Autonomous Living Machines
Robotics and Autonomous Systems ELSEVIER Robotics and Autonomous Systems 15 (1995) 143-169 Living Machines Brosl Hasslacher a,*, Mark W. Tilden h a Theoretical Division, Los Alarnos National Laboratory, Los Alamos, NM 87545, USA t~ Biophysics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Abstract Our aim is to sketch the boundaries of a parallel track in the evolution of robotic forms that is radically different from any previously attempted. To do this we will first describe the motivation for doing so and then the strategy for achieving it. Along the way, it will become clear that the machines we design and build are not robots in any traditional sense. They are not machines designed to perform a set of goal-oriented tasks, or work, but rather to express modes of survivalist behavior: the survival of a mobile autonomous machine in an a priori unknown and possibly hostile environment. We use no notion of conventional "intelligence" in our designs, although we suspect some strange form of that may come later. Our topic is survival-oriented machines, and it turns out that intelligence in any sophisticated form is unnecessary for this concept. For such machines, if life is provisionally defined as that which moves for its own purposes, then we are dealing with living machines and how to evolve them. We call these machines biomorphs (BiOlogical MORPHology), a form of parallel life. Keywords: Adaptive minimal machines; Robobiology; Nanotechnology 1. Introduction to hiomorphic machines scale of the cell, using the cells' ingredients, power sources and ATP engines. Doing that would not One difference between biological carbon recover ceil-centered biology, but manufacture based life forms and the mobile survival machines novel, potentially useful life forms that have ap- we will discuss are materials platforms, which can parently escaped the normal path of evolution.
[Show full text]