Somatic Embryogenesis and Regeneration of Endangered Cycad Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ENCEPHALARTOSNCEPHALARTOS Tydskrif Van Die Broodboom Vereniging Van Suid-Afrika
Journal of the Cycad Society of South Africa EENCEPHALARTOSNCEPHALARTOS Tydskrif van die Broodboom Vereniging van Suid-Afrika No. 109 September 2012 ISSN 1012-9987 Visits to three Encephalartos ferox colonies: provisional impressions Philip Rousseau¹* & George James Mann² As part of the larger endeavor to produce a mono- graphic revision of the genus Encephalartos, field work was conducted on three natural populations of Encephalartos ferox. Encephalartos ferox has always been regarded as a morphologically (both vegetative and reproductive) variable species (Vorster 2004), yet easily distinguishable as a sp e cie s, even at juvenile and s e e dling s t age s. B e c aus e of its well-defined diagnostic features, Dr. Piet Vorster places the species as unassociated in his groupings of species, a position confirmed by the senior author’s molecular work (Rousseau 2012). Encephalartos ferox is characterised by very wide ovate and heavily dentate leaflets, undulate in its width, unmistakable smooth pinkish to red cones, and seeds with a red sarcotesta. Amongst collectors special interest has always been shown towards the variability primarily in the so called “cigar leaf form” (Figure 1) and the “yellow cone form” (Figure 2). The known distribution of E. ferox extends from northern KwaZulu-Natal in South Africa, northwards in a more or less continues strip halfway up the Mozambican coast, the latter range involving the provinces of Maputo, Gaza, Inhambane and Sofala. Plants invariably grows at low elevation and close to the sea (IUCN 2010). The first field trip was by the first author to a population in the northeastern corner of KwaZulu-Natal (Maputaland) in January 2012. -
Species Encephalartos Family Zamiaceae CITES Listing Appendix I Common Names Cycad Trade All South African Cycad Species (Encephalartos Spp
SANBI IDentifyIt - Species Encephalartos Family Zamiaceae CITES Listing Appendix I Common names Cycad Trade All South African cycad species (Encephalartos spp. and Stangeria eriopus) are listed on CITES Appendix I. While no international trade is permitted in wild plants, trade is permitted in artificially propagated plants that meet certain requirements, for example, the stem diameter is less than 15 cm. The National Cycad Policy, when redrafted, will detail trade standards such as the types of shipping containers that may be used, how these containers should be sealed and when microchips are needed. Once completed, this information will be made available on the DEAT website (www.environment.gov.za). Identifying cycadsUnless complex botanical keys are used, specific cycad identification is very difficult. However, as all cycads are protected by CITES and national legislation, it is sufficient to recognise that a plant is a cycad. Become familiar with the terminology of cycad structure and the key to cycad genera, but always remember to call an expert for assistance (see Contacts). Note that there are three plant families containing cycads. Of the two genera found in South Africa, Stangeria has a single species, Stangeria eriopus. This plant, which occurs on the East coast of South Africa, has soft, fern-like pinnate leaves from 30cm to 2m long (see picture). Lateral veins arise at almost right angles to the midrib of the leaflets. Members of the genus Encephalartos can be recognized by the following basic characteristics: Leaves are pinnate, leaflets with sunken, parallel veins (no midrib). Leaflets are hard and prickly and DO NOT bend easily: they may be deep green, blue green, or grey. -
National Biodiversity Strategy and Action Plan
REPUBLIC OF GHANA MINISTRY OF ENVIORNMENT, SCIENCE, TECHNOLOGY, AND INNOVATION NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN ACCRA NOVEMBER 2016 TABLE OF CONTENTS List of Tables ................................................................................................................................. iv List of Figures ................................................................................................................................. v Abbreviations/ Acronyms .............................................................................................................. vi FOREWORD ................................................................................................................................. ix EXECUTIVE SUMMARY ............................................................................................................ x CHAPTER ONE: GENERAL INTRODUCTION ......................................................................... 1 1.1 Territorial Area ................................................................................................................. 1 1.2 Biogeographical Zones ..................................................................................................... 1 1.3 Biodiversity and its Significance ..................................................................................... 2 1.4 Biodiversity of Terrestrial Ecosystem in Ghana .............................................................. 3 1.4.1 The Flora of Terrestrial Systems.............................................................................. -
Exposing the Illegal Trade in Cycad Species (Cycadophyta: Encephalartos) at Two Traditional Medicine Markets in South Africa Using DNA Barcoding1 J
771 ARTICLE Exposing the illegal trade in cycad species (Cycadophyta: Encephalartos) at two traditional medicine markets in South Africa using DNA barcoding1 J. Williamson, O. Maurin, S.N.S. Shiba, H. van der Bank, M. Pfab, M. Pilusa, R.M. Kabongo, and M. van der Bank Abstract: Species in the cycad genus Encephalartos are listed in CITES Appendix I and as Threatened or Protected Species in terms of South Africa’s National Environmental Management: Biodiversity Act (NEM:BA) of 2004. Despite regulations, illegal plant harvesting for medicinal trade has continued in South Africa and resulted in declines in cycad populations and even complete loss of sub-populations. Encephalartos is traded at traditional medicine markets in South Africa in the form of bark strips and stem sections; thus, determining the species traded presents a major challenge due to a lack of characteristic plant parts. Here, a case study is presented on the use of DNA barcoding to identify cycads sold at the Faraday and Warwick traditional medicine markets in Johannesburg and Durban, respectively. Market samples were sequenced for the core DNA barcodes (rbcLa and matK) as well as two additional regions: nrITS and trnH-psbA. The barcoding database for cycads at the University of Johannesburg was utilized to assign query samples to known species. Three approaches were followed: tree-based, similarity-based, and character-based (BRONX) methods. Market sam- ples identified were Encephalartos ferox (Near Threatened), Encephalartos lebomboensis (Endangered), Encephalartos natalensis (Near Threatened), Encephalartos senticosus (Vulnerable), and Encephalartos villosus (Least Concern). Results from this study are crucial for making appropriate assessments and decisions on how to manage these markets. -
Systematic Studies on the Mexican Zamiaceae. I
SYSTEMATIC STUDIES ON THE MEXICAN ZAMIACEAE. I. CHROMOSOME NUMBERS AND KARYOTYPESI Instituto Nacional de Investigaciones Sobre Recursos Bi6ticos, Apdo. Postal 63, Xalapa, Veracruz, Mexico Chromosome numbers and karyotypes are reported for seven species in three genera, of Mexican cycads. Karyotypic analysis of Cycads is made difficult by differential contraction, of their large chromosomes but idiograms are presented. Satellite variation is reported for three species of Ceratozamia. No satellites are reported for the three species of Zamia. THECYTOTAXONOMILITC ERATUREon Mexican Francisco Javier Clavijero' (INIREB) at Xal- cycads has been rather sporadic. Sax and Beal apa. Watering the plants a day or two before (1934) reported 2n = 16for Ceratozamia mex- collection gave reasonably good results al- icana Brongn. and 2n = 18 for Dioon spinu- though cell divisions seemed to be variable. losum Dyer. They pointed out that chromo- Two different methods of pretreatment were some number and morphology may differ in tried in order to obtain adequate contraction different genera but the genomes of the species of the large cycad chromosomes. These con- within each genus seem to be similar. Marchant sisted of: 1) 1% aqueous solution of 1 ml ABN (1968) reported chromosome numbers of2n = (alpha-Bromonapthalene) dissolved in 100 ml 16 for C. mexicana, 2n = 18 for D. edule Dyer, of absolute ethanol (Dyer, 1979); 2) 0.05%, and 2n = 16 for Zamia fischeri Miq. He de- 0.1 %, and 0.2% aqueous solutions of colchi- scribed karyotypes and noted that the presence cine. The pretreatment in all cases was carried of telocentrics is apparently correlated with out for 5-6 hr in a refrigerator at ca. -
Download the PDF File
ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P. -
Encephalartos Woodii ELSA POOLEY Writes About the Mysterious Enigma Wood’S Cycad, a Plant That Is Extinct in the Wild
Encephalartos woodii ELSA POOLEY writes about the mysterious enigma Wood’s cycad, a plant that is extinct in the wild. Wood’s cycad is one of the most magnificent and rare plants of this family of ancient plants. It has been extinct in the wild for nearly a century. Only one four-stemmed male plant was ever found. It was first collected by John Medley Wood, director of the Natal Government Herbarium and leading Natal botanist. He was on a botanical expedition in Zululand in 1895, and found it when exploring Ngoye Forest (now spelt Ongoye). In 1903 several suckers Encephalartos woodii growing in Durban Botanic Gardens. photograph © Richard Boon 60 INTERNATIONAL DENDROLOGY SOCIETY TREES were collected for the Durban Botanic Gardens and for the Royal Botanic Gardens at Kew and a private nurseryman in the south of England. (It was described in the Gardeners’ Chronicle in 1908.) In 1907 John Wylie, an assistant to Medley Wood and curator of the Durban Botanic Gardens, collected two of the large trunks and planted them in the Durban Botanic Garden. In 1916 the last surviving stem was removed and was planted in Pretoria. All efforts to locate more plants – and female plants – in the original location have failed. However, hundreds of offshoots have been grown and distributed around the world, so the plant is known outside of South Africa. This is a distinctive species. The original plants stand about 6m tall, with a stately, erect stem which is broad and buttressed at the base. This buttressed stem, and the spreading canopy of arching leaves, even in juvenile plants, distinguishes the species. -
Comparative Biology of Cycad Pollen, Seed and Tissue - a Plant Conservation Perspective
Bot. Rev. (2018) 84:295–314 https://doi.org/10.1007/s12229-018-9203-z Comparative Biology of Cycad Pollen, Seed and Tissue - A Plant Conservation Perspective J. Nadarajan1,2 & E. E. Benson 3 & P. Xaba 4 & K. Harding3 & A. Lindstrom5 & J. Donaldson4 & C. E. Seal1 & D. Kamoga6 & E. M. G. Agoo7 & N. Li 8 & E. King9 & H. W. Pritchard1,10 1 Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; e-mail: [email protected] 2 The New Zealand Institute for Plant & Food Research Ltd, Private Bag 11600, Palmerston North 4442, New Zealand; e-mail [email protected] 3 Damar Research Scientists, Damar, Cuparmuir, Fife KY15 5RJ, UK; e-mail: [email protected]; [email protected] 4 South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, Cape Town, Republic of South Africa; e-mail: [email protected]; [email protected] 5 Nong Nooch Tropical Botanical Garden, Chonburi 20250, Thailand; e-mail: [email protected] 6 Joint Ethnobotanical Research Advocacy, P.O.Box 27901, Kampala, Uganda; e-mail: [email protected] 7 De La Salle University, Manila, Philippines; e-mail: [email protected] 8 Fairy Lake Botanic Garden, Shenzhen, Guangdong, People’s Republic of China; e-mail: [email protected] 9 UNEP-World Conservation Monitoring Centre, Cambridge, UK; e-mail: [email protected] 10 Author for Correspondence; e-mail: [email protected] Published online: 5 July 2018 # The Author(s) 2018 Abstract Cycads are the most endangered of plant groups based on IUCN Red List assessments; all are in Appendix I or II of CITES, about 40% are within biodiversity ‘hotspots,’ and the call for action to improve their protection is long- standing. -
35 Ideal Landscape Cycads
3535 IdealIdeal LandscapeLandscape CycadsCycads Conserve Cycads by Growing Them -- Preservation Through Propagation Select Your Plant Based on these Features: Exposure: SunSun ShadeShade ☻☻ ColdCold☻☻ Filtered/CoastalFiltered/Coastal SunSun ▲▲ Leaf Length and Spread: Compact, Medium or Large? Growth Rate and Ultimate Plant Size Climate: Subtropical, Mediterranean, Temperate? Dry or Moist? Leaves -- Straight or Arching? Ocean-Loving, Salt-Tolerant, Wind-Tolerant CeratozamiaCeratozamiaCeratozamiaCeratozamia SpeciesSpeciesSpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun 16 named + several undescribed species Native to Mexico, Guatemala & Belize Name originates from Greek ceratos (horned), and azaniae, (pine cone) Pinnate (feather-shaped) leaves, lacking a midrib, and horned, spiny cones Shiny, darker green leaves arching or upright, often emerging red or brown Less “formal” looking than other cycads Prefer Shade ½ - ¾ day, or afternoon shade Generally cold-tolerant CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia mexicana Tropical looking but cold-tolerant, native to dry mountainous areas in the Sierra Madre Mountains (Mexican Rockies). Landscape specimen works well with water features, due to arching habit. Prefers shade, modest height, with a spread of up to 10 feet. Trunk grows to 2 feet tall. Leaflets can be narrow or wider (0.75-2 inches). CeratozamiaCeratozamia ---- SuggestedSuggested SpeciesSpecies ☻Shade Loving ☻Cold TolerTolerantant ▲Filtered/Coastal Sun Ceratozamia latifolia Rare Ceratozamia named for its broad leaflets. Native to cloud forests of the Sierra Madre mountains of Mexico, underneath oak trees. Emergent trunk grows to 1 foot tall, 8 inches in diameter. New leaves emerge bronze, red or chocolate brown, hardening off to bright green, semiglossy, and grow to 6 feet long. They are flat lance-shaped, asymmetric, and are broadest above middle, growing to 10 inches long and 2 inches wide. -
Crime, Culture and Collecting: the Illicit Cycad Market in South Africa
CRIME, CULTURE AND COLLECTING: THE ILLICIT CYCAD MARKET IN SOUTH AFRICA BY JONAS SØRFLATEN TORGERSEN SUPERVISED BY Town PROFESSOR MARK SHAW Cape of THESIS Submitted in partial fulfilment of the requirements for the degree of Master of Philosophy in University Criminology, Law and Society in the Faculty of Law at the University of Cape Town, 2017 Cape Town, South Africa The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town CRIME, CULTURE AND COLLECTING: THE ILLICIT CYCAD MARKET IN SOUTH AFRICA Abstract It is widely accepted that illicit markets are driven by specific contextual factors that determine their nature and scope. Two points in particular have not been explored in the literature on wildlife crime. First, while illicit markets around commodities such as drugs and weapons are fuelled by consumers arguably in need of, or addicted to, the product, the desires of buyers that shape wildlife markets are often shaped by cultural norms which may seem irrational to outsiders. Second, given that wildlife markets are seldom as stringently regulated as those in respect of drugs, weapons or other commodities, the nature of the criminal enterprises that source, move and sell the products are possibly very different. The study examines these two factors – the culture of markets and the degree of criminal enterprise or organisation within them – through a case study of a largely unexamined environmental crime market in South Africa, that of rare cycad plants. -
Inducing Sex Change and Organogenesis from Tissue Culture
114 SouthAfrican Journal of Science98, March/April2002 Gommentary reveals slight heterochromatin differ- lnducing sex change and ences,"'" which is itself due to differential methylation."''n Therefore, it is distinctly organogenesis from tissue possible that methylation controls sex determination. culture in the endangered African Methylation and accompanying hetero- chromatin can be removed by various cycad Encephalartos woodii f actors - such as temper attJte,'5''6 lighft ,27 osmotic stress,28or hormones2e-31- result- (Gycadales, Zamiaceael ing in sex change.3''33Sex change occurs only in organisms that have (virtually) indistinguishable sex chromosomes, indi- Root Gorelicku" and Roy Osborneb cating that incipient sex chromosomes are formed by slight differences in methylation. Differential methylation is I F INCIPIENT SEX CHROMOSOME DIFFEREN- Fourth, if backcrossing is the only realistic evolutionarily the first difference between I tiutiott is caused by differential methy- approach to conservation, then it is pref- females and males3nand is the likely cause I lation between females and males, then erableto use E.woodiiasthe female parent of reported sex changes in cycads. methylating or demethylating cytosine because of maternal inheritance of nucleotides may induce sex change. chloroplast genomes. Fifth, induced sex Methylation may also stimulate regeneration Application of theory to sex change of roots and shoots from tissue culture callus change may assist in the conservation of in cycads and increase genetic variation via greater -
Biodiversity Sector Plan for the Zululand District Municipality, Kwazulu-Natal
EZEMVELO KZN WILDLIFE Biodiversity Sector Plan for the Zululand District Municipality, KwaZulu-Natal Technical Report February 2010 The Project Team Thorn-Ex cc (Environmental Services) PO Box 800, Hilton, 3245 Pietermaritzbur South Africa Tel: (033) 3431814 Fax: (033) 3431819 Mobile: 084 5014665 [email protected] Marita Thornhill (Project Management & Coordination) AFZELIA Environmental Consultants cc KwaZulu-Natal Western Cape PO Box 95 PO Box 3397 Hilton 3245 Cape Town 8000 Tel: 033 3432931/32 Tel: 072 3900686 Fax: 033 3432033 or Fax: 086 5132112 086 5170900 Mobile: 084 6756052 [email protected] [email protected] Wolfgang Kanz (Biodiversity Specialist Coordinator) John Richardson (GIS) Monde Nembula (Social Facilitation) Tim O’Connor & Associates P.O.Box 379 Hilton 3245 South Africa Tel/ Fax: 27-(0)33-3433491 [email protected] Tim O’Connor (Biodiversity Expert Advice) Zululand Biodiversity Sector Plan (February 2010) 1 Executive Summary The Biodiversity Act introduced several legislated planning tools to assist with the management and conservation of South Africa’s biological diversity. These include the declaration of “Bioregions” and the publication of “Bioregional Plans”. Bioregional plans are usually an output of a systematic spatial conservation assessment of a region. They identify areas of conservation priority, and constraints and opportunities for implementation of the plan. The precursor to a Bioregional Plan is a Biodiversity Sector Plan (BSP), which is the official reference for biodiversity priorities to be taken into account in land-use planning and decision-making by all sectors within the District Municipality. The overall aim is to avoid the loss of natural habitat in Critical Biodiversity Areas (CBAs) and prevent the degradation of Ecological Support Areas (ESAs), while encouraging sustainable development in Other Natural Areas.