Insulin Promoter in Human Pancreatic Β Cells Contacts Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Insulin Promoter in Human Pancreatic Β Cells Contacts Diabetes Insulin promoter in human pancreatic β cells contacts PNAS PLUS diabetes susceptibility loci and regulates genes affecting insulin metabolism Xing Jiana and Gary Felsenfelda,1 aLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Contributed by Gary Felsenfeld, April 6, 2018 (sent for review February 21, 2018; reviewed by Peter Fraser and Susan E. Ozanne) Both type 1 and type 2 diabetes involve a complex interplay mosome conformation capture-based methods could detect between genetic, epigenetic, and environmental factors. Our long-range interactions within the same transcription factory (9). laboratory has been interested in the physical interactions, in Type 1 and type 2 diabetes are two distinct disease entities nuclei of human pancreatic β cells, between the insulin (INS) gene (10). In type 1 diabetes (T1D), the patients’ immune system and other genes that are involved in insulin metabolism. We have attacks and destroys the insulin-producing pancreatic β cell; it identified, using Circularized Chromosome Conformation Capture comprises about 5% of all cases of diabetes. Type 2 (T2D) is the (4C), many physical contacts in a human pancreatic β cell line be- most common form of diabetes. An estimated 30.3 million people tween the INS promoter on chromosome 11 and sites on most in the United States, or 9.4% of the population, have type 2 di- other chromosomes. Many of these contacts are associated with abetes, and it remains the seventh leading cause of death in type 1 or type 2 diabetes susceptibility loci. To determine whether the United States (https://www.niddk.nih.gov/health-information/ physical contact is correlated with an ability of the INS locus to diabetes). It is a long-term metabolic disorder that is characterized affect expression of these genes, we knock down INS expression by high blood sugar, insulin resistance, and relative lack of insulin. by targeting the promoter; 259 genes are either up or down- It has multiple causes, including both lifestyle and genetic elements. regulated. Of these, 46 make physical contact with INS.We Recent advances in genome-wide association studies (GWAS) analyze a subset of the contacted genes and show that all are have made it possible to identify genetic variants that are asso- associated with acetylation of histone H3 lysine 27, a marker of ciated with T1D and T2D, and many of them are important for β actively expressed genes. To demonstrate the usefulness of this cell function (11). Nevertheless, GWAS studies have only iden- approach in revealing regulatory pathways, we identify from tified a small fraction of the risks attributable to genetic factors, among the contacted sites the previously uncharacterized gene so that diabetes is still recognized as “a geneticist’s nightmare” SSTR5-AS1 and show that it plays an important role in controlling (12). Our laboratory has been interested in the physical inter- the effect of somatostatin-28 on insulin secretion. These results actions, in nuclei of human pancreatic β cells, between the in- are consistent with models in which clustering of genes supports sulin (INS) gene and other genes that are involved in insulin transcriptional activity. This may be a particularly important mech- metabolism. In earlier work, we used 4C in human pancreatic anism in pancreatic β cells and in other cells where a small subset islets to find contacts between the INS promoter and other genes of genes is expressed at high levels. on chromosome 11 (13, 14). This led to the identification of two pancreatic beta cells | 4C-seq | insulin | gene regulation | somatostatin Significance t is well established that within the nucleus the genome is or- We show that in a human pancreatic β cell line the human in- Iganized into a series of domains of varying scale that can serve sulin gene promoter on chromosome 11 physically contacts to segregate active from inactive chromatin, block inappropriate sites on other chromosomes. Many of these contacted sites interactions between regulatory sites, or in other cases, bring contain type 1 or type 2 diabetes susceptibility loci. We find together regulatory elements widely separated on the genome, that insulin gene expression can affect expression of contacted such as enhancers and promoters (1). Some of these interactions genes on other chromosomes. Some of these genes, in turn, in vertebrates are mediated by pairs of sites separated by as much regulate insulin secretion. These results reveal physical regu- as a megabase of DNA and occupied by the protein CTCF in latory mechanisms in which the level of insulin expression association with the cohesin complex. Such interactions result in controls expression of genes involved in insulin transport and formation of large loop domains within chromosomes. metabolism. We study the properties of one such gene, so- Other kinds of interactions between distant sites, often on matostatin receptor 5 antisense (SSTR5-AS1), and show that it different chromosomes, arise from the clustering of transcribed regulates SSTR5 expression, which affects insulin secretion. genes. In an early example (2), it was shown that the Hbb-b1 β Analysis of insulin contacts thus may reveal new insulin hemoglobin gene in mouse erythroid cells colocalizes at tran- metabolic pathways. scription factories (for a recent review on transcription factories, Author contributions: G.F. designed research; X.J. performed the research; X.J. and G.F. see ref. 3) with other expressed genes. These include the analyzed data; and X.J. and G.F. wrote the paper. erythroid-specific gene Eraf; the Uroporphyrinogen III synthe- Reviewers: P.F., The Babraham Institute; and S.E.O., University of Cambridge. tase gene Uros, essential for heme biosynthesis (both on the same The authors declare no conflict of interest. chromosome as Hbb-b1); and Hba, the gene for hemoglobin α, Published under the PNAS license. on a different chromosome. In this and other cases, the clusters – Data deposition: The data reported in this paper have been deposited in the Gene Ex- included coregulated genes (4 7). Other transcription factory- pression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession no. mediated interchromosomal interactions have been reported in GSE112346). mouse B lymphocytes between the Myc gene on chromosome 1To whom correspondence should be addressed. Email: [email protected]. 15 and the Igh gene on chromosome 12 (4), and in human en- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. dothelial cells, which in response to TNF-α organize target genes 1073/pnas.1803146115/-/DCSupplemental. CELL BIOLOGY to form “NFκB factories” (8). It has been suggested that chro- Published online April 30, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1803146115 PNAS | vol. 115 | no. 20 | E4633–E4641 Downloaded by guest on September 29, 2021 genes, synaptotagmin 8 (SYT8) and anoctamin 1 (ANO1), such contacts often mark sites near T1D or T2D susceptibility ∼300 kb and 68 Mb away, respectively, from the INS locus, that loci (17–22). we showed contacted the INS promoter. These physical contacts A large number of these sites include genes whose expression were correlated with expression of INS: Blocking INS promoter is sensitive to the level of INS transcriptional activity. Consistent activity resulted in decreased contact between the promoter and with our earlier observations in human islets, many of these both SYT8 and ANO1, as well as their deceased expression. In genes are part of regulatory mechanisms for insulin secretion. addition, we showed that both SYT8 and ANO1 proteins pro- Among these we identified SSTR5-AS1, (somatostatin receptor mote secretion of insulin. Thus, these interactions constitute a 5 antisense) located on chromosome 16. Down-regulation of this physical feedback transvection-like mechanism in which contacts previously uncharacterized gene results in down-regulation of with the highly active INS promoter stimulate expression of the nonoverlapping gene SSTR5 (somatostatin receptor 5). genes associated with insulin metabolism. It appeared that these Through this mechanism, SSTR5-AS1 indirectly controls the extent of SSTR5 signaling with SST28 (somatostatin-28), and regulatory pathways might be relevant to normal and abnormal β this, in turn, affects the known inhibitory effect of SST on cell function. At least 40% of the genes associated with T1D insulin secretion. susceptibility loci are expressed in human islets and β cells (15). Similarly, many loci known to harbor common SNPs contributing Results β to T2D contain genes associated with cell or islet function (11). Local Interactions on Chromosome 11. The EndoC-βH1 cell line is Here, we take advantage of the availability of a human pan- an insulin-secreting cell line derived from human pancreatic β β β creatic cell line, EndoC- H1 (16), to collect much higher cells (16). To explore the interactions between the INS locus and density 4C data without the complicating presence of signals other genomic sites, we used these cells to carry out 4C-seq ex- from the other kinds of cells present in islets. We show that in periments (23), with a site near the INS promoter as anchor (Fig. EndoC-βH1 cells, the INS promoter makes many strong cell 1A). The bait sequence contains the PDX1-binding elements type-specific contacts over large distances. The increased se- A3 and A5, the enhancer core element (binding region for his- quencing depth allows us not only to detect interactions within tone H3 lysine 27 acetyltransferase p300), the T1D susceptibility- chromosome 11, on which INS resides, but also to identify many linked microsatellite (VNTR), along with some other elements contacts of INS with sites on other chromosomes. We find that (24). We focused initially on contacts between INS and sites on A B C rs7111341 rs2334499 2Kb 50Kb 4 DE rs2334499 Fig. 1.
Recommended publications
  • Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These As Urinary Tumor Markers
    Published OnlineFirst July 25, 2011; DOI: 10.1158/1078-0432.CCR-10-2659 Clinical Cancer Human Cancer Biology Research Comprehensive Genome Methylation Analysis in Bladder Cancer: Identification and Validation of Novel Methylated Genes and Application of These as Urinary Tumor Markers Thomas Reinert1, Charlotte Modin1, Francisco M. Castano1, Philippe Lamy1, Tomasz K. Wojdacz4, Lise Lotte Hansen4, Carsten Wiuf3, Michael Borre2, Lars Dyrskjøt1, and Torben F. Ørntoft1 Abstract Purpose: Epigenetic alterations are common and can now be addressed in a parallel fashion. We investigated the methylation in bladder cancer with respect to location in genome, consistency, variation in metachronous tumors, impact on transcripts, chromosomal location, and usefulness as urinary markers. Experimental Design: A microarray assay was utilized to analyze methylation in 56 samples. Inde- pendent validation was conducted in 63 samples by a PCR-based method and bisulfite sequencing. The methylation levels in 174 urine specimens were quantified. Transcript levels were analyzed using expression microarrays and pathways were analyzed using dedicated software. Results: Global methylation patterns were established within and outside CpG islands. We validated methylation of the eight tumor markers genes ZNF154 (P < 0.0001), HOXA9 (P < 0.0001), POU4F2 (P < 0.0001), EOMES (P ¼ 0.0005), ACOT11 (P ¼ 0.0001), PCDHGA12 (P ¼ 0.0001), CA3 (P ¼ 0.0002), and PTGDR (P ¼ 0.0110), the candidate marker of disease progression TBX4 (P < 0.04), and other genes with stage-specific methylation. The methylation of metachronous tumors was stable and targeted to certain pathways. The correlation to expression was not stringent. Chromosome 21 showed most differential methylation (P < 0.0001) and specifically hypomethylation of keratins, which together with keratin-like proteins were epigenetically regulated.
    [Show full text]
  • Prediction of Host-Virus Interaction Networks
    Prediction of host-virus interaction networks Janet M. Doolittle A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Bioinformatics and Computational Biology. Chapel Hill 2012 Approved by: Tim Elston, PhD Shawn Gomez, Eng.Sc.D. Klaus Hahn, PhD Keith Burridge, PhD Anne Taylor, PhD Jennifer Webster-Cyriaque, PhD ©2012 Janet M. Doolittle ALL RIGHTS RESERVED ii ABSTRACT JANET DOOLITTLE: Prediction of host-virus interaction networks (Under the direction of Shawn Gomez) As with other viral pathogens, HIV-1 and dengue virus (DENV) are dependent on their hosts for the bulk of the functions necessary for viral survival and replication. Thus, successful infection depends on the pathogen's ability to manipulate the biological pathways and processes of the organism it infects, while avoiding elimination by the immune system. Protein-protein interactions are one avenue through which viruses can connect with and exploit these host cellular pathways and processes. We developed a computational approach to predict interactions between HIV and human proteins based on structural similarity of 9 HIV-1 proteins to human proteins having known interactions. Using functional data from RNAi studies as a filter, we generated over 2,000 interaction predictions between HIV proteins and 406 unique human proteins. Additional filtering based on Gene Ontology cellular component annotation reduced the number of predictions to 502 interactions involving 137 human proteins. We find numerous known interactions as well as novel interactions showing significant functional relevance based on supporting Gene Ontology and literature evidence.
    [Show full text]
  • Mai Muudatuntuu Ti on Man Mini
    MAIMUUDATUNTUU US009809854B2 TI ON MAN MINI (12 ) United States Patent ( 10 ) Patent No. : US 9 ,809 ,854 B2 Crow et al. (45 ) Date of Patent : Nov . 7 , 2017 Whitehead et al. (2005 ) Variation in tissue - specific gene expression ( 54 ) BIOMARKERS FOR DISEASE ACTIVITY among natural populations. Genome Biology, 6 :R13 . * AND CLINICAL MANIFESTATIONS Villanueva et al. ( 2011 ) Netting Neutrophils Induce Endothelial SYSTEMIC LUPUS ERYTHEMATOSUS Damage , Infiltrate Tissues, and Expose Immunostimulatory Mol ecules in Systemic Lupus Erythematosus . The Journal of Immunol @(71 ) Applicant: NEW YORK SOCIETY FOR THE ogy , 187 : 538 - 552 . * RUPTURED AND CRIPPLED Bijl et al. (2001 ) Fas expression on peripheral blood lymphocytes in MAINTAINING THE HOSPITAL , systemic lupus erythematosus ( SLE ) : relation to lymphocyte acti vation and disease activity . Lupus, 10 :866 - 872 . * New York , NY (US ) Crow et al . (2003 ) Microarray analysis of gene expression in lupus. Arthritis Research and Therapy , 5 :279 - 287 . * @(72 ) Inventors : Mary K . Crow , New York , NY (US ) ; Baechler et al . ( 2003 ) Interferon - inducible gene expression signa Mikhail Olferiev , Mount Kisco , NY ture in peripheral blood cells of patients with severe lupus . PNAS , (US ) 100 ( 5 ) : 2610 - 2615. * GeneCards database entry for IFIT3 ( obtained from < http : / /www . ( 73 ) Assignee : NEW YORK SOCIETY FOR THE genecards. org /cgi - bin / carddisp .pl ? gene = IFIT3 > on May 26 , 2016 , RUPTURED AND CRIPPLED 15 pages ) . * Navarra et al. (2011 ) Efficacy and safety of belimumab in patients MAINTAINING THE HOSPITAL with active systemic lupus erythematosus : a randomised , placebo FOR SPECIAL SURGERY , New controlled , phase 3 trial . The Lancet , 377 :721 - 731. * York , NY (US ) Abramson et al . ( 1983 ) Arthritis Rheum .
    [Show full text]
  • RNA-Seq Analysis of Seasonal and Individual Variation in Blood Transcriptomes of Healthy Managed Bottlenose Dolphins Jeanine S
    Morey et al. BMC Genomics (2016) 17:720 DOI 10.1186/s12864-016-3020-8 RESEARCH ARTICLE Open Access RNA-Seq analysis of seasonal and individual variation in blood transcriptomes of healthy managed bottlenose dolphins Jeanine S. Morey1*, Marion G. Neely1, Denise Lunardi2, Paul E. Anderson3, Lori H. Schwacke1, Michelle Campbell4 and Frances M. Van Dolah1,5* Abstract Background: The blood transcriptome can reflect both systemic exposures and pathological changes in other organs of the body because immune cells recirculate through the blood, lymphoid tissues, and affected sites. In human and veterinary medicine, blood transcriptome analysis has been used successfully to identify markers of disease or pathological conditions, but can be confounded by large seasonal changes in expression. In comparison, the use of transcriptomic based analyses in wildlife has been limited. Here we report a longitudinal study of four managed bottlenose dolphins located in Waikoloa, Hawaii, serially sampled (approximately monthly) over the course of 1 year to establish baseline information on the content and variation of the dolphin blood transcriptome. Results: Illumina based RNA-seq analyses were carried out using both the Ensembl dolphin genome and a de novo blood transcriptome as guides. Overall, the blood transcriptome encompassed a wide array of cellular functions and processes and was relatively stable within and between animals over the course of 1 year. Principal components analysis revealed moderate clustering by sex associated with the variation among global gene expression profiles (PC1, 22 % of variance). Limited seasonal change was observed, with < 2.5 % of genes differentially expressed between winter and summer months (FDR < 0.05).
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]
  • WO 2015/179918 Al 3 December 2015 (03.12.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179918 Al 3 December 2015 (03.12.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 19/00 (2006.01) A61K 39/395 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 16/46 (2006.01) A61P 3/10 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 38/20 (2006.01) A61P 5/50 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/AU20 15/050283 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 27 May 2015 (27.05.2015) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/003,492 27 May 2014 (27.05.2014) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: THE UNIVERSITY OF QUEENSLAND TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [AU/AU]; The University of Queensland, St Lucia, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Queensland 4072 (AU).
    [Show full text]
  • Global Patterns of Changes in the Gene Expression Associated with Genesis of Cancer a Dissertation Submitted in Partial Fulfillm
    Global Patterns Of Changes In The Gene Expression Associated With Genesis Of Cancer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University By Ganiraju Manyam Master of Science IIIT-Hyderabad, 2004 Bachelor of Engineering Bharatiar University, 2002 Director: Dr. Ancha Baranova, Associate Professor Department of Molecular & Microbiology Fall Semester 2009 George Mason University Fairfax, VA Copyright: 2009 Ganiraju Manyam All Rights Reserved ii DEDICATION To my parents Pattabhi Ramanna and Veera Venkata Satyavathi who introduced me to the joy of learning. To friends, family and colleagues who have contributed in work, thought, and support to this project. iii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Ancha Baranova, whose tolerance, patience, guidance and encouragement helped me throughout the study. This dissertation would not have been possible without her ever ending support. She is very sincere and generous with her knowledge, availability, compassion, wisdom and feedback. I would also like to thank Dr. Vikas Chandhoke for funding my research generously during my doctoral study at George Mason University. Special thanks go to Dr. Patrick Gillevet, Dr. Alessandro Giuliani, Dr. Maria Stepanova who devoted their time to provide me with their valuable contributions and guidance to formulate this project. Thanks to the faculty of Molecular and Micro Biology (MMB) department, Dr. Jim Willett and Dr. Monique Vanhoek in embedding valuable thoughts to this dissertation by being in my dissertation committee. I would also like to thank the present and previous doctoral program directors, Dr. Daniel Cox and Dr. Geraldine Grant, for facilitating, allowing, and encouraging me to work in this project.
    [Show full text]
  • C M Gabe Thesis Student200902650 2 Pdfx
    Production and purification of recombinant amelogenins for investigating proteopathic mechanisms associated with amelogenesis imperfecta Claire Madialin Gabe Submitted in accordance with the requirements for the degree of Doctorate of Philosophy The University of Leeds Faculty of Medicine and Health School of Dentistry November 2018 - ii - Intellectual Property and Publication Statements The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The published work is integrated in the Materials and Methods, Results and Discussion sections of the thesis. The method Sections 2.1.1.1 (expression of recombinant amelogenin), 2.1.1.4 and 2.1.2.3 (polyacrylamide gel electrophoreses), 2.1.2.1 (nickel column chromatography), and the Figures 41, 42, 43 and 73 are based on work from the jointly authored publication: GABE, C. M., BROOKES, S. J. & KIRKHAM, J. 2017. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin. Frontiers in Physiology, 8, 424. All three authors Miss Claire Madialin Gabe (CMG), Dr. Seven Joseph Brookes (SJB) and Prof. Jennifer Kirkham (JK) contributed to the design of the experiments. CMG carried out the practical work (data acquisition). All three authors CMG, SJB and JK contributed to drafting the manuscript and approved the final submitted version. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
    [Show full text]
  • Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy
    Cells 2014, 3, 563-591; doi:10.3390/cells3020563 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Article Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy Alexey Goltsov 1,*, Yusuf Deeni 1, Hilal S. Khalil 1, Tero Soininen 1, Stylianos Kyriakidis 2, Huizhong Hu 3, Simon P. Langdon 4, David J. Harrison 5 and James Bown 1 1 Scottish Informatics, Mathematics, Biology and Statistics Centre (SIMBIOS), Abertay University, Dundee, DD1 1HG, United Kingdom; E-Mails: [email protected] (Y.D.); [email protected] (H.S.K.); [email protected] (T.S.); [email protected] (J.B.) 2 The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom; E-Mail: [email protected] 3 Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; E-Mail: [email protected] 4 Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom; E-Mail: [email protected] 5 School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United Kingdom; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-138-308-432. Received: 31 March 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 10 June 2014 Abstract: The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy.
    [Show full text]
  • Mrna Expression in Human Leiomyoma and Eker Rats As Measured by Microarray Analysis
    Table 3S: mRNA Expression in Human Leiomyoma and Eker Rats as Measured by Microarray Analysis Human_avg Rat_avg_ PENG_ Entrez. Human_ log2_ log2_ RAPAMYCIN Gene.Symbol Gene.ID Gene Description avg_tstat Human_FDR foldChange Rat_avg_tstat Rat_FDR foldChange _DN A1BG 1 alpha-1-B glycoprotein 4.982 9.52E-05 0.68 -0.8346 0.4639 -0.38 A1CF 29974 APOBEC1 complementation factor -0.08024 0.9541 -0.02 0.9141 0.421 0.10 A2BP1 54715 ataxin 2-binding protein 1 2.811 0.01093 0.65 0.07114 0.954 -0.01 A2LD1 87769 AIG2-like domain 1 -0.3033 0.8056 -0.09 -3.365 0.005704 -0.42 A2M 2 alpha-2-macroglobulin -0.8113 0.4691 -0.03 6.02 0 1.75 A4GALT 53947 alpha 1,4-galactosyltransferase 0.4383 0.7128 0.11 6.304 0 2.30 AACS 65985 acetoacetyl-CoA synthetase 0.3595 0.7664 0.03 3.534 0.00388 0.38 AADAC 13 arylacetamide deacetylase (esterase) 0.569 0.6216 0.16 0.005588 0.9968 0.00 AADAT 51166 aminoadipate aminotransferase -0.9577 0.3876 -0.11 0.8123 0.4752 0.24 AAK1 22848 AP2 associated kinase 1 -1.261 0.2505 -0.25 0.8232 0.4689 0.12 AAMP 14 angio-associated, migratory cell protein 0.873 0.4351 0.07 1.656 0.1476 0.06 AANAT 15 arylalkylamine N-acetyltransferase -0.3998 0.7394 -0.08 0.8486 0.456 0.18 AARS 16 alanyl-tRNA synthetase 5.517 0 0.34 8.616 0 0.69 AARS2 57505 alanyl-tRNA synthetase 2, mitochondrial (putative) 1.701 0.1158 0.35 0.5011 0.6622 0.07 AARSD1 80755 alanyl-tRNA synthetase domain containing 1 4.403 9.52E-05 0.52 1.279 0.2609 0.13 AASDH 132949 aminoadipate-semialdehyde dehydrogenase -0.8921 0.4247 -0.12 -2.564 0.02993 -0.32 AASDHPPT 60496 aminoadipate-semialdehyde
    [Show full text]
  • Investigation of Differential Gene Expression in Parkinson's Disease Patients: a Whole Transcriptome Approach
    Investigation of differential gene expression in Parkinson's disease patients: A whole transcriptome approach Genevie Borrageiro Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Human Genetics) in the Faculty of Medicine and Health Sciences at Stellenbosch University Supervisor: Professor Soraya Bardien Faculty of Medicine and Health Sciences Department of Biomedical Sciences Co-Supervisor: Professor Sian Hemmings Faculty of Medicine and Health Sciences Department of Biomedical Sciences December 2016 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis/dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: …………………… Date: ........................................ Copyright © 2016 Stellenbosch University All rights reserved Page | i Stellenbosch University https://scholar.sun.ac.za Abstract Parkinson’s disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. Dopaminergic neuronal loss results in motor symptoms such as resting tremor, bradykinesia, rigidity and postural instability. Although several PD-causing genes have been identified, the process(es) that lead to progressive neuronal loss is poorly understood. Therefore, PD research efforts have turned to genome- wide next generation sequencing technologies to provide clues to the etiology. The focus of this study was to investigate the entire transcriptome in South African patients with PD (particularly in the under- studied mixed ancestry population) to identify biological pathways that may shed light on the pathobiology of PD.
    [Show full text]
  • A Non-Random Walk Through the Genome Comment Brian Oliver* and Tom Misteli†
    Review A non-random walk through the genome comment Brian Oliver* and Tom Misteli† Addresses: *National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA. †National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA. Correspondence: Brian Oliver. E-mail: [email protected]. Tom Misteli. E-mail: [email protected] reviews Published: 31 March 2005 Genome Biology 2005, 6:214 (doi:10.1186/gb-2005-6-4-214) The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/4/214 © 2005 BioMed Central Ltd reports Abstract Recent publications on a wide range of eukaryotes indicate that genes showing particular expression patterns are not randomly distributed in the genome but are clustered into contiguous regions that we call neighborhoods. It seems probable that this organization is related to chromatin and the structure of the nucleus. deposited research Consideration of gene regulation as an interaction between the lingering questions about the best methods for finding them basal transcription machinery, regulators, and a segment of and about how to avoid being tricked by spurious or artifac- naked DNA containing a gene has been an extremely successful tual patterns, the body of available evidence leaves little model for understanding how genetic information is read [1]. It doubt that they exist. With a few exceptions from classical is impossible to separate this model from the great success of molecular biology, the regulatory mechanisms underlying modern molecular genetics.
    [Show full text]