Interview with Mark Tilden (Photo Courtesy of Wowwee Ltd.) Wowwee Courtesy of (Photo

Total Page:16

File Type:pdf, Size:1020Kb

Interview with Mark Tilden (Photo Courtesy of Wowwee Ltd.) Wowwee Courtesy of (Photo APPENDIX ■ ■ ■ Interview with Mark Tilden (Photo courtesy of WowWee Ltd.) WowWee courtesy of (Photo Figure A-1. Here’s Mark Tilden at the 2005 New York Toy Fair. I have used excerpts from this interview throughout the book where applicable, but I also wanted to print it in its entirety. Some things, like Mark’s wonderful commentary on Hong Kong cuisine and his off-the-cuff comments on everything and anything, just didn’t fit into the structure of The Robosapien Companion, but they will be of interest to anyone who is curious about or admires the man behind the robots. 291 292 APPENDIX ■ INTERVIEW WITH MARK TILDEN This interview was conducted on February 13, 2005, at Wolfgang’s Steakhouse in the Murray Hill neighborhood of midtown Manhattan, in New York City. I recorded it with an Olympus DM-10 voice recorder. The dining room at Wolfgang’s is known for its historic tiled ceilings designed by Raphael Guastavino. They are beautiful, but they are an acoustic night- mare! Fortunately, my trusty DM-10 was up to the task. I have edited this only very lightly, mainly breaks where we spoke to waiters and so on. Also note that during a portion of this interview, Mark is showing me a slideshow on a little portable LCD screen. Most of the pictures from the slideshow ended up in Chapter 3. But if during the interview he seems to be making a reference, chances are it is to something on the screen. Without further ado, here is the full text of the interview. ■ ■ ■ SAMANS: Tell me about your work at Los Alamos… TILDEN: When I went to Los Alamos National Labs, basically I was brought in literally under the genius clause, which is kind of nice. I didn’t have a PhD at the time. So what happened is that I get down there and I basically say two things: I don’t have the credentials, so I could have said “Hi, you have to believe me.” <Laughs> So I promised that I would only ever say things if I had something that actually worked. Boy did that do me both good and bad. Good: I was able to build things successfully that are now still working in museums and various places across the country. Bad, because there are an awful lot of people, primarily roboticists, who have their entire reputation based entirely upon virtual presence. “Oh one day the robots will basically take over. Do you have any evidence? Well no, but my toaster is hostile!” SAMANS: Two quotes of yours really stood out to me. One, you said they have all these great robots that work great in the computers and they are all based on sort of virtual, weightless rope... TILDEN: That was a beautiful detail of my original history in America. I worked for approxi- mately 30 agencies (DARPA, NASA, etc.) and there’s a great book called Virtual—something like Virtual Minds or something like that—which has a beautiful chronology. Basically what happened when I moved down to New Mexico, I was thinking that I would be able to get in tight with the artificial life guys. Because obviously that’s what I was doing: I was building self- evolving mechanisms that are capable of doing real work in the real world. But I wasn’t playing by their rules. That’s just it. As soon as you start measuring against their stuff, they suddenly realized: “OK, well, we can’t support you, because unfortunately you are invalidating all of our theory.” SAMANS: Which brings me to the second funny quote I remembered.You described a robot you built out of like three broken Walkmans, that beat a robot at a sumo competition that some- one had spent something like 10 years working on. TILDEN: The stories just went on. They would show up, and there would be the MIT team: 20 kids and one robot. And then there was the JPL [Jet Propulsion Laboratories, the leading U.S. center for robotic exploration of the solar system ] team, and there was oh, University of APPENDIX ■ INTERVIEW WITH MARK TILDEN 293 Wisconsin, Washington, Delaware, Carnegie Mellon, and there is uh, Los Alamos National labs—hi! For example, there was a big thing JPL put on back in 1998. We were at this major JPL con- ference, and it was exactly like that. Everyone else shows up with like 20 people and one robot. I always showed up with one roboticist and 20 robots. Literally I would come out with this nonstop flea circus. Some of these things people still remember: “I remember when you put a robot on an overhead projector and it kept moving the entire time when you were talking and you never had to worry about it falling off!” Yeah, of course! Doesn’t your robot work com- pletely autonomously and independently regardless of whether or not you are around to look at it? No? SAMANS: <Laughing> Right, they start looking to all their buddies on their team… TILDEN: <Laughing> That’s right, how many grad students do YOU have working on your machine? One of the things I talked about earlier on in my career: Wizard of Oz demonstrations. Stand back, don’t touch, and pay no attention to that cable leading behind the curtain. I am the great powerful roboticist of Oz. And there are an awful lot of great and powerful roboticists of Oz. Asimo, for example. You never see the whole picture, you see only the robot. You don’t see the guy over in the corner who is getting paid $23,000 a day. Asimo also comes with two guys who look after it, and I actually saw this happen in Tokyo. When Asimo starts to fall over, it is their job to throw themselves under the robot, because you’ve got $15 million worth of robot hitting the ground. So it’s gonna be either squishy Japanese people, or a broken robot toy. I can tell you one of the things I learned from the toy industry is that you can’t sell broken toys. SAMANS: Which is one of the coolest things about the Robosapien.You can really put that thing through the paces. TILDEN: Like you wouldn’t believe. It’s one of its hidden features that it actually has the ability... I mean you can kick the crap out of that thing, it can take a tumble down the stairs. The fifth major sell feature was this: for a seven-motor toy we have had less than a 0.03 percent return rate. That means one in every 340 robots sold actually had some sort of mechanical defect. SAMANS: Excellent. TILDEN: That’s astonishing! In [the] toy industry, normally there is always a 3 percent [return rate]—every standard radio-controlled toy that you see sold has an average of 3 percent to 50 percent return. Furby was a 33 percent return. You’ve got to remember, any toy that is returned, you have to sell two toys to recover the costs. Because a toy that is returned is not refunded from the money from the retailer, it is refunded by the money from the actual distributor—that is the person who actually owns the toy. The retailer just basically leases us the space to move our product. We own it. So the Robosapien was a big risk this year. And the reason that Hasbro got rid of [WowWee, formerly owned by Hasbro] was because of the Robosapien. Because they’d seen the problem that they’d had just with the Furby, with one motor, and this thing has seven? And you expect it’s going to be reliable? We’ve got some statistics for you... 294 APPENDIX ■ INTERVIEW WITH MARK TILDEN The thing was, that they didn’t know, they’d only ever seen conventional robots go out. The Robosapien is, and it’s really cool to look at the awards—and we just got our stats and data in and it’s fantastic. ■ ■ ■ TILDEN: Unfortunately, living in Hong Kong has taught me to basically be very scared. They eat things that you don’t even see on the Discovery Channel. There are some fish that are obvi- ously a lot happier at the bottom of the ocean. I’m talking about some pretty ugly-looking things. The thing is, they don’t eat the part you’d think they would. I was actually in Japan when they served me the head of a 600-pound tuna. So we’re talking about an eye the same size of one of these buns here. And you’re basically saying “Oh, wow, that’s... wonderful!” Because you know it’s some sort of honor, but I’m sorry, I just don’t know what part of the fish head to eat! You’re supposed to eat the cheeks, suck the retinas—thank you—I mean these are the sort of things they don’t put in the tour guides. Some sushi I like in China, but again you have to watch out what you are eating. You get a little bit of rice, and all of a sudden there’s this octopus tentacle right on top of it, and it’s a foot long! You can see the suckers. All I can think of, if I stuck a battery in it, would it come to life? The temptation is very high to give it a try. There are a couple restaurants in Hong Kong, what they do is they bring you out steamed fish, they bring you out this thing and there’s the head.
Recommended publications
  • RS Media User Manual
    A Fusion of technology and Personality User Manual North America Item No. 8061 | Ages 8+ CAUTION - ELECTRICAL TOY: NOT RECOMMENDED FOR CHILDREN UNDER 4 YEARS OF AGE. AS WITH ALL ELECTRICAL PRODUCTS, PRECAUTIONS SHOULD BE OBSERVED DURING HANDLING AND USE TO PREVENT ELECTRICAL SHOCK. INPUT: AC100-240V, 50/60HZ OUTPUT: DC 7.5V 3.1A COPYRIGHT INFORMATION RS Media™, Robosapien™, Robosapien™ V2, Roboreptile™, Robopet™, and Roboraptor™ are copyright and trademarked by Wowwee Ltd. Sun Microsystems and Java are registered trademarks of Sun Microsystems, Inc. All other copyrights are hereby acknowledged. sYsTeM RequIReMeNTs Minimum system requirements for running RS Media Editing Suite. Microsoft® Windows® XP SP2 or higher (English Edition) (Compatible with German, Spanish, French, and Italian Windows® XP SP2 or higher) PC with PIII 1.5GHz equivalent or higher processor 256 MB of system RAM 16 MB video card recommended 200 MB available hard disk space CD-ROM drive Supply of this product does not convey a license nor imply any right to distribute content created with this product in revenue-generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or other networks), other content distribution systems (pay-audio or audio-on- demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). An independent license for such use is required. For details, please visit http://mp3licensing.com. WELCOME Congratulations on choosing Rs Media™, the next generation of Robosapien technology and personality. RS Media is a complete multimedia robotic experience with the unique ability to be fully customized.
    [Show full text]
  • The Design of "Living" Biomech Machines: How Low Can One Go?
    The Design of "Living" Biomech Machines: How low can one go? VBUG 1.5 "WALKMAN" Single battery. 0.7Kg. metal/plastic construction. Unibody frame. 5 tactile, 2 visual sensors. Control Core: 8 transistor Nv. 4 tran. Nu, 22 tran. motor. Total: 32 transistors. Behaviors: - High speed walking convergence. - powerful enviro. adaptive abilities - strong, accurate phototaxis. - 3 gaits; stop, walk, dig. - backup/explore ability. Mark W. Tilden Physics Division, Los Alamos National Laboratory <[email protected]> 505/667-2902 July, 1997 "So... what you guys have done is find a way to get useful work out of non-linear dynamics?" - Dr. Bob Shelton, NASA. Abstract Following three years of study into experimental Nervous Net (Nv) control devices, various successes and several amusing failures have implied some general principles on the nature of capable control systems for autonomous machines and perhaps, we conjecture, even biological organisms. These systems are minimal, elegant, and, depending upon their implementation in a "creature" structure, astonishingly robust. Their only problem seems to be that as they are collections of non-linear asynchronous elements, only a very complex analysis can adequately extract and explain the emergent competency of their operation. On the other hand, this could imply a cheap, self-programing engineering technology for autonomous machines capable of performing unattended work for years at a time, on earth and in space. Discussion, background and examples are given. Introduction to Biomorphic Design A Biomorphic robot (from the Greek for "of a living form") is a self-contained mechanical device fashioned on the assumption that chaotic reaction, not predictive forward modeling, is appropriate and sufficient for sustained "survival" in unspecified and unstructured environments.
    [Show full text]
  • Solar Powered B.E.A.M) Bots Make Your Own Solar Powered Robot to Follow the Sun!
    SOLAR POWERED B.E.A.M) BOTS MAKE YOUR OWN SOLAR POWERED ROBOT TO FOLLOW THE SUN! ELECTRICAL, ELECTRONIC ENGINEERING AND ROBOTICS ENGINEERING FOR SECONDARY SCHOOL STUDENTS THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 710577 PROJECT DETAILS PROJECT ACRONYM STEM4YOU(th) PROJECT TITLE Promotion of STEM education by key scientific challenges and their impact on our life and career perspectives GRANT AGREEMENT 710577 START DATE 1 May 2016 THEME SWAFS / H2020 DELIVERABLE DETAILS WORK PACKAGE NO. AND TITLE WP5 – CONTENT CREATION, TOOLS AND LEARNING METHODOLOGY DEVELOPMENT DELIVERABLE NO. and TITLE D5.1 MULTIDISCIPLINARY COURSE- ENGINEERING SUB-COURSE NATURE OF DELIVERABLE AS PER R=Report DOW DISSEMINATION LEVEL AS PER PU=Public DOW VERSION FINAL DATE JULY 2018 AUTHORS EUGENIDES FOUNDATION THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 710577 / 2 INDEX INTRODUCTION ........................................................................................................................... 4 Activity 0-What is engineering? ............................................................................................. 5 Activity 1 - Identifying the problem (what is the engineering problem?) .......... 13 Activity 2 – Divide into sub-problems ............................................................................... 15 Activity 3 – Explore the science ..........................................................................................
    [Show full text]
  • Introducing a Robotics Club in Albania
    Introducing a Robotics Club in Albania by William Hunt Ryan McQuaid Jacob Sussman Elizabeth Tomko Sponsored by Harry Fultz Institute, Tirana, Albania Introducing a Robotics Club in Albania An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science by William Hunt, RBE Ryan McQuaid, ECE Jacob Sussman, RBE Elizabeth Tomko, RBE Date: 18 December 2014 Report submitted to: Professor Peter Christopher, Advisor This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Abstract This project established a robotics club at the Harry Fultz Institute Technical High School in Tirana, Albania. We worked with a group of 24 enthusiastic students, divided into six teams, each directed by a student mentor. Employing a strategy of self-directed learning, we helped the teams design and build low-cost robots, culminating in an official presentation to the school. We assessed outcomes by documenting participant perceptions of the educational activities. Student participants reported that they valued the experience and that they would continue to engage in robotics activities after we left the country. We recommend that the Harry Fultz Institute continue the robotics club, and that other Albanian schools begin their own robotics programs. iii Acknowledgements We express our sincere gratitude to the staff, faculty and students of the Harry Fultz Institute, especially Professor Enxhi Jaupi, whose direct involvement and support made this project a reality.
    [Show full text]
  • Tocsep05.Qxd 8/15/2005 5:11 PM Page 4
    Vol. 26 No. 9 Nuts & Volts CAPACITORS — The Family Tree September 2005 WWW.GiURUMELE.Hi2.RO WWW.RADiOSCAMATORUL.Hi2.RO Circle #154 on the Reader ServiceCircle Card. Cover.qxd 8/15/2005 6:03 PM Page 100 CoverInside.qxd 8/12/2005 5:14 PM Page 2 CircuitSpecialists.com CircuitSpecialists.com CircuitSpecialists.com Premier Repairing System w/Power Supply 2.9GHz RF Field Strength Analyzer Microprocessor controlled design that pro- Fantastic Low vides stability and precision of tempera- The 3290 is a high quality hand-held Price: ture and airflow settings during the rework RF Field Strength Analyzer with wide $1899.00! band reception ranging from 100kHz process. A full digital display of tempera- •WFM/NFM/AM/SSB modulated signals may ture and power source make everything to 2900MHz.The 3290 is a compact & be measured. clear to the user while the unit provides lightweight portable analyzer & is a •Signal Levels up to 160Channels can be vast flexibilty at the rework station with must for RF Technicians. Ideal for displayed simulaneously on the LCD the built-in power supply that provides 15V and 2A Item# CSI768 testing, installing & maintenance of •PLL tuning system for precise frequency of power. Hot air soldering and adjustment of tem- Mobile Telephone Comm systems, measurement and tuning Only Cellular Phones,Cordless phones, pag- •Built-in Frequency Counter perature are controlled by a micro chip and sensor $289.00! •LED Backlight LCD (192x192 dots) thus giving tremendous accuracy and reliability. ing systems, cable &Satellite TV as •All fuctions are menu selected. •Iron Output Voltage: 24V / 35W well as antenna installations.May also •RS232C with software for PC & printer be used to locate hidden cameras using •Temperature Range: 100-480°C / 212-896°F interface (Includes Antenna) NEW! •DC Power Supply: 15V / 2A RF transmissions.
    [Show full text]
  • Chapter 13 Fundamentals of Business
    Chapter 13 Marketing: Providing Value to Customers Learning Objectives 1) Define the terms marketing, marketing concept, and marketing strategy. 2) Outline the tasks involved in selecting a target market. 3) Identify the four Ps of the marketing mix. 4) Explain how to conduct marketing research. 5) Discuss various branding strategies and explain the benefits of packaging and labeling. 6) Describe the elements of the promotion mix 7) Explain how companies manage customer relationships. 8) Identify the advantages and disadvantages of social media marketing. Chapter 13 Download this book for free at: 283 http://hdl.handle.net/10919/70961 A Robot with Attitude Figure 43.1: Mark Tilden and his creation, Robosapien Mark Tilden used to build robots for NASA that ended up being destroyed on Mars, but after seven years of watching the results of his work meet violent ends thirty-six million miles from home, he decided to specialize in robots for earthlings. He left the space world for the toy world and teamed up with Wow Wee Toys Ltd. to create “Robosapien,” an intelligent robot with an attitude.304 The fourteen-inch-tall robot, which is operated by remote control, has great moves. In addition to walking forward, backward, and turning, he dances, raps, and gives karate chops. He can pick up small objects and even fling them across the room, and he does everything while grunting, belching, and emitting other “bodily” sounds. Robosapien gave Wow Wee Toys a good head start in the toy robot market: in the first five months, more than 1.5 million Robosapiens
    [Show full text]
  • Robosapien RS Media - the Champion of Robotic Toys Submitted By: Gizoo Thursday, 19 October 2006
    Robosapien RS Media - the champion of robotic toys Submitted by: Gizoo Thursday, 19 October 2006 With 67 different programmable movements, extensive speech responses and removable SD memory cards, and an editing package to modify its personality, the latest edition to the Robosapien family - Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) - definitely rules the roost. The Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) comes complete with a camera mounted to its head, which can be displayed through the 1.9" colour LCD screen on the robot's chest. Multimedia files can be downloaded to the Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) through the USB port, allowing the user to view pictures and video through the LCD screen. While body movements and the user's voice can be stored multi-talented robot, downloaded music files are enjoyed through its eleven watt stereo speakers. Available at Gizoo (http://www.gizoo.co.uk) for just £299.99, main features include: Colour LCD Screen Camera mounted on Robosapien RS Media's head Interacts with other WooWee robots including Roboreptile, Robosapien V2 and Roboraptor Store and edit body movements Record and store user's voice USB port Eleven watt stereo speakers and back mounted woofer 40MB Flash Memory The Robosapien RS Media's predecessor - Robosapien V2 (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienV2.htm) - is now available from Gizoo at only £99.95 - almost £90 off the RRP! ENDS For further information and images please contact: Amy Bath on 0115 914 9118 or email: [email protected] Notes to Editors For more information on the Robosapien RS Media, please visit Gizoo (http://www.gizoo.co.uk) Gizoo (http://www.gizoo.co.uk) Having operated a website dedicated to gadgets, gifts and gizmos since 2002, the successful e-tailer Page 1 re-launched as Gizoo (http://www.gizoo.co.uk) in August 2006 and serves approximately 500,000 customers.
    [Show full text]
  • Three Laws of Robotics
    Three Laws of Robotics From Wikipedia, the free encyclopedia The Three Laws of Robotics (often shortened to The Three Laws or Three Laws) are a set of rules devised by the science fiction author Isaac Asimov. The rules were introduced in his 1942 short story "Runaround", although they had been foreshadowed in a few earlier stories. The Three Laws are: 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm. 2. A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law. 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws. These form an organizing principle and unifying theme for Asimov's robotic-based fiction, appearing in his Robot series, the stories linked to it, and his Lucky Starr series of young-adult fiction. The Laws are incorporated into almost all of the positronic robots appearing in his fiction, and cannot be bypassed, being intended as a safety feature. Many of Asimov's robot-focused stories involve robots behaving in unusual and counter-intuitive ways as an unintended consequence of how the robot applies the Three Laws to the situation in which it finds itself. Other authors working in Asimov's fictional universe have adopted them and references, often parodic, appear throughout science fiction as well as in other genres. This cover of I, Robot illustrates the story "Runaround", the first to list all Three Laws of Robotics.
    [Show full text]
  • Unifying Undergraduate Artificial Intelligence Robotics: Layers Of
    Unifying Undergraduate Artificial Intelligence Robotics: Layers Of Abstraction Over Two Channels Frederick L. Crabbe Computer Science Department United States Naval Academy 572M Holloway Rd Stop 9F Annapolis, Maryland 21402 Abstract of topics and emphasizes their relations rather than differ- ences. We will begin by presenting the layered framework, From a Computer Science and Artificial Intelligence perspec- tive, Robotics often appears as a collection of disjoint, some- followed by an example AI Robotics curriculum that empha- times antagonistic sub-fields. The lack of a coherent and uni- sizes the similarities and encourages a cohesive big-picture fied presentation of the field negatively impacts teaching, es- understanding of the field. We will then compare the cur- pecially to undergraduates. The paper presents an alternative ricular themes presented in other robotics textbooks. Finally synthesis of the various sub-fields of Artificial Intelligence we will discuss the sometimes surprising implications of this robotics, and shows how these traditional sub-fields fit in to view in how the various robotics sub-fields relate to each the whole. Finally, it presents a curriculum based on these other. ideas. Layers of Abstraction Introduction The application of layers of abstraction in Computer Sci- Modern Artificial Intelligence robotics education treats the ence is a well known technique used either prescriptively to field as a collection of overlapping subfields. An exami- coordinate standards development, or descriptively to make nation of the current robotics textbooks (McKerrow 1991; sense of complicated processes and ease comparison of ap- Arkin 1998; Dudek & Jenkin 2000; Murphy 2000; Niku parently conflicting ideas. The classic example of the former 2001; Siegwart & Nourbakhsh 2004; Craig 2005; Choset et is the OSI network layer system (ISO 1994) which speci- al.
    [Show full text]
  • Laboratorio De Robots Autónomos En El Contexto De Las Carreras De Informática Experiencias Para Su Implementación Resumen 1
    Laboratorio de Robots Autónomos en el Contexto de las Carreras de Informática Experiencias para su Implementación J. Ierache (1,2) M Dittler(1,2), H Padovani (2) (1)Instituto de Sistemas Inteligentes y Enseñanza experimental de la Robótica (ISIER) (2)Facultad de Informática Ciencia de la Comunicación y Técnicas Especiales Universidad de Morón Cabildo 134, (B1708JPD) Morón, Buenos Aires, Argentina 54-11-56272000 interno 189/746 (1,2) {jierache, pdittler, hpadovani } @unimoron.edu.ar Resumen Este trabajo presenta nuestras experiencias para la implementación de un laboratorio de sistemas autónomo de robots aplicado a la formación de estudiantes iniciales y avanzados en carreras de informática, considerando las tecnologías especificas, robots, juguetes autónomos, lenguajes y ambientes de programación, como así también la construcción de un robot bípedo de programación abierta a partir de un juguete. Estos robots por su bajo costo y la documentación disponible facilitan un amplio acceso a distintas Universidades e Institutos. En este contexto, la enseñanza de programación aplicada a través de sistemas autónomos de robots facilita la interacción entre sistemas autónomos, el ambiente de actuación, dispositivos de comunicación celulares, PDA, entre otros dispositivos. Presentan una oportunidad estratégica para la formación de recursos humanos cubriendo diversos aspectos desde la elaboración de la especificación, modelado, desarrollo del software e implementación y pruebas de un sistema autónomo de robots Palabras claves: Robótica, Tecnologías
    [Show full text]
  • Fact Sheet: History of Robotics
    Fact Sheet: History of Robotics www.RazorRobotics.com ≈250 B.C. - Ctesibius, an ancient Greek engineer and mathematician, invented a water clock which was the most accurate for nearly 2000 years. ≈60 A.D. - Hero of Alexandria designs the first automated programmable machine. These 'Automata' were made from a container of gradually releasing sand connected to a spindle via a string. By using different configurations of these pulleys, it was possible to repeatably move a statue on a pre-defined path. 1898 - The first radio-controlled submersible boat was invented by Nikola Tesla. 1921 - The term 'Robot' was coined by Karel Capek in the play 'Rossum's Universal Robots'. 1941 - Isaac Asimov introduced the word 'Robotics' in the science fiction short story 'Liar!' 1948 - William Grey Walter builds Elmer and Elsie, two of the earliest autonomous robots with the appearance of turtles. The robots used simple rules to produce complex behaviours. 1954 - The first silicon transistor was produced by Texas Instruments. 1956 - George Devol applied for a patent for the first programmable robot, later named 'Unimate'. 1957 - Launch of the first artificial satellite, Sputnik 1. I, Robot Turtle robot Sputnik 1 1961 - First Unimate robot installed at General Motors. Used for welding and die casting. 1965 - Gordon E. Moore introduces the concept 'Moore's law', which predicts the number of components on a single chip would double every two years. 1966 - Work began on the 'Shakey' robot at Stanford Research Institute. 'Shakey' was capable of planning, route-finding and moving objects. 1969 - The Apollo 11 mission, puts the first man on the moon.
    [Show full text]
  • Advanced Robotic Systems
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS Books of Abstracts| Volume 11 | 2014 | ISSN 1729-8806 International Journal of Advanced Robotic Systems Book of Abstracts Volume 11, 2014 This Book of Abstracts covers the titles, authors, abstracts and keywords of the articles published within Volume 11 of the International Journal of Advanced Robotic Systems. For each of the published articles in 2014 readers can find the link which will lead them to the designated web page and a full-text article available for download. ISSN 1729-8806 www.intechopen.com A New Profile Shape Matching Stereovision Algorithm for Real-time Human Pose Table of Contents and Hand Gesture Recognition Dong Zhang, Dah-Jye Lee and Yung-Ping Chang 17 Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle Luis Govinda García-Valdovinos, Tomás Salgado-Jiménez, A Simulation Environment for Bio-inspired Heterogeneous Chained Modular Robots Manuel Bandala-Sánchez, Luciano Nava-Balanzar, Rodrigo Hernández-Alvarado Alberto Brunete, Miguel Hernando and Ernesto Gambao 18 and José Antonio Cruz-Ledesma 10 A Novel Robust Scene Change Detection Algorithm for Autonomous Robots Stitching Images with Arbitrary Lens Distortions Using Mixtures of Gaussians Myung-Ho Ju and Hang-Bong Kang 10 Luis J. Manso, Pedro Núñez, Sidnei da Silva and Paulo Drews-Jr 18 An Adaptive Neural Network Learning-Based Solution for the Inverse Kinematics Online Joint Trajectory Generation of Human-like Biped Walking of Humanoid Fingers Jong-Wook Kim 19 Byoung-Ho Kim 11 An Underactuated Multi-finger Grasping Device An Efficient Ceiling-view SLAM Using Relational Constraints Between Landmarks Cesare Rossi and Sergio Savino 19 Hyukdoo Choi, Ryunseok Kim and Euntai Kim 11 Quantile Acoustic Vectors vs.
    [Show full text]