Laser Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Laser Telescope Laser Telescope Program Type: Demonstration (best Audience Type: Grade 6–12 for museum educators and science teachers with specialized equipment) Description: Students use lenses and mirrors to understand how light travels through reflecting and refracting telescopes. Topics: Astronomy, light, optics, lens, mirrors. Process Skills Focus: Critical thinking, observing, design. LEARNING OBJECTIVES For Next Generation Science Standards alignment, see end of outline. • Scientists use telescopes to observe distant objects such as planets. • Engineers design telescopes to collect and focus light. • There are two primary kinds of telescopes: reflecting and refracting. TIME REQUIRED Advance Prep Set Up Activity Clean Up 15 minutes 10 minutes 15 minutes 10 minutes SITE REQUIREMENTS • Area with minimal sources of outside light • Access to at least one power outlet • Access to a table Laser Telescope 1 Lenses on the Sky OMSI 2017 PROGRAM FORMAT Segment Format Time Introduction Large group discussion 3 min Laser Telescope Instructor-led activity 10 min Wrap-Up Large group discussion 10 min SUPPLIES Permanent Supplies Amount Notes Laser box with five lasers 1 Arbor Scientific sells a “Laser Ray Box and Lenses” including small lenses Print out of the planet image 1 Masking tape 1 Small concave lens* (8 cm long, 2.5 1 cm wide, 2 cm tall) Small convex lens* (8 cm long, 2.5 1 cm wide, 2 cm tall) Large convex lens* (14.5 cm long, 4 1 cm wide, 2.5 cm tall) Large curved standing rectangular 1 mirror* (15 cm long, 5 cm tall) Small, flat standing rectangular 1 mirror* (6.5 cm tall, 2 cm wide) Reflecting Telescope template 1 At the end of the document Refracting Telescope template 1 At the end of the document *The sizes included are for the lenses and mirrors that we use at OMSI (see photo below). The exact sizes of the lenses and mirrors are not important, but their relative sizes and focal lengths are. You may have to experiment with the lenses and mirrors available to you to ensure that you can create the proper effects illustrated in the activity description. Photo from left to right: large mirror, large convex mirror, small mirror, small concave lens, and small convex lens. Laser Telescope 2 Lenses on the Sky OMSI 2017 ADVANCE PREPARATION • Print the Reflecting Telescope template and Refracting Telescope template on 11 × 17” pieces of paper (if possible). • Familiarize yourself with the lenses and mirrors. Be comfortable assembling the lenses and mirrors to make sure you can make both a reflecting and refracting telescope design. • Print out the planet on cardstock and cut off the extra paper around the black line. SET UP • Set up the table in an area that is as dark as possible. • Place the Refracting Telescope template on the table. • Plug in the laser box and turn it on. Set the lasers to five rays. • Position the laser box so the light appears to come from the stars printed on the template. The rays should be visible all the way to the observer’s eye printed on the template. • Tape the planet printout onto the top of the laser box. This helps to reduce the risk of people looking directly into the lasers. It also keeps little hands from touching the laser box button and switch. • Take out the converging (convex) lenses, both big and small, and the diverging (concave) lens. Keep all other lenses out of sight to avoid potential distraction. • Keep the Reflecting Telescope template and mirrors close at hand. INTRODUCTION 3 minutes Let students speculate before offering answers to any questions. The answers given are provided primarily for the instructor’s benefit. Suggested script is shaded. Important points or questions are in bold. Possible answers are shown in italics. Would you like to build a telescope? Yes! Why do we make telescopes? To look at the sky. Laser Telescope 3 Lenses on the Sky OMSI 2017 Telescopes make it possible to study distant objects such as planets, stars, and galaxies. They’re what help us understand the universe. They’ve been used for hundreds of years, and engineers are always looking to design bigger and better telescopes to help us study space. Would you like to explore how a telescope works and be a telescope engineer with me? SAFETY PRECAUTION: Do not look directly into the lasers. Lasers can damage eyes. Set up the demonstration so that the lasers are facing away from people’s eyes, preferably towards a wall to limit opportunities to unintentionally look into the lasers. INSTRUCTOR-LED Laser Telescope ACTIVITY 10 minutes We’ll start by investigating a type of telescope that’s been around for hundreds of years. It’s made of lenses. Where else have you seen lenses? Glasses. Cameras. Yes, just like your glasses or the inside of a camera. Scientists such as Galileo Galilei used this type of telescope—called a “refracting telescope”—to be the first people to observe our own Moon with a telescope. [Pick up the concave and convex lenses and show them to the visitor or student.] What happens to the light when it passes through these lenses? Here, you can experiment. Guide visitors/students as they hold different lenses in front of the laser’s rays. Laser Telescope 4 Lenses on the Sky OMSI 2017 With the convex lens: This one is called a convex lens. Look, it focuses light by bringing it together at one point. Then, the light spreads out again. With the concave lens: What does the concave lens do? It’s con-cave because it goes in like a cave. Yes, it spreads the light out. Now, let’s imagine this laser light is the light from the distant planet Jupiter. Have you ever seen Jupiter with your naked eyes? Yes. No. You probably have, but it just looks like a dot in the sky like a star. That’s because only a little bit of the light is going in our eyes, similar to how only one or two beams of laser light are going into this person’s eye. [Point to the eye on the template.] To be able to see the detail on the planet, we need to be able to collect and focus more of the light into our eye. That’s what the telescope does. See if you can use two of these lenses to collect and focus more of Jupiter’s light (the lasers) into our observer’s eye. Remember that light rays must be parallel to one another in order for us to see anything with our eyeballs. Light at an angle will looked warped like a fun-house mirror! Let visitors/students try different combinations. Make sure that they remember that the lasers need to be parallel when they hit the eye. If they seem stuck, give them hints about moving the lenses closer and farther apart. There are two ways for visitors to successfully complete this challenge: 1. Use the large convex lens to collect the light, then use the small convex lens to straighten the light out again. For this to work, the small lens must be past the focal point of the large lens. Laser Telescope 5 Lenses on the Sky OMSI 2017 When they figure out this option: Nice job! This is how Galileo’s telescope worked. Note one thing, though. [Cover up the laser closest to you.] What happens to the light when it goes through the telescope? It gets turned upside down. Right, the image is reversed. Now, try with the small concave lens to see if you can design a refracting telescope that keeps the image right side up. 2. Use the large convex lens to collect the light, then use the small concave lens to straighten the light out again. For this to work, the small lens must be before the focal point of the large lens. When they figure out this option: Wow, you just designed the second type of telescope made to look at the sky. Laser Telescope 6 Lenses on the Sky OMSI 2017 Even though reflecting telescopes allowed people to see stars and planets in more detail than before, they have their challenges. Why do you think the problems with this telescope design might be? It’s hard to make and mount really big glass lenses (they’re heavy!). Would you like to now try assembling a different type of telescope? This style is more modern, and it uses mirrors rather than lenses. The world’s largest telescopes, like those on mountaintops and in space, are often this style—they are called “reflecting telescopes.” Place the Reflecting Telescope template on the table with the two mirrors and two small lenses. Position the laser box so the light appears to come from the stars printed on the template. Notice that with this type of telescope we look into the telescope from the side. Now, can you use mirrors to send Jupiter’s light (the laser beams) into the observer’s eye? Remember that light rays must be parallel to one another in order for us to see anything with our eyeballs! To solve this challenge, visitors need to arrange the large mirror, small mirror, and small convex lens like this: Visitors often struggle with how to arrange the mirrors to get the light into the person’s eye. If needed, give them Laser Telescope 7 Lenses on the Sky OMSI 2017 hints by encouraging them to try different positions and placements for the small mirror. Also, remind them how they made the light become parallel again in the refracting telescope. They need to use a lens at the eyepiece to straighten out the lasers.
Recommended publications
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • The Telescope Lenses, Which Turned the Image Upside Down but Improved the Clarity Dramatically
    The image produced by the first refracting telescope was Name right side up. However, the clarity of the image was less than ideal. Johannes Kepler worked to improve the image produced by the refracting telescope. He used two convex The Telescope lenses, which turned the image upside down but improved the clarity dramatically. His design soon became popular By Phyllis Naegeli and remains in use today. Do you like to lie on your back and gaze One problem associated with the refracting telescope was at the stars? What constellations can you the rainbow halo it produced around the object in view. Sir name? Have you ever used a telescope to Isaac Newton did not care for the halo produced by the get a closer look at the universe? Do you refracting telescope. He set out to improve the design, know how a telescope works? which led him to work on the reflecting telescope. The design used a curved mirror to collect light from an object. A telescope is used to see distant objects A secondary flat mirror reflected the image to the side of up close. There are two basic types of the tube where it is viewed through an eyepiece. Newton telescopes - the refracting telescope and also used a shorter, fatter tube allowing magnification to be the reflecting telescope. Each will help increased by using larger mirrors. Newton's design you to see the planets, moon, or stars. Both eliminated the rainbow halo produced by the convex lenses use a tube and have an eyepiece to focus the image for you of the refracting telescope.
    [Show full text]
  • Depth-Aware Blending of Smoothed Images for Bokeh Effect Generation
    1 Depth-aware Blending of Smoothed Images for Bokeh Effect Generation Saikat Duttaa,∗∗ aIndian Institute of Technology Madras, Chennai, PIN-600036, India ABSTRACT Bokeh effect is used in photography to capture images where the closer objects look sharp and every- thing else stays out-of-focus. Bokeh photos are generally captured using Single Lens Reflex cameras using shallow depth-of-field. Most of the modern smartphones can take bokeh images by leveraging dual rear cameras or a good auto-focus hardware. However, for smartphones with single-rear camera without a good auto-focus hardware, we have to rely on software to generate bokeh images. This kind of system is also useful to generate bokeh effect in already captured images. In this paper, an end-to-end deep learning framework is proposed to generate high-quality bokeh effect from images. The original image and different versions of smoothed images are blended to generate Bokeh effect with the help of a monocular depth estimation network. The proposed approach is compared against a saliency detection based baseline and a number of approaches proposed in AIM 2019 Challenge on Bokeh Effect Synthesis. Extensive experiments are shown in order to understand different parts of the proposed algorithm. The network is lightweight and can process an HD image in 0.03 seconds. This approach ranked second in AIM 2019 Bokeh effect challenge-Perceptual Track. 1. Introduction tant problem in Computer Vision and has gained attention re- cently. Most of the existing approaches(Shen et al., 2016; Wad- Depth-of-field effect or Bokeh effect is often used in photog- hwa et al., 2018; Xu et al., 2018) work on human portraits by raphy to generate aesthetic pictures.
    [Show full text]
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • The Reflecting Telescope
    The Reflecting Telescope Lens telescopes exist since 1609 when the Dutch maker of The optical properties data of the AstroMedia* reflecting tel- spectacles, Jan Lippershey, sold the first telescopes, then as escope roughly correspond to those of the first instrument a curiosity, to his astonished customers. It was made out of a built by Newton. The mirror has a focal length f=450mm (”f” concave and a convex lens, produced an upright standing from the Latin ”focus” is the abbreviation of focal length). It’s image and had a 3 1/2 times magnification. Galileo Galilei curve is spherical, i.e. is has the same round surface as a (1564-1642) improved on this invention and was the first to globe. make astronomical observations with it. Today almost A spherical concave mirror has one disadvantage: the all lens telescopes are built according to the prin- light rays reflected from the edge meet a little nearer ciples of Johannes Kepler (1571-1630). His tel- to the mirror than those reflected from the centre, escope, based on two convex lenses, produced causing a slight focus distortion. However, since an upside down but much bigger and better this distortion is is not grave and such mirrors focused image which of course for observing are relatively easy to grind, they are neverthe- the heavens are the most important factors. less used in smaller telescopes. In telescopes Building larger telescopes however with larger openings and stronger mag- brings two problems with it: Firstly, nification mirrors with parabolic curves in a lens the light rays are broken, are used.
    [Show full text]
  • Telescopes and Binoculars
    Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet.
    [Show full text]
  • Find Your Telescope. Your Find Find Yourself
    FIND YOUR TELESCOPE. FIND YOURSELF. FIND ® 2008 PRODUCT CATALOG WWW.MEADE.COM TABLE OF CONTENTS TELESCOPE SECTIONS ETX ® Series 2 LightBridge ™ (Truss-Tube Dobsonians) 20 LXD75 ™ Series 30 LX90-ACF ™ Series 50 LX200-ACF ™ Series 62 LX400-ACF ™ Series 78 Max Mount™ 88 Series 5000 ™ ED APO Refractors 100 A and DS-2000 Series 108 EXHIBITS 1 - AutoStar® 13 2 - AutoAlign ™ with SmartFinder™ 15 3 - Optical Systems 45 FIND YOUR TELESCOPE. 4 - Aperture 57 5 - UHTC™ 68 FIND YOURSEL F. 6 - Slew Speed 69 7 - AutoStar® II 86 8 - Oversized Primary Mirrors 87 9 - Advanced Pointing and Tracking 92 10 - Electronic Focus and Collimation 93 ACCESSORIES Imagers (LPI,™ DSI, DSI II) 116 Series 5000 ™ Eyepieces 130 Series 4000 ™ Eyepieces 132 Series 4000 ™ Filters 134 Accessory Kits 136 Imaging Accessories 138 Miscellaneous Accessories 140 Meade Optical Advantage 128 Meade 4M Community 124 Astrophotography Index/Information 145 ©2007 MEADE INSTRUMENTS CORPORATION .01 RECRUIT .02 ENTHUSIAST .03 HOT ShOT .04 FANatIC Starting out right Going big on a budget Budding astrophotographer Going deeper .05 MASTER .06 GURU .07 SPECIALIST .08 ECONOMIST Expert astronomer Dedicated astronomer Wide field views & images On a budget F IND Y OURSEL F F IND YOUR TELESCOPE ® ™ ™ .01 ETX .02 LIGHTBRIDGE™ .03 LXD75 .04 LX90-ACF PG. 2-19 PG. 20-29 PG.30-43 PG. 50-61 ™ ™ ™ .05 LX200-ACF .06 LX400-ACF .07 SERIES 5000™ ED APO .08 A/DS-2000 SERIES PG. 78-99 PG. 100-105 PG. 108-115 PG. 62-76 F IND Y OURSEL F Astronomy is for everyone. That’s not to say everyone will become a serious comet hunter or astrophotographer.
    [Show full text]
  • Solar System Solar System
    Delta Science Reader SolarSolar SystemSystem Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. OVERVIEW Students will: discover facts about the Solar System In the Delta Science Reader Solar System, students take a tour of the Sun and the explore the planets and other objects in the planets. Other space objects such as dwarf Solar System planets, comets, asteroids, and meteoroids discuss the function of a table of contents, are explored. Students read about the headings, and a glossary rotation and revolution of the planets and interpret photographs and graphics to the causes of night and day, seasonal answer questions changes, and the phases of the Moon. The book describes the work of a planetary complete a KWL chart geologist. In addition, students discover organize information in a variety of ways how telescopes work. delta science modules Solar System 119 © Delta Education LLC. All rights reserved.
    [Show full text]
  • First Telescope Purchase
    Recommendation Report: First Telescope Purchase Purchasing a telescope can be very confusing for a person who is new to astronomy. This reports provides a comparison of entry-level telescopes for the amateur astronomer and recommends a specific type of telescope for the typical beginning astronomer. This report will focus on different types of telescopes, and not on specific brands. In addition to comparing several different types of telescopes, this report also compares different telescope mounts. Note: This report was prepared for the Austin Telescope Society, which is a non-profit organization dedicated to the enjoyment of astronomy and the education of the public about astronomy. Many people interested in astronomy waste money on a telescope of poor quality. A telescope in a department store may advertise that it can magnify several hundred times; however, the user is often disappointed when the image is dim, shaky, and hazy. To help avoid this confusion, it is important that the beginning astronomer understand the advantages and disadvantages of various types of telescopes. It is vitally important that the telescope have high quality optics and a sturdy mount. No extra gadgets and frills will help a telescope that has poor optics. Definition of Terms Before the actual comparison report, it is vital that several common terms are defined. The following terms must be understood before proceeding with this comparison: • Alt-azimuth mount. A type of telescope mount that moves in two directions: altitude and azimuth. This is the type of motion best illustrated by a cannon. It can be moved up or down, or rotated left or right.
    [Show full text]
  • The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer
    Online Modules from The University of Chicago Multiwavelength Astronomy: The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer http://ecuip.lib.uchicago.edu/multiwavelength-astronomy/optical/history/index.html Subject(s): Astronomy/Space Science Grade(s) Level: 9-12 Duration: One Class Period Objectives: As a result of reading The History of Optical Astronomy, students will be able to • Discriminate between reflecting and refracting telescope designs and describe the differences between them; • Explain how a telescope focuses light; • Articulate the limitations of ground-based telescopes and propose solutions to these limitations; • Identify important astronomical discoveries made and personages working in the optical regime; • Discuss examples of problem-solving and creativity in astronomy. Materials: Internet connection and browser for displaying the lesson. Pre-requisites: Students should be familiar with the Electromagnetic Spectrum. Before using the lesson, students should familiarize themselves with all vocabulary terms. Procedures: Students will read the lesson and answer assessment questions (listed under evaluation). Introduction: In reading this lesson, you will meet important individuals in the History of Optical Astronomy. They are: Caroline Lucretia Herschel was a German-born British astronomer and the sister of astronomer Sir William Herschel. She is the discoverer of several comets, in particular, the periodic comet 35P/Herschel-Rigollet, which bears her name. Lyman Strong Spitzer, Jr. was an American theoretical physicist, astronomer and mountaineer. He carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer is the namesake of NASA's Spitzer Space Telescope. 1 Online Modules from The University of Chicago William Herschel was an astronomer and composer.
    [Show full text]
  • Tools of Astronomy Notes Light Is a Form of Electromagnetic Radiation
    Name_________________________________________Date____________________Period__ Tools of Astronomy Notes Light is a form of electromagnetic radiation. Scientists call the light you can see visible light. If you shine white light through a prism, the light spreads out to make a range of different colors with different wavelengths, called a spectrum. The electromagnetic spectrum includes the entire range of radio waves, microwaves infrared, visible light, ultraviolet radiation, X-rays, and gamma rays. Telescopes are instruments that collect and focus light and other forms of electromagnetic radiation. A telescope that uses lenses or mirrors to collect and focus visible light is called an optical telescope. The two major types of optical telescopes are refracting telescopes and reflecting telescopes. Telescopes used to detect radio waves from objects in space are called radio telescopes. Most radio telescopes have curved, reflecting surfaces. As with optical telescopes, the larger a radio telescope is, the more radio waves it can collect. Radio telescopes can be used day or night. They can also be used during cloudy weather because radio waves can pass through clouds. Most ultraviolet radiation, X-rays, and gamma rays are blocked by Earth’s atmosphere. To detect these wavelengths, astronomers have placed the Hubble space telescope in space. Some space telescopes also detect visible light or infrared radiation. The Earth’s atmosphere interferes with of these forms of radiation. By placing a telescope in space astronomers get a clearer picture of the universe. Spectroscopes are another useful tool for astronomers. A spectroscope breaks the light from a star into a spectrum. Each element has a unique spectrum. This allows astronomers to compare the spectrum of a star to known elements.
    [Show full text]
  • The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference
    Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Establishment of an Interference Temperature ) Metric to Quantify and Manage Interference ) ET Docket No. 03-237 and to Expand Available Unlicensed ) Operation in Certain Fixed, Mobile and ) Satellite Frequency Bands ) COMMENTS OF THE NATIONAL ACADEMY OF SCIENCES’ COMMITTEE ON RADIO FREQUENCIES The National Academy of Sciences, through the National Research Council's Committee on Radio Frequencies (hereinafter, CORF1), hereby submits its comments in response to the Notice of Inquiry and Notice of Proposed Rule Making (NPRM), released November 28, 2003, in the above-captioned docket, seeking comments on a new “interference temperature” metric for quantifying and managing interference. Herein, CORF supports the Commission’s general intent of quantifying and managing interference in a more precise fashion. However, in light of the tremendously weak signals observed by passive scientific users of the spectrum, and the long integration times used to make such observations, the use of the interference temperature metric cannot as a practical matter provide the protection needed for scientific observation. Accordingly, CORF strongly recommends that an interference temperature metric not be used in bands allocated for passive scientific observation, such as bands allocated to the Radio Astronomy Service (RAS) or to the Earth Exploration Satellite Service (EESS). I. Introduction: The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference CORF has a substantial interest in this proceeding, as it represents the interests of the scientific users of the radio spectrum, including users of the RAS and the EESS bands.
    [Show full text]