Lichens of Portage County, Wisconsin

Total Page:16

File Type:pdf, Size:1020Kb

Lichens of Portage County, Wisconsin Preliminary Lichen Flora for Portage County, Wisconsin By Mary E. Pawlowski-Bartkowiak A Thesis Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE IN NATURAL RESOURCES (FORESTRY) College of Natural Resources UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin May 2013 APPROVED BY THE GRADUATE COMMITTEE OF: _________________________________________________ Dr. James Bennett, Department of Botany University of Wisconsin-Madison ___________________________________________________ Dr. Robert Freckmann Emeritus Professor of Biology & Water Resources ____________________________________________________ Dr. Virginia Freire Associate Professor of Biology – Committee Co-Chair ______________________________________________________ Dr. Richard Hauer Associate Professor of Forestry – Committee Co-Chair ii ABSTRACT Many studies, both vegetation and floristic, have been conducted throughout Wisconsin and have contributed to our knowledge of lichens in this state (Culberson 1955, Hale 1955, Foote 1966, Newberry 1974, Will-Wolf 1980, Bennett 2006a). However, none of these studies have focused on Portage County, and cannot be used to represent the assemblage of lichens at present. Portage County lies in the center of Wisconsin and offers a variety of interesting physiographic characteristics. The tension zone (Curtis 1959) traverses the county from east to west, suggesting that an overlap of northern and southern vascular plant species may occur in the area. The last glacial event provided Portage County with rolling terminal moraines, wetlands and sandy outwashes. The results of a preliminary floristic study of lichens in Portage County, Wisconsin are presented here. A total of 180 species in 73 genera were identified from field collections made in 2010 through 2012. A catalogue of species is included with 208 lichens presented as a result of field work, a literature search for previously reported collections and a physical search of the Wisconsin State Herbarium (WIS). There are 115 new records for the county and the following 3 species are reported for the first time for the State of Wisconsin: Leptogium rivulare, Heterodermia obscurata, and Peltigera extenuata. In addition to state and county records, two lichens of significant ecological interest were collected during this study; Lobaria pulmonaria, and Normandina pulchella. iii ACKOWLEDGEMENTS I would like to thank the members of my graduate committee, Dr. Jim Bennett, Dr. Bob Freckmann, Dr. Virginia Freire, and Dr. Rich Hauer for all of their support. Each member provided me with consultation, direction and encouragement when I needed it the most. Thank you, to both the UWSP Freckmann Herbarium and the Wisconsin State Herbarium-Madison, for allowing me area to work and access to the collections. I’d also like to thank Richard Olson, Ed Damask, and Quinton and Shari Cieslewisz for permission to sample on their properties. Financial support was provided by the College of Letters and Science and the Botanical Club of Wisconsin, for which I am very grateful. Much appreciation goes to Ezekiel Behnke for assistance with herbarium work and Carol Kropidlowski for accompanying me in the field. I am also thankful for my academic family, there are too many individuals to name that have provided inspiration and support. Finally I would like to thank Rick and Ben for supporting me in this project. iv TABLE OF CONTENTS ABSTRACT……………………………………………………………………………...iii ACKNOWLEDGMENTS………………………………………………………………..iv LIST OF TABLES………………………………………………………………………..vi LIST OF FIGURES……………………………………………………………………...vii INTRODUCTION AND LITERATURE REVIEW……………………….……………..1 General Background and Biology…………………………………………………2 Ecological Importance…………………………………………………………….7 Environmental Indicators/Monitoring With Lichens……………………………...9 Human Interactions………………………………………………………………12 Animal Interactions………………………………………………………………14 Wisconsin Lichens……………………………………………………………….15 Significance of a County Flora…………………………………………………..17 METHODS AND MATERIALS..........………………………………………………….19 Study Area……………………………………………………………………….19 Field and Lab Methods…………………………………………………………..22 RESULTS/DISCUSSION…………………………………………….…………………28 Rare and Significant Lichens…………………………………………………….29 Culberson Site/Curtis Stand 3044 Revisited…………………………………….34 Previous Reports…………………………………………………………………38 COLLECTION SITES…………………………………………………………………...40 CATALOG OF SPECIES………………………………………………………………..47 LITERATURE CITED…………………………………………………………………..59 v LIST OF TABLES Table 1. Percent cover by habitat type for Portage County......................................24 Table 2. Top 18 lichen genera collected from 2010 – 2012……………………….29 Table 3. Lichen species identified for Culberson site……………………………...37 Table 4. Lichens previously reported for Portage County………………………… 39 vi LIST OF FIGURES Figure 1. Map of Wisconsin with Portage County highlighted…………………….17 Figure 2. Surface and subsurface features of Portage County……………………..18 Figure 3. Map of Wisconsin with tension zone transecting Portage County……… 19 Figure 4. Map of study sites in Portage County……………………………………20 Figure 5. Map of Portage County landcover. ………………………………………22 Figure 6. Habitat of Leptogium rivulare on the Tomorrow River………………….27 Figure 7. Google Earth image of Cieslewicz property…………………………….30 vii INTRODUCTION Lichens are often mistaken for moss and referred to as plant-like organisms. Although they are of small stature, they are neither simple nor a single organism but a composite represented by two and sometimes three biological kingdoms. The delicate balance that is required for this symbiosis to remain successful is dependent on many complex interactions. It has been well documented that lichens are excellent indicators of air quality and have been used historically to monitor for pollutants (Hawksworth & Rose 1970, Newberry 1974, Will-Wolf 1980, Richardson 1992, Gries 1996). Many studies, both vegetation and floristic, have been conducted throughout Wisconsin and have contributed to our knowledge of lichens in this state (Culberson 1955, Hale 1955, Foote 1966, Newberry 1974, Will-Wolf 1980, Bennett 2006a). However, none of these studies have focused on Portage County, and cannot be used to represent the assemblage of lichens at present. Portage County lies in the center of Wisconsin and offers a variety of interesting physiographic characteristics. The tension zone (Curtis 1959) traverses the county from east to west, suggesting that an overlap of northern and southern vascular plant species may occur in the area. The last glacial event provided Portage County with rolling terminal moraines, wetlands and sandy outwashes. Results of a preliminary floristic study of lichens in Portage County, Wisconsin are presented here. 208 lichen species are presented with 115 reported as new records for the county and 3 new records for the State of Wisconsin. 1 General background and biology of lichens Lichens are a composite life form consisting of a fungus (mycobiont) and an organism capable of producing carbohydrates through photosynthesis. Recent literature often refers to lichens as miniature ecosystems and not as organisms at all (Hinds & Hinds 2007). The photosynthetic symbiont, known as a photobiont can be an alga or cyanobacteria, or occasionally both. Three biological kingdoms may comprise the lichen when all three are present; Fungi, Protista and Monera. The tripartite association involves the fungus with a green alga as a primary photobiont and the cyanobacteria in distinct packets known as cephalodia. The mycobiont is most often from the Ascomycetes group of fungi which are characterized by the production of spores in sac like structures. Occasionally the mycobiont is from the Basidiomycetes group which represents the mushroom producing fungi. The photobiont is capable of producing food for the partnership and the mycobiont provides protection, ambient light and moisture for the association. A simplistic overview: the mycobiont provides structural support in the form of a thallus and the photobiont is the occupant that produces food for both associates. The lichen symbiosis is very complex and research continues on the subject. Lichens were previously believed to be an example of mutualism, i.e. with all partners benefiting from the association. However, the union may be better described as varying degrees of parasitism (Nash 1996). In order for the mycobiont to access the food produced, it must invade the photobiont. This invasion suggests that the mycobiont may be benefiting more from the association than the photobiont. When the two components are grown separately in the lab, the mycobiont does not develop into a structure 2 resembling a lichen thallus. Instead it forms a gelatinous mass. In contrast, the photobiont can be grown separately but does not look the same as when it is in the symbiotic state. The most common genus of green algae to appear in the lichen association is Trebouxia (Brodo 2001), which is rarely if ever found free living in nature. Trentepohlia, another common photobiont, is able to form filamentous free living colonies. Cyanobacteria are commonly found free living; the two most common are Nostoc and Gloeocapsa (Brodo et al. 2001). These photobionts, while in the lichen association do not reproduce or develop filaments. However, they are able to colonize extreme environments that they would not be able to live in outside of the association (Richardson 1974). More than 700 secondary compounds, contributing up to 20% dry weight, have been identified
Recommended publications
  • A Study of the Pruinose Species of Hypogymnia (Parmeliaceae, Ascomycota) from China
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259425488 A study of the pruinose species of Hypogymnia (Parmeliaceae, Ascomycota) from China Article in The Lichenologist · November 2012 DOI: 10.1017/S0024282912000473 CITATIONS READS 3 134 2 authors, including: Xinli Wei Institute of Microbiology Chinese Academy of Sciences 65 PUBLICATIONS 355 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Lichen species composition and distribution in China View project Discovering the possibility of life on Mars View project All content following this page was uploaded by Xinli Wei on 09 June 2015. The user has requested enhancement of the downloaded file. The Lichenologist 44(6): 783–793 (2012) 6 British Lichen Society, 2012 doi:10.1017/S0024282912000473 A study of the pruinose species of Hypogymnia (Parmeliaceae, Ascomycota) from China Xin-Li WEI and Jiang-Chun WEI Abstract: Six pruinose species of Hypogymnia are reported in this paper, including one new species Hypogymnia pruinoidea. The type of Hypogymnia pseudopruinosa was found to be a mixture with H. laccata. Hypogymnia pseudopruinosa is therefore typified with a lectotype, and the description of H. pseudopruinosa is revised. Distributions of the six pruinose species are given and discussed. Com- ments on differences and similarities between pruinose species of Hypogymnia are made. Diagnostic characters of each species, and a key to the pruinose species of Hypogymnia in China, are also provided. Key words: H. pruinoidea, H. pseudopruinosa, lichen substances, pruina Accepted for publication 6 June 2012 Introduction Materials and Methods Although over 100 species of Hypogymnia Specimens treated here are preserved in the Lichen (Nyl.) Nyl.
    [Show full text]
  • ANA MARCIA CHARNEI.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ ANA MARCIA CHARNEI CLADONIACEAE (ASCOMYCOTA LIQUENIZADOS) EM AMBIENTES DE ALTITUDE DA SERRA DO MAR NO SUL DO BRASIL CURITIBA 2013 1 ANA MARCIA CHARNEI CLADONIACEAE (ASCOMYCOTA LIQUENIZADOS) EM AMBIENTES DE ALTITUDE DA SERRA DO MAR NO SUL DO BRASIL Dissertação apresentada ao Programa de Pós- Graduação em Botânica, área de concentração em Taxonomia, Biologia e Diversidade de Algas, Fungos e Liquens, Setor de Ciências Biológicas, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Mestre em Botânica. Orientadora: Profa. Dra. Sionara Eliasaro CURITIBA 2013 2 3 AGRADECIMENTOS Primeiramente agradeço a Deus pelas oportunidades e pessoas colocadas em meu caminho. À CAPES (Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior) pela bolsa concedida. Ao Programa de Pós-Graduação em Botânica (PPB-Bot) pela estrutura fornecida e aos seus professores pelo conhecimento partilhado. À professora Dra. Sionara Eliasaro por toda atenção e conhecimento transmitido. Também pela seriedade e criticidade na análise da dissertação. A todos os meus familiares pelo incentivo. À Alice Gerlach, companheira de todos os momentos: laboratório, saídas de campo, almoços no RU e happy hours. Também pelo incentivo, ajuda na obtenção de imagens e montagem das pranchas. Ao grande amigo Flávio Beilke pela ajuda nas coletas, pelas inúmeras conversas e risadas. Ao doutorando e grande amigo Emerson Gumboski pela inestimável ajuda. Obrigada pela paciência, saídas de campo, envio de bibliografias, obtenção de imagens, sugestões, correções e discussões taxonômicas. À Vanessa Ariati por nos acompanhar ao Morro Caratuva e ao Pico Paraná. Ao Vitor de Freitas Batista por nos guiar ao Pico da Serra do Tabuleiro.
    [Show full text]
  • Molecular Phylogenetic Study at the Generic Boundary Between the Lichen-Forming Fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)
    Mycol. Res. 107 (11): 1266–1276 (November 2003). f The British Mycological Society 1266 DOI: 10.1017/S0953756203008529 Printed in the United Kingdom. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae) Ulrik SØCHTING1 and Franc¸ ois LUTZONI2 1 Department of Mycology, Botanical Institute, University of Copenhagen, O. Farimagsgade 2D, DK-1353 Copenhagen K, Denmark. 2 Department of Biology, Duke University, Durham, NC 27708-0338, USA. E-mail : [email protected] Received 5 December 2001; accepted 5 August 2003. A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results. INTRODUCTION Taxonomy of Teloschistaceae and its genera The Teloschistaceae is a well-delimited family of Hawksworth & Eriksson (1986) assigned the Teloschis- lichenized fungi.
    [Show full text]
  • Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C
    United States Department of Agriculture Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C. Dibble, James W. Hinds, Ralph Perron, Natalie Cleavitt, Richard L. Poirot, and Linda H. Pardo Forest Service Northern Research Station General Technical Report NRS-165 December 2016 1 Abstract To address a need for air quality and lichen monitoring information for the Northeast, we compared bulk chemistry data from 2011-2013 to baseline surveys from 1988 and 1993 in three Class I Wilderness areas of New Hampshire and Vermont. Plots were within the White Mountain National Forest (Presidential Range—Dry River Wilderness and Great Gulf Wilderness, New Hampshire) and the Green Mountain National Forest (Lye Brook Wilderness, Vermont). We sampled epiphyte communities and found 58 macrolichen species and 55 bryophyte species. We also analyzed bulk samples for total N, total S, and 27 additional elements. We detected a decrease in Pb at the level of the National Forest and in a subset of plots. Low lichen richness and poor thallus condition at Lye Brook corresponded to higher N and S levels at these sites. Lichen thallus condition was best where lichen species richness was also high. Highest Hg content, from a limited subset, was on the east slope of Mt. Washington near the head of Great Gulf. Most dominant lichens in good condition were associated with conifer boles or acidic substrates. The status regarding N and S tolerance for many lichens in the northeastern United States is not clear, so the influence of N pollution on community data cannot be fully assessed.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Exploring the Diversity and Traits of Lichen Propagules Across the United States Erin A
    Journal of Biogeography (J. Biogeogr.) (2016) 43, 1667–1678 ORIGINAL Biodiversity gradients in obligate ARTICLE symbiotic organisms: exploring the diversity and traits of lichen propagules across the United States Erin A. Tripp1,2,*, James C. Lendemer3, Albert Barberan4, Robert R. Dunn5,6 and Noah Fierer1,4 1Department of Ecology and Evolutionary ABSTRACT Biology, University of Colorado, Boulder, CO Aim Large-scale distributions of plants and animals have been studied exten- 80309, USA, 2Museum of Natural History, sively and form the foundation for core concepts and paradigms in biogeogra- University of Colorado, Boulder, CO 80309, USA, 3The New York Botanical Garden, Bronx, phy and macroecology. Much less attention has been given to other groups of NY 10458-5126, USA, 4Cooperative Institute organisms, particularly obligate symbiotic organisms. We present the first for Research in Environmental Sciences, quantitative assessment of how spatial and environmental variables shape the University of Colorado, Boulder, CO 80309, abundance and distribution of obligate symbiotic organisms across nearly an USA, 5Department of Applied Ecology, North entire subcontinent, using lichen propagules as an example. Carolina State University, Raleigh, NC 27695, Location The contiguous United States (excluding Alaska and Hawaii). USA, 6Center for Macroecology, Evolution and Climate, Natural History Museum of Methods We use DNA sequence-based analyses of lichen reproductive Denmark, University of Copenhagen, propagules from settled dust samples collected from nearly 1300 home exteri- Universitetsparken 15, DK-2100 Copenhagen Ø, ors to reconstruct biogeographical correlates of lichen taxonomic and func- Denmark tional diversity. Results Contrary to expectations, we found a weak but significant reverse lati- tudinal gradient in lichen propagule diversity.
    [Show full text]
  • Lichens and Allied Fungi of the Indiana Forest Alliance
    2017. Proceedings of the Indiana Academy of Science 126(2):129–152 LICHENS AND ALLIED FUNGI OF THE INDIANA FOREST ALLIANCE ECOBLITZ AREA, BROWN AND MONROE COUNTIES, INDIANA INCORPORATED INTO A REVISED CHECKLIST FOR THE STATE OF INDIANA James C. Lendemer: Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126 USA ABSTRACT. Based upon voucher collections, 108 lichen species are reported from the Indiana Forest Alliance Ecoblitz area, a 900 acre unit in Morgan-Monroe and Yellowwood State Forests, Brown and Monroe Counties, Indiana. The lichen biota of the study area was characterized as: i) dominated by species with green coccoid photobionts (80% of taxa); ii) comprised of 49% species that reproduce primarily with lichenized diaspores vs. 44% that reproduce primarily through sexual ascospores; iii) comprised of 65% crustose taxa, 29% foliose taxa, and 6% fruticose taxa; iv) one wherein many species are rare (e.g., 55% of species were collected fewer than three times) and fruticose lichens other than Cladonia were entirely absent; and v) one wherein cyanolichens were poorly represented, comprising only three species. Taxonomic diversity ranged from 21 to 56 species per site, with the lowest diversity sites concentrated in riparian corridors and the highest diversity sites on ridges. Low Gap Nature Preserve, located within the study area, was found to have comparable species richness to areas outside the nature preserve, although many species rare in the study area were found only outside preserve boundaries. Sets of rare species are delimited and discussed, as are observations as to the overall low abundance of lichens on corticolous substrates and the presence of many unhealthy foliose lichens on mature tree boles.
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes
    A Field Guide to Biological Soil Crusts of Western U.S. Drylands Common Lichens and Bryophytes Roger Rosentreter Matthew Bowker Jayne Belnap Photographs by Stephen Sharnoff Roger Rosentreter, Ph.D. Bureau of Land Management Idaho State Office 1387 S. Vinnell Way Boise, ID 83709 Matthew Bowker, Ph.D. Center for Environmental Science and Education Northern Arizona University Box 5694 Flagstaff, AZ 86011 Jayne Belnap, Ph.D. U.S. Geological Survey Southwest Biological Science Center Canyonlands Research Station 2290 S. West Resource Blvd. Moab, UT 84532 Design and layout by Tina M. Kister, U.S. Geological Survey, Canyonlands Research Station, 2290 S. West Resource Blvd., Moab, UT 84532 All photos, unless otherwise indicated, copyright © 2007 Stephen Sharnoff, Ste- phen Sharnoff Photography, 2709 10th St., Unit E, Berkeley, CA 94710-2608, www.sharnoffphotos.com/. Rosentreter, R., M. Bowker, and J. Belnap. 2007. A Field Guide to Biological Soil Crusts of Western U.S. Drylands. U.S. Government Printing Office, Denver, Colorado. Cover photos: Biological soil crust in Canyonlands National Park, Utah, cour- tesy of the U.S. Geological Survey. 2 Table of Contents Acknowledgements ....................................................................................... 4 How to use this guide .................................................................................... 4 Introduction ................................................................................................... 4 Crust composition ..................................................................................
    [Show full text]
  • Bulletin of the California Lichen Society
    Bulletin of the California Lichen Society Volume 5 No. 1 Summer 1998 The California Lichen Society seeks to promote the appreciation, conservation, and study of the lichens. The focus of the Society is on California, but its interests include the entire western part of the continent. Dues are $15 per year ( $20 for foreign subscribers) payable to The Cal ifornia Li chen Society, 362 Scenic Avenue, Santa Rosa, CA, 95407. Members receive the Bulletin and notices of meetings, field trips, and workshops. The Bulletin of the California Lichen Society (ISSN 1 093-9148) is edited by Isabelle Tavares, Shirley Tucker, William Sanders, Richard Moe, and Darrell Wright and is produced by Richard Moe. The Bulletin welcomes manuscripts on technical topics in lichenology relating to western North America and on conservation of the lichens, as well as news of lichenologists and their activities. Manuscripts may be submitted to Richard Moe, Bulletin of the California Lichen Society, University Herbarium, 1001 Valley Life Sciences Bldg . #2465, University of California, Berkeley, CA 94 720-2465. The best way to submit manuscripts apart from short articles and announcements is by E-mail or on diskette in Word Perfect or Microsoft Word format; ASCII format is a very good alternative. Manuscripts should be double-spaced. Figures are the usual line drawings and sharp black and white glossy photos, unmounted, and must be sent by surface mail. A review process is followed . Nomenclature follows Esslinger and Egan's Sixth Checklist (The Bryologist 98: 467-549, 1995). and subsequent on-line updateshttp://www.ndsu.nodak.edul instruct/chcklst/chcklst7 .htm.
    [Show full text]