Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics

Total Page:16

File Type:pdf, Size:1020Kb

Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: November 9, 2018 Panel Meeting Date: December 3-4, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Writer/Analyst Date: November 9, 2018 Subject: Draft Tentative Report of the Safety Assessment on Brown Algae-Derived Ingredients Enclosed is the Draft Tentative Report of the Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics. (It is identified as broalg122018rep in the pdf document). At the September 2018 meeting, the Panel issued an Insufficient Data Announcement for these 82 ingredients. The Panel’s data needs were: • Composition and organic constituent data for each of these Brown Algae-derived cosmetic ingredients • 28-Day dermal toxicity data for those ingredients that are not GRAS • Sensitization data at relevant use concentrations for all ingredients (e.g., Macrocystis Pyrifera (Kelp) Extract at 36.4%) • Genotoxicity data for those ingredients that are not GRAS Since the September Panel meeting, CIR has received the following data, which have been incorporated into the report and have been designated by highlighting (broalg122018data1 through broalg122018data11). • Manufacturing information, composition data, and an in vivo skin irritation study of several trade name mixtures containing Pelvetia Canaliculata Extract and Laminaria Digitata Extract (broalg122018data1) • An in vivo skin sensitization study of a trade name mixture containing Undaria Pinnatifida Extract in caprylic/capric triglyceride (broalg122018data2) • An in vitro skin irritation study on a trade name mixture containing Undaria Pinnatifida Extract in caprylic/capric triglyceride (broalg122018data3) • Manufacturing information, composition data, a 24 hour patch test, a sensitization study, and an in vitro skin irritation study on several trade name mixtures containing Undaria Pinnatifida Extract (broalg122018data4) • Information received from UNITIS regarding several brown algae ingredients (broalg122018data5) • A dermal irritation study, an in chemico skin sensitization study, an in vitro skin sensitization study, a bacterial reverse mutation study , and an ocular irritation study of a trade name mixture containing Undaria Pinnatifida Cell Culture Extract (0.5-2%) (broalg122018data6) • A dermal irritation test, ocular irritation test, and in vitro sensitization study using a test substance containing 1.3% Sargassum Filipendula Extract (broalg122018data7) • A reverse mutation study, a dermal irritation study, a sensitization study, and an ocular irritation study regarding a trade name mixture containing approximately 4% Macrocystis Pyrifera (Kelp) Extract (broalg122018data8) • A dermal irritation test, ocular irritation test, a genotoxicity study, and composition data of a trade name mixture consisting of Cystoseira Amentacea/Caespitosa/Brachycarpa Extracts (48%) and water (52%) (broalg122018data9) • A dermal irritation test, ocular irritation test, and composition data of a trade name mixture consisting of Himanthalia Elongata Extract (20%), Undaria Pinnatifida Extract (37%) and water (43%) (broalg122018data10) • A genotoxicity test, dermal irritation test, dermal sensitization test, ocular irritation test, and composition data of 48% Halidrys Siliquosa Extract in 52% water. (broalg122018data11) __________________________________________________________________________________________ 1620 L St NW, Suite 1200, Washington, DC 20036 (Main) 202-331-0651 (Fax) 202-331-0088 (Email) [email protected] (Website) www.cir-safety.org Distributed for Comment Only -- Do Not Cite or Quote The data that were presented to the Panel in Wave 2 and Wave 3 for the September meeting have also been incorporated into the report. (These data are not highlighted.) Comments provided by the Council prior to the September meeting on the draft report have been addressed (broalg122018pcpc). In addition, the flow chart (broalg122018flow), updated data profile (broalg122018prof), VCRP data (broalg122018FDA), minutes (broalg122018min), history (broalg122018hist), and search strategy (broalg122018strat), have been included in this packet. A draft Discussion has been incorporated into the report, based on the proceedings and comments from the September meeting. The Discussion draft addresses irritation/sensitization data, impurities concerns, estrogenic effects, and the outstanding data needs. Please determine if these concerns are addressed properly, and identify any other issues that need to be discussed. The Panel should carefully consider the data presented in this report, and issue a Tentative Report with a safe, safe with qualifications, insufficient data, or split conclusion. __________________________________________________________________________________________ 1620 L St NW, Suite 1200, Washington, DC 20036 (Main) 202-331-0651 (Fax) 202-331-0088 (Email) [email protected] (Website) www.cir-safety.org Distributed for Comment Only -- Do Not Cite or Quote SAFETY ASSESSMENT FLOW CHART INGREDIENT/FAMILY _Brown Algae-derived ingredients ______________________________ MEETING ___December 2018___________________________________________________________ Public Comment CIR Expert Panel Report Status Priority List INGREDIENT PRIORITY LIST SLR July 26, 2018 DRAFT REPORT Sept 2018 Draft Report 60 day public comment period Table Table IDA TR IDA Notice IDA DRAFT TENTATIVE REPORT Draft TR Dec 2018 Table Table Tentative Report Issue TR Draft FR DRAFT FINAL REPORT 60 day Public comment period Table Table Different Conclusion Issue PUBLISH Final Report FR Distributed for Comment Only -- Do Not Cite or Quote History of Brown Algae August 2018: SLR announced for public comment September 2018: draft report reviewed by Panel; the Panel issued an IDA; the Panel requested the following data: • Composition and organic constituent data for each of these Brown Algae-derived cosmetic ingredients • 28-Day dermal toxicity data for those ingredients that are not GRAS • Sensitization data at relevant use concentrations for all ingredients (e.g., Macrocystis Pyrifera (Kelp) Extract at 36.4%) • Genotoxicity data for those ingredients that are not GRAS Following the September 2018 meeting, information regarding manufacturing, composition, genotoxicity, sensitization, skin irritation, and ocular irritation regarding several brown algae ingredients were received. December 2018: the Panel reviews the draft tentative report Distributed for Comment Only -- Do Not Cite or Quote Brown Algae Data Profile for December 2018. Writer – Priya Cherian Acute Repeated ADME toxicity dose toxicity Irritation Sensitization Use Log K Penetration Dermal Oral Dermal Inhale Oral Dermal Ocular Ocular In Vitro Dermal DermalHuman Dermal In Vitro Animal Human VitroIn Repro/Devel Genotoxicity Carcinogenicity Phototoxicity Inhale ow Animal Animal 1. Agarum Cribrosum Extract x 2. Alaria Esculenta Extract x x x x 3. Ascophyllum Nodosum x 4. Ascophyllum Nodosum x x x x x x Extract 5. Ascophyllum Nodosum x x Powder 6. Cladosiphon Novae- Caledoniae Extract 7. Cladosiphon Okamuranus x Extract 8. Cystoseira x x x Amentacea/Caespitosa/ Branchycarpa Extract 9. Cystoseira Baccata Extract x x 10. Cystoseira Balearica Extract 11. Cystoseira Caespitosa Extract 12. Cystoseira Compressa x x Extract 13. Cystoseira Compressa Powder 14. Cystoseira Tamariscifolia x Extract 15. Dictyopteris Membranacea Extract (Retired) 16. Dictyopteris Polypodioides x Extract 17. Dictyota Coriacea Extract 18. Durvillea Antarctica Extract x 19. Ecklonia Cava Extract x x x 20. Ecklonia Cava Water x 21. Ecklonia Kurome Extract 22. Ecklonia Kurome Powder 23. Ecklonia/Laminaria Extract 24. Ecklonia Maxima Extract 25. Ecklonia Maxima Powder 26. Ecklonia Radiata Extract x 27. Eisenia Arborea Extract 28. Fucus Serratus Extract x 29. Fucus Spiralis Extract x x 30. Fucus Vesiculosus x 31. Fucus Vesiculosus Extract x x x x x x x 32. Fucus Vesiculosus Powder x 33. Halidrys Siliquosa Extract x x x x 34. Halopteris Scoparia Extract 35. Himanthalia Elongata x x x Extract 36. Himanthalia Elongata x Powder 37. Hizikia Fusiforme Extract x 38. Hizikia Fusiformis Water Distributed for Comment Only -- Do Not Cite or Quote Brown Algae Data Profile for December 2018. Writer – Priya Cherian Acute Repeated ADME toxicity dose toxicity Irritation Sensitization Use Log K Penetration Dermal Oral Dermal Inhale Oral Dermal Ocular Ocular In Vitro Dermal DermalHuman Dermal In Vitro Animal Human VitroIn Repro/Devel Genotoxicity Carcinogenicity Phototoxicity Inhale ow Animal Animal 39. Hizikia Fusiformis Callus Culture Extract 40. Hydrolyzed Ecklonia Cava Extract 41. Hydrolyzed Fucus Vesiculosus Extract 42. Hydrolyzed Fucus Vesiculosus Protein 43. Kappaphycus Alvarezii Extract 44. Laminaria
Recommended publications
  • Pelvetia Canaliculata Channel Wrack Ecology and Similar Identification Species
    Ecology and Similar species identification Found slightly High shore alga higher than often forming a Fucus spiralis. clear zone on Fronds in more sheltered F.spiralis are shores. flat and twisted. Evenly forked fronds up to 15cm long that are rolled to give a channel on one side. Pelvetia canaliculata Channel Wrack Ecology and Similar identification species High shore alga Fucus often forming vesiculosus a clear zone which has below Pelvetia distinctive air on more bladders sheltered shores. Fronds in F.spiralis are flat and Fucus spiralis twisted and up Spiral Wrack to 20cm long. NO air bladders. Ecology and Similar identification species Most Fucus characteristic vesiculosus mid shore which has alga in shelter. paired circular air Leathery bladders fronds up to a metre long, no mid-rib and single egg-shaped Ascophyllum nodosum air-bladders Egg or Knotted Wrack Ecology and Similar identification species The F. spiralis characteristic and alga of the A.nodosum mid-shore in moderate exposure. The fronds have a prominent mid-rib and Fucus vesiculosus paired air Bladder Wrack bladders. Ecology and Similar identification species Can be Other Fucus abundant in species the low and lower mid- shore. Fronds have a serrated edge. Fucus serratus Serrated Wrack. Ecology and Similar species identification. This is the Laminaria commonest of hyperborea, the the kelps and can forest kelp, dominate around which has a low water. Each round cross plant may reach section to the 1.5m long. stem and stands erect at The stem has an low tide. oval cross section that causes the plant to droop over at low water.
    [Show full text]
  • Akatore Study Published in Earth and Planetary
    Earth and Planetary Science Letters 520 (2019) 18–25 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand ∗ Elahe Parvizi a, Dave Craw b, , Jonathan M. Waters a a Zoology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Geology Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand a r t i c l e i n f o a b s t r a c t Article history: Holocene paleoseismic activity on the Akatore Fault zone, southeastern New Zealand, has caused uplift Received 20 January 2019 of a 23 km section of coastline by several metres. Prominent relict shoreline terraces are preserved at Received in revised form 4 May 2019 6 m and 3 m above the present sea level, and the latter terrace was formed 1000-1400 yrs BP. The Accepted 22 May 2019 main fault strand farther inland has 6 mof late Holocene vertical offset, but the relationships between Available online xxxx coastal offsets and fault offsets are not understood. There is no preserved geological evidence on the Editor: J.-P. Avouac coastline to distinguish between incremental uplift (e.g., numerous centimetre-scale events) and major, Keywords: metre-scale, uplift events: a distinction that is important for evaluating regional paleoseismicity. We have paleoseismology used genetic characterisation of populations of live kelp, Durvillaea antarctica growing along the shoreline neotectonics to investigate whether or not there has been a catastrophic uplift event, greater than the two metre tidal fault range, that was sufficient to extirpate intertidal kelp populations.
    [Show full text]
  • Imported Food Risk Statement Hijiki Seaweed and Inorganic Arsenic
    Imported food risk statement Hijiki seaweed and inorganic arsenic Commodity: Hijiki seaweed Alternative names used for Hijiki include: Sargassum fusiforme (formerly Hizikia fusiforme, Hizikia fusiformis, Crystophyllum fusiforme, Turbinaria fusiformis), Hizikia, Hiziki, Cystophyllum fusiforme, deer-tail grass, sheep- nest grass, chiau tsai, gulfweed, gulf weed ,hai ti tun, hai toe din, hai tsao, hai tso, hai zao, Hijiki, me-hijiki, mehijiki, hijaki, naga-hijiki, hoi tsou, nongmichae. Analyte: Inorganic arsenic Recommendation and rationale Is inorganic arsenic in Hijiki seaweed a medium or high risk to public health? Yes No Uncertain, further scientific assessment required Rationale: Inorganic arsenic is genotoxic and is known to be carcinogenic in humans. Acute toxicity can result from high dietary exposure to inorganic arsenic. General description Nature of the analyte: Arsenic is a metalloid that occurs in inorganic and organic forms. It is routinely found in the environment as a result of natural occurrence and anthropogenic (human) activity (WHO 2011a). While individuals are often exposed to organic and inorganic arsenic through the diet, it is the inorganic species (which include arsenate V and arsenite III) that are more toxic to humans. Only inorganic arsenic is known to be carcinogenic in humans (WHO 2011a). Inorganic arsenic contamination of groundwater is common in certain parts of the world. Dietary exposure to inorganic arsenic occurs predominantly from groundwater derived drinking-water, groundwater used in cooking and commonly consumed foods such as rice and other cereal grains and their flours (EFSA 2009; WHO 2011a; WHO 2011b). However fruits and vegetables have also been found to contain levels of inorganic arsenic in the range of parts per billion (FSA 2012).
    [Show full text]
  • Edible Seaweed from Wikipedia, the Free Encyclopedia
    Edible seaweed From Wikipedia, the free encyclopedia Edible seaweed are algae that can be eaten and used in the preparation of food. They typically contain high amounts of fiber.[1] They may belong to one of several groups of multicellular algae: the red algae, green algae, and brown algae. Seaweeds are also harvested or cultivated for the extraction of alginate, agar and carrageenan, gelatinous substances collectively known as hydrocolloids or phycocolloids. Hydrocolloids have attained commercial significance, especially in food production as food A dish of pickled spicy seaweed additives.[2] The food industry exploits the gelling, water-retention, emulsifying and other physical properties of these hydrocolloids. Most edible seaweeds are marine algae whereas most freshwater algae are toxic. Some marine algae contain acids that irritate the digestion canal, while some others can have a laxative and electrolyte-balancing effect.[3] The dish often served in western Chinese restaurants as 'Crispy Seaweed' is not seaweed but cabbage that has been dried and then fried.[4] Contents 1 Distribution 2 Nutrition and uses 3 Common edible seaweeds 3.1 Red algae (Rhodophyta) 3.2 Green algae 3.3 Brown algae (Phaeophyceae) 3.3.1 Kelp (Laminariales) 3.3.2 Fucales 3.3.3 Ectocarpales 4 See also 5 References 6 External links Distribution Seaweeds are used extensively as food in coastal cuisines around the world. Seaweed has been a part of diets in China, Japan, and Korea since prehistoric times.[5] Seaweed is also consumed in many traditional European societies, in Iceland and western Norway, the Atlantic coast of France, northern and western Ireland, Wales and some coastal parts of South West England,[6] as well as Nova Scotia and Newfoundland.
    [Show full text]
  • The Valorisation of Sargassum from Beach Inundations
    Journal of Marine Science and Engineering Review Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations John J. Milledge * and Patricia J. Harvey Algae Biotechnology Research Group, School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-0208-331-8871 Academic Editor: Magnus Wahlberg Received: 12 August 2016; Accepted: 7 September 2016; Published: 13 September 2016 Abstract: In recent years there have been massive inundations of pelagic Sargassum, known as golden tides, on the beaches of the Caribbean, Gulf of Mexico, and West Africa, causing considerable damage to the local economy and environment. Commercial exploration of this biomass for food, fuel, and pharmaceutical products could fund clean-up and offset the economic impact of these golden tides. This paper reviews the potential uses and obstacles for exploitation of pelagic Sargassum. Although Sargassum has considerable potential as a source of biochemicals, feed, food, fertiliser, and fuel, variable and undefined composition together with the possible presence of marine pollutants may make golden tides unsuitable for food, nutraceuticals, and pharmaceuticals and limit their use in feed and fertilisers. Discontinuous and unreliable supply of Sargassum also presents considerable challenges. Low-cost methods of preservation such as solar drying and ensiling may address the problem of discontinuity. The use of processes that can handle a variety of biological and waste feedstocks in addition to Sargassum is a solution to unreliable supply, and anaerobic digestion for the production of biogas is one such process.
    [Show full text]
  • INTERNATIONAL JOURNAL of ENVIRONMENTAL SCIENCE and ENGINEERING (IJESE) Vol
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND ENGINEERING (IJESE) Vol. 6: 47 - 57 (2015) http://www.pvamu.edu/research/activeresearch/researchcenters/texged/ international-journal Prairie View A&M University, Texas, USA Variation in taxonomical position and biofertilizing efficiency of some seaweed on germination of Vigna unguiculata (L) Mona M. Ismail1* and Shimaa M. El-Shafay2 1-Marine Environmental division, National Institute of Oceanography and Fisheries, 21556 Alexandria, Egypt 2- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt. ARTICLE INFO ABSTRACT Article History In the present investigation, the effect of seaweeds liquid Received: July 8 2015 fertilizer (SLF) prepared from fresh and dry seaweeds on Accepted: Aug. 9 2015 Available online: March 2016 different growth parameters of Vigna unguiculata (L) were _________________ determined. The maximum root length, shoot length, number of Keywords: lateral root branches, seed weight and percentage of seed Biochemical composition germination were observed in treatment with Sargassum vulgare Germination (Phayophyta), Laurencia obtuse (Rhodophyta) and Caulerpa Growth parameters Seaweed Liquid Fertilizer racemosa (Chlorophyta) in both fresh and dry extract of SLF. Vigna unguiculata. Phenols, protein, carbohydrates, nitrogen and phosphorus were determined in Sargassum vulgare, Laurencia obtuse and Caulerpa racemosa. The highest protein and nitrogen content were recorded in Laurencia obtuse however, phenols and carbohydrates found to be maximum in Caulerpa racemosa. 1. INTRODUCTION Seaweeds are the macroscopic marine algae found attached to the bottom in relatively shallow coastal waters. They grow in the intertidal, shallow and deep sea areas up to 180 meter depth and also in estuaries and backwaters on the solid substrate such as rocks, dead corals and pebbles.
    [Show full text]
  • Bull Kelp, Nereocystis Luetkeana, Abundance in Van Damme Bay, Mendocino County, California
    Bull kelp, Nereocystis luetkeana, abundance in Van Damme Bay, Mendocino County, California Item Type monograph Authors Barns, Allison; Kalvass, Peter Publisher California Department of Fish and Game, Marine Resources Division Download date 06/10/2021 14:12:56 Link to Item http://hdl.handle.net/1834/18330 State ofCalifornia The Resources Agency DEPARTMENT OF FISH AND GAME BULL KELP, NEREOCYSTIS LUETKEANA, ABUNDANCE IN VAN DAMME BAY, MENDOCINO COUNTY, CALIFORNIA by ALLISON BARNS and PETER KALVASS MARINE RESOURCES DIVISION Administrative Report No. 93-6 1993 Bull Kelp, Nereocystis luetkeana, Abundance in Van Damme Bay, Mendocino County, California1 by Allison Barns2 and Peter Kalvass3 ABSTRACT Size and density data were collected for Nereocystis luetkeana sporophytes from kelp beds in Van Damme Bay, Mendocino County during May, June and July 1990. Length and weight measurements were made on individual plants from representative size groups collected from depths of 6.1 m and 12.2 m. Mean sporophyte weight was 268 g (SD 393 g), while mean stipe length was 214 cm (SD 275 cm). Densities were determined separately for those plants which had reached the surface and for all plants within the water column. Sixty­ five 12.7 m2 surface quadrats yielded mean surface densities of 2.2 (SD 1.5) and 2.7 plants/m2 (SD 1.3) in June and July, respectively. Individual plants were counted within 42 1x5 m plots along benthic transect lines yielding average densities of 2.7 (SD 4.5) and 5.2 plants/m2 (SD 3.0) in May and July, respectively. Combined density and size data from July 1990 and kelp bed area estimates from fall 1988 for Van Damme Bay yielded a biomass estimate of 640 metric tons distributed over 45.7 hectares.
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Spiral wrack (Fucus spiralis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1337]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2008. Fucus spiralis Spiral wrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1337.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Spiral wrack (Fucus spiralis) - Marine Life Information Network See online review for distribution map Detail of Fucus spiralis fronds. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS).
    [Show full text]
  • The Effect of Sargassum Angustifolium Ethanol Extract on Cadmium Chloride-Induced Hypertension in Rat
    Research Journal of Pharmacognosy (RJP) 8(1), 2021: 81-89 Received: 31 Oct 2020 Accepted: 17 Dec 2020 Published online: 19 Dec 2020 DOI: 10.22127/RJP.2020.255203.1637 Original article The Effect of Sargassum angustifolium Ethanol Extract on Cadmium Chloride-Induced Hypertension in Rat Leila Safaeian1* , Afsaneh Yegdaneh2, Masoud Mobasherian1 1Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. 2Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. Abstract Background and objectives: Sargassum angustifolium is a brown alga in southwestern coastline of Persian Gulf. Regarding the presence of various bioactive compounds and evidence of antihypertensive effects in other species of Sargassum, we evaluated the effect of S. angustifolium ethanol extract in CdCl2-induced hypertension in Wistar rats. Methods: Alga extract was prepared by maceration method using 70% ethanol and assessed for total phenolics and salt content. CdCl2 (1.5 mg/kg/day) was administered intraperitoneally to the rats for two weeks. Treatment groups received S. angustifolium extract (20, 40 and 80 mg/kg) or nifedipine (10 mg/kg) orally and simultaneously were given CdCl2 for two weeks. Systolic blood pressure (SBP) and heart rate were measured using tail-cuff method. Total antioxidant capacity, urea, creatinine, electrolytes including sodium, potassium, calcium and chloride were estimated in blood samples. The weight and histopathology of kidney tissues were also evaluated. Results: The content of total phenolic as gallic acid equivalent and the salt as NaCl was 67.42 ± 9.5 mg/g and 6.9 g/100 g in dried ethanol extract, respectively.
    [Show full text]
  • Division: Ochrophyta- 16,999 Species Order Laminariales: Class: Phaeophyceae – 2,060 Species 1
    4/28/2015 Division: Ochrophyta- 16,999 species Order Laminariales: Class: Phaeophyceae – 2,060 species 1. Life History and Reproduction Order: 6. Laminariales- 148 species - Saxicolous - Sporangia always unilocular 2. Macrothallus Construction: - Most have sieve cells/elements - Pheromone released by female gametes lamoxirene Genus: Macrocystis 3. Growth Nereocystis Pterogophora Egregia Postelsia Alaria 2 14 Microscopic gametophytes Life History of Laminariales Diplohaplontic Alternation of Generations: organism having a separate multicellular diploid sporophyte and haploid gametophyte stage 3 4 1 4/28/2015 General Morphology: All baby kelps look alike 6 Intercalary growth Meristodermal growth Meristoderm/outer cortex – outermost cells (similar to cambia in land plants) Inner cortex – unpigmented cells Medulla – contains specialized cells (sieve elements/hyphae) Meristodermal growth gives thallus girth (mostly) “transition zone” Periclinal vs. Anticlinal cell division: • Periclinal = cell division parallel to the plane of the meristoderm girth •Anticlinal = cell division • Growth in both directions away from meristem • Usually between stipe and blade (or blade and pneumatocyst) perpendicular to the plane of the 7 meristoderm height 8 2 4/28/2015 Phaeophyceae Morphology of intercellular connections Anticlinal Pattern of cell division perpendicular to surface of algae. Only alga to transport sugar/photosynthate in sieve elements Periclinal Cell division parallel to surface of plant. Plasmodesmata = connections between adjacent cells,
    [Show full text]
  • Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
    Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale
    [Show full text]