years of Menin: Emerging Opportunities for Restoration of Transcriptional Regulation in MEN1
    2410 K M A Dreijerink et al. Molecular mechanism of MEN1 24:10 T135–T145 Thematic Review Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1 Koen M A Dreijerink1, H T Marc Timmers2 and Myles Brown3 1 Department of Endocrinology, VU University Medical Center, Amsterdam, The Netherlands Correspondence 2 German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department should be addressed of Urology, Medical Center-University of Freiburg, Freiburg, Germany to M Brown 3 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA Email [email protected] Abstract Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, Key Words elucidation of the molecular function of its protein product, menin, has been a challenge. f multiple endocrine Biochemical, proteomics, genetics and genomics approaches have identified various neoplasia type 1 (MEN1) potential roles, which converge on gene expression regulation. The most consistent f menin findings show that menin connects transcription factors and chromatin-modifying f transcriptional regulation enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. f histone H3K4 trimethylation Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory Endocrine-Related Cancer Endocrine-Related complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases.
    [Show full text]
  • Integrative Genomic Characterization Identifies Molecular Subtypes of Lung Carcinoids
    Published OnlineFirst July 12, 2019; DOI: 10.1158/0008-5472.CAN-19-0214 Cancer Genome and Epigenome Research Integrative Genomic Characterization Identifies Molecular Subtypes of Lung Carcinoids Saurabh V. Laddha1, Edaise M. da Silva2, Kenneth Robzyk2, Brian R. Untch3, Hua Ke1, Natasha Rekhtman2, John T. Poirier4, William D. Travis2, Laura H. Tang2, and Chang S. Chan1,5 Abstract Lung carcinoids (LC) are rare and slow growing primary predominately found at peripheral and endobronchial lung, lung neuroendocrine tumors. We performed targeted exome respectively. The LC3 subtype was diagnosed at a younger age sequencing, mRNA sequencing, and DNA methylation array than LC1 and LC2 subtypes. IHC staining of two biomarkers, analysis on macro-dissected LCs. Recurrent mutations were ASCL1 and S100, sufficiently stratified the three subtypes. enriched for genes involved in covalent histone modification/ This molecular classification of LCs into three subtypes may chromatin remodeling (34.5%; MEN1, ARID1A, KMT2C, and facilitate understanding of their molecular mechanisms and KMT2A) as well as DNA repair (17.2%) pathways. Unsuper- improve diagnosis and clinical management. vised clustering and principle component analysis on gene expression and DNA methylation profiles showed three robust Significance: Integrative genomic analysis of lung carcinoids molecular subtypes (LC1, LC2, LC3) with distinct clinical identifies three novel molecular subtypes with distinct clinical features. MEN1 gene mutations were found to be exclusively features and provides insight into their distinctive molecular enriched in the LC2 subtype. LC1 and LC3 subtypes were signatures of tumorigenesis, diagnosis, and prognosis. Introduction of Ki67 between ACs and TCs does not enable reliable stratification between well-differentiated LCs (6, 7).
    [Show full text]
  • LEDGF/P75 Is Required for an Efficient DNA Damage Response
    International Journal of Molecular Sciences Article LEDGF/p75 Is Required for an Efficient DNA Damage Response Victoria Liedtke 1 , Christian Schröder 1, Dirk Roggenbuck 1,2 , Romano Weiss 1, Ralf Stohwasser 1,2, Peter Schierack 1,2, Stefan Rödiger 1,2,† and Lysann Schenk 1,*,† 1 Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; [email protected] (V.L.); [email protected] (C.S.); [email protected] (D.R.); [email protected] (R.W.); [email protected] (R.S.); [email protected] (P.S.); [email protected] (S.R.) 2 Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany * Correspondence: [email protected] † Shared senior authorship. Abstract: Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) plays an important role in cancer, but its DNA-damage repair (DDR)-related implications are still not com- pletely understood. Different LEDGF model cell lines were generated: a complete knock-out of LEDGF (KO) and re-expression of LEDGF/p75 or LEDGF/p52 using CRISPR/Cas9 technology. Their proliferation and migration capacity as well as their chemosensitivity were determined, which was followed by investigation of the DDR signaling pathways by Western blot and immunofluorescence. LEDGF-deficient cells exhibited a decreased proliferation and migration as well as an increased sensitivity toward etoposide. Moreover, LEDGF-depleted cells showed a significant reduction in Citation: Liedtke, V.; Schröder, C.; the recruitment of downstream DDR-related proteins such as replication protein A 32 kDa subunit Roggenbuck, D.; Weiss, R.; (RPA32) after exposure to etoposide.
    [Show full text]
  • A Critical Role for Alternative Polyadenylation Factor CPSF6 in Targeting HIV-1 Integration to Transcriptionally Active Chromatin
    A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin Gregory A. Sowda, Erik Serraoa, Hao Wanga, Weifeng Wanga, Hind J. Fadelb, Eric M. Poeschlac, and Alan N. Engelmana,1 aDepartment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; bDivision of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905; and cDivision of Infectious Diseases, University of Colorado School of Medicine, Denver, CO 80045 Edited by Stephen P. Goff, Columbia University College of Physicians and Surgeons, New York, NY, and approved January 14, 2016 (received for review December 8, 2015) Integration is vital to retroviral replication and influences the Active nuclear transport of the HIV-1 preintegration complex establishment of the latent HIV reservoir. HIV-1 integration favors (PIC), which is required for virus replication, is principally me- active genes, which is in part determined by the interaction between diated by the viral capsid (CA) protein (11). Several factors integrase and lens epithelium-derived growth factor (LEDGF)/p75. implicated in PIC nuclear import, including nucleoporins (NUPs) Because gene targeting remains significantly enriched, relative to 153 and 358 and cleavage and polyadenylation specificity factor 6 random in LEDGF/p75 deficient cells, other host factors likely (CPSF6), have been shown to bind HIV-1 CA (reviewed in ref. contribute to gene-tropic integration. Nucleoporins 153 and 358, 12). Amino acid substitutions in CA that reduce binding to each which bind HIV-1 capsid, play comparatively minor roles in of these factors can significantly alter the integration profile of integration targeting, but the influence of another capsid binding HIV-1 (13, 14).
    [Show full text]
  • LEDGF/P75 Functions Downstream from Preintegration Complex Formation to Effect Gene-Specific HIV-1 Integration
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration Ming-Chieh Shun,1,4 Nidhanapati K. Raghavendra,1,4 Nick Vandegraaff,1,4,5 Janet E. Daigle,1 Siobhan Hughes,2 Paul Kellam,3 Peter Cherepanov,2,7 and Alan Engelman1,6 1Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115, USA; 2Division of Medicine, Imperial College London, St. Mary’s Campus, London W2 1PG, United Kingdom; 3Department of Infection, University College London, London W1T 4JF, United Kingdom LEDGF/p75 directly interacts with lentiviral integrase proteins and can modulate their enzymatic activities and chromosomal association. A novel genetic knockout model was established that allowed us for the first time to analyze HIV-1 integration in the absence of LEDGF/p75 protein. Supporting a crucial role for the cofactor in viral replication, HIV-1 vector integration and reporter gene expression were significantly reduced in LEDGF-null cells. Yet, integrase processed the viral cDNA termini normally and maintained its local target DNA sequence preference during integration. Preintegration complexes extracted from knockout cells moreover supported normal levels of DNA strand transfer activity in vitro. In contrast, HIV-1 lost its strong bias toward integrating into transcription units, displaying instead increased affinity for promoter regions and CpG islands. Our results reveal LEDGF/p75 as a critical targeting factor, commandeering lentiviruses from promoter- and/or CpG island-proximal pathways that are favored by other members of Retroviridae.
    [Show full text]
  • PSIP1/LEDGF: a New Gene Likely Involved in Sensorineural Progressive Hearing Loss
    PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Girotto, G., D. I. Scheffer, A. Morgan, D. Vozzi, E. Rubinato, M. Di Stazio, E. Muzzi, et al. 2015. “PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss.” Scientific Reports 5 (1): 18568. doi:10.1038/srep18568. http:// dx.doi.org/10.1038/srep18568. Published Version doi:10.1038/srep18568 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23993508 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA www.nature.com/scientificreports OPEN PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss Received: 22 January 2015 Giorgia Girotto1, Déborah I. Scheffer2, Anna Morgan1, Diego Vozzi3, Elisa Rubinato1, Accepted: 20 November 2015 Mariateresa Di Stazio1, Enrico Muzzi4, Stefano Pensiero5, Anne B. Giersch6, David P. Corey2 & Published: 22 December 2015 Paolo Gasparini1 Hereditary Hearing Loss (HHL) is an extremely heterogeneous disorder. Approximately 30 out of 80 known HHL genes are associated with autosomal dominant forms. Here, we identifiedPSIP1/LEDGF (isoform p75) as a novel strong candidate gene involved in dominant HHL. Using exome sequencing we found a frameshift deletion (c.1554_1555del leading to p.E518Dfs*2) in an Italian pedigree affected by sensorineural mild-to-moderate HHL but also showing a variable eye phenotype (i.e.
    [Show full text]
  • Identification of Novel Nuclear Targets of Human Thioredoxin 1*DS
    Research © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Identification of Novel Nuclear Targets of Human Thioredoxin 1*□S Changgong Wu‡§, Mohit Raja Jain‡§, Qing Li‡§, Shin-ichi Oka¶, Wenge Liʈ, Ah-Ng Tony Kong**, Narayani Nagarajan¶, Junichi Sadoshima¶, William J. Simmons‡, and Hong Li‡‡‡ The dysregulation of protein oxidative post-translational & Cellular Proteomics 13: 10.1074/mcp.M114.040931, 3507– modifications has been implicated in stress-related dis- 3518, 2014. eases. Trx1 is a key reductase that reduces specific di- sulfide bonds and other cysteine post-translational mod- ifications. Although commonly in the cytoplasm, Trx1 can Oxidative stress and redox signaling imbalance have been also modulate transcription in the nucleus. However, few implicated in the development of neurodegenerative diseases Trx1 nuclear targets have been identified because of the and tissue injuries (1). One of the most common features low Trx1 abundance in the nucleus. Here, we report the observed in the neuronal tissues of patients with Alzheimer or large-scale proteomics identification of nuclear Trx1 tar- Parkinson disease is the accumulation of misfolded proteins gets in human neuroblastoma cells using an affinity cap- with oxidative post-translational modifications (2). Cells have ture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, evolved to utilize diverse defense mechanisms to counter the and the C32 thiol initiates the reduction of a target disul- detrimental impact of oxidative post-translational modifica- 1 fide bond by forming an intermolecular disulfide with one tions, including the engagement of the thioredoxin (Trx) fam- of the oxidized target cysteines, resulting in a transient ily of proteins, which includes cytosolic Trx1 and mitochon- Trx1–target protein complex.
    [Show full text]
  • Twenty Years of Research on the DFS70/LEDGF Autoantibody
    Ortiz‑Hernandez et al. Autoimmun Highlights (2020) 11:3 https://doi.org/10.1186/s13317‑020‑0126‑4 Autoimmunity Highlights REVIEW Open Access Twenty years of research on the DFS70/ LEDGF autoantibody‑autoantigen system: many lessons learned but still many questions Greisha L. Ortiz‑Hernandez1,2, Evelyn S. Sanchez‑Hernandez1,2 and Carlos A. Casiano1,2,3* Abstract The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fne speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofuores‑ cence assay in HEp‑2 cells (HEp‑2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been consid‑ ered as reporters of abnormal immunological events associated with the onset and progression of systemic autoim‑ mune rheumatic diseases (SARD), also called ANA‑associated rheumatic diseases (AARD), as well as clinical biomarkers for the diferential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chroma‑ tin‑associated protein designated as dense fne speckled protein of 70 kD (DFS70), also known as lens epithelium‑ derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi‑func‑ tional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specifc genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodefciency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syn‑ drome.
    [Show full text]
  • Targeting LEDGF/P75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes Leslimar Rios-Colón
    Loma Linda University TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works Loma Linda University Electronic Theses, Dissertations & Projects 6-2017 Targeting LEDGF/p75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes Leslimar Rios-Colón Follow this and additional works at: http://scholarsrepository.llu.edu/etd Part of the Medical Biochemistry Commons, Medical Pharmacology Commons, and the Oncology Commons Recommended Citation Rios-Colón, Leslimar, "Targeting LEDGF/p75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes" (2017). Loma Linda University Electronic Theses, Dissertations & Projects. 459. http://scholarsrepository.llu.edu/etd/459 This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact [email protected]. LOMA LINDA UNIVERSITY School of Medicine in conjunction with the Faculty of Graduate Studies ____________________ Targeting LEDGF/p75 to Sensitize Chemoresistant Prostate Cancer Cells to Taxanes by Leslimar Ríos-Colón ____________________ A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Pharmacology ____________________ June 2017 © 2017 Leslimar Ríos-Colón All
    [Show full text]