Functional Foods and Food Supplements • Raffaella Boggia, Paola Zunin and Federica Paola Zunin Federica and Turrini Boggia, • Raffaella

Total Page:16

File Type:pdf, Size:1020Kb

Functional Foods and Food Supplements • Raffaella Boggia, Paola Zunin and Federica Paola Zunin Federica and Turrini Boggia, • Raffaella Functional Foods and Food Supplements Food and Foods Functional • Raffaella Boggia,Turrini andFederica Zunin Paola Functional Foods and Food Supplements Edited by Raffaella Boggia, Paola Zunin and Federica Turrini Printed Edition of the Special Issue Published in Applied Sciences www.mdpi.com/journal/applsci Functional Foods and Food Supplements Functional Foods and Food Supplements Editors Raffaella Boggia Paola Zunin Federica Turrini MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Raffaella Boggia Paola Zunin Federica Turrini University of Genoa University of Genoa University of Genoa Italy Italy Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Applied Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special issues/Functional Foods Supplements). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0116-1 (Hbk) ISBN 978-3-0365-0117-8 (PDF) Cover image courtesy of Raffaella Boggia. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editors .............................................. vii Preface to ”Functional Foods and Food Supplements” ........................ ix Raffaella Boggia, Paola Zunin and Federica Turrini Functional Foods and Food Supplements Reprinted from: Appl. Sci. 2020, 10, 8538, doi:10.3390/app10238538 ................. 1 Mohamed Nadjib Boukhatem, Asma Boumaiza, Hanady G. Nada, Mehdi Rajabi and Shaker A. Mousa Eucalyptus globulus Essential Oil as a Natural Food Preservative: Antioxidant, Antibacterial and Antifungal Properties In Vitro and in a Real Food Matrix (Orangina Fruit Juice) Reprinted from: Appl. Sci. 2020, 10, 5581, doi:10.3390/app10165581 ................. 7 Giovanni Gamba, Dario Donno, Maria Gabriella Mellano, Isidoro Riondato, Marta De Biaggi, Denis Randriamampionona and Gabriele Loris Beccaro Phytochemical Characterization and Bioactivity Evaluation of Autumn Olive (Elaeagnus umbellata Thunb.) Pseudodrupes as Potential Sources of Health-Promoting Compounds Reprinted from: Appl. Sci. 2020, 10, 4354, doi:10.3390/app10124354 ................. 25 Miguel D. Ferro, Elsa Lopes, Marta Afonso, Augusto Peixe, Francisco M. Rodrigues and Maria F. Duarte Phenolic Profile Characterization of ‘Galega Vulgar’ and ‘Cobranc¸osa’ Portuguese Olive Cultivars along the Ripening Stages Reprinted from: Appl. Sci. 2020, 10, 3930, doi:10.3390/app10113930 ................. 37 Feng Zhao, Meng Li, Lingling Meng, Jinhan Yu and Tiehua Zhang Characteristics of Effervescent Tablets of Lactobacilli Supplemented with Chinese Ginseng (Panax ginseng C.A. Meyer) and Polygonatum sibiricum Reprinted from: Appl. Sci. 2020, 10, 3194, doi:10.3390/app10093194 ................. 51 Federica Turrini, Paola Malaspina, Paolo Giordani, Silvia Catena, Paola Zunin and Raffaella Boggia Traditional Decoction and PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-Tyrosinase Ingredients Reprinted from: Appl. Sci. 2020, 10, 2795, doi:10.3390/app10082795 ................. 65 Fan Zhang, Chenglong Jin, Shiguang Jiang, Xiuqi Wang, Huichao Yan, Huize Tan and Chunqi Gao Dietary Supplementation with Pioglitazone Hydrochloride and Resveratrol Improves Meat Quality and Antioxidant Capacity of Broiler Chickens Reprinted from: Appl. Sci. 2020, 10, 2452, doi:10.3390/app10072452 ................. 79 Sara M. Fraga and Fernando M. Nunes Agaricus bisporus By-Products as a Source of Chitin-Glucan Complex Enriched Dietary Fibre with Potential Bioactivity Reprinted from: Appl. Sci. 2020, 10, 2232, doi:10.3390/app10072232 ................. 93 Marta Ziaja-Sołtys, Wojciech Radzki, Jakub Nowak, Jolanta Topolska, Ewa Jabło ´nska-Ry´s, Aneta Sławi ´nska,Katarzyna Skrzypczak, Andrzej Kuczumow and Anna Bogucka-Kocka Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides Reprinted from: Appl. Sci. 2020, 10, 470, doi:10.3390/app10020470 ..................117 v Guendalina Zuccari, Sara Baldassari, Giorgia Ailuno, Federica Turrini, Silvana Alfei and Gabriele Caviglioli Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid Reprinted from: Appl. Sci. 2020, 10, 3353, doi:10.3390/app10103353 .................129 Francesca Colombo, Patrizia Restani, Simone Biella and Chiara Di Lorenzo Botanicals in Functional Foods and Food Supplements: Tradition, Efficacy and Regulatory Aspects Reprinted from: Appl. Sci. 2020, 10, 2387, doi:10.3390/app10072387 .................157 Bahare Salehi, Javad Sharifi-Rad, Esra Capanoglu, Nabil Adrar, Gizem Catalkaya, Shabnum Shaheen, Mehwish Jaffer, Lalit Giri, Renu Suyal, Arun K Jugran, Daniela Calina, Anca Oana Docea, Senem Kamiloglu, Dorota Kregiel, Hubert Antolak, Ewelina Pawlikowska, Surjit Sen, Krishnendu Acharya, Moein Bashiry, Zeliha Selamoglu, Miquel Martorell, Farukh Sharopov, Nat´alia Martins, Jacek Namiesnik and William C. Cho Cucurbita Plants: From Farm to Industry Reprinted from: Appl. Sci. 2019, 9, 3387, doi:10.3390/app9163387 ...................173 vi About the Editors Raffaella Boggia is an Associate Professor of Food Chemistry at the Department of Pharmacy of the University of Genoa (IT). She graduated with honors in Pharmaceutical Chemistry and Technology (University of Genoa) and in Pharmacy (University of Rome “La Sapienza”). She holds a Ph.D. in Pharmaceutical Sciences. During her post-doctoral studies, she spent periods at the Laboratory of Molecular Biophysics (Oxford University, UK) and at the Laboratory of Drug Design of Tecnofarmaci SCpA (Pomezia-Rome, Italy). Her research has focused on the formulation of nutraceutical ingredients by eco-sustainable techniques, starting from agro-industrial by-products and waste; untargeted spectroscopic fingerprints to assess food authenticity; applied chemometrics; and molecular modeling. She is the author of over 130 original publications and has participated in national and European research projects, including as a P.I. Paola Zunin is an Associate Professor of Food Chemistry at the Department of Pharmacy of the University of Genoa (IT). In 1981, she graduated in Medicinal Chemistry and Pharmaceutical Technologies at the University of Genoa, and in 1982, she also graduated in Pharmacy at the same university. She has almost 40 years of experience in the field of food chemistry. Her research interests have been mainly focused on lipids in foods, with emphasis on the chemical composition of virgin olive oils and other vegetable oils, on the development of analytical methods for the assessment of their quality and authenticity, on cholesterol and phytosterol oxidation in food and dietetic products, and on the characterization of food from specific geographical areas by applying multivariate statistical methods to the results obtained by classical and innovative analytical methods. Her latest research activities are focused on the application of green extraction methods for the extraction of health-promoting molecules from agri-food wastes and on the application of innovative production technologies for the quality improvement of different foodstuffs and for the production of functional foods. Federica Turrini is a Researcher at the Department of Pharmacy of the University of Genoa. Her research interests are in the fields of eco-compatible extractive technologies that have a low environmental impact and adhere to the principles of green chemistry and green extraction; application of environmentally friendly technologies assisted with ultrasounds and microwaves for the treatment of different food matrices and agri-food production waste; valorization of waste from different food processing chains for the further formulation of new potential nutraceutical and/or cosmeceutical ingredients; chemical-bromatological characterization and assessment of the authenticity of different food matrices by untargeted spectroscopic analytical technologies coupled with chemometric techniques and targeted chromatographic characterization; and formulation of new enriched and/or functional food and food dietary supplements through innovative technological treatments. In these fields of study, she is the author of scientific publications in national and international journals, and she has participated in national and EU research projects. vii Preface to ”Functional Foods and Food Supplements” The clear relationship between the food that we eat and our well-being is widely recognized. Today, foods are not only intended to satisfy hunger and provide necessary nutrients: they can also confer additional health benefits, such as preventing nutrition-related diseases and improving physical and mental well-being. Recent technological advancements, socio-economic trends, and population lifestyle modifications throughout the world indicate the need for foods with increased health benefits. In this view, the demand for functional foods and dietary food supplements
Recommended publications
  • UNIVERSITY of CALIFORNIA Los Angeles Ellagic Acid and Urolithin
    UNIVERSITY OF CALIFORNIA Los Angeles Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biochemistry, Molecular and Structural Biology by Brenda Chan 2018 © Copyright by Brenda Chan 2018 ABSTRACT OF THE THESIS Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. by Brenda Chan Master of Science in Biochemistry, Molecular and Structural Biology University of California, Los Angeles, 2018 Professor Catherine F. Clarke, Chair Insulin resistance has been spreading as food and sedentary lifestyles are becoming more common. Major bodily complications often result, necessitating a search for affordable solutions. Phytochemicals are commonly used in alternative medicine but less so in areas where obesity and T2D prevail. This thesis studies ellagic acid (EA) and its metabolite urolithin A (UA) as potential treatments for insulin resistance, focusing on the main site of glucose uptake, skeletal muscle. In diet-induced insulin-resistant mice, long-term dietary EA&UA administration reduced glucose levels in IPITTs, while UA alone also reduced serum FFA and fasting glucose levels. Mitochondrial turnover and ROS detoxification markers increased with treatment, indicating improved mitochondrial quality control. Differentiated C2C12 mouse myotubes were utilized to study cellular effects of EA and UA. In insulin resistant myotubes, treatment enhanced ATP ii production and reduced ROS, cytotoxicity, and apoptosis. With insulin, UA increased uncoupled respiration while decreasing ROS, implying increased fuel oxidation without adding oxidative stress.
    [Show full text]
  • 6 Health Aspects and Antiaflatoxigenic Activity of Phytochemicals in Tree
    OF Health Aspects 6 and Antiaflatoxigenic Activity of Phytochemicals in Tree Nuts Russell]. Molyneux, Noreen Mahoney, long H. Kim, and Bruce C. Campbell CONTENTS 6.1 Introduction............................................................................................................................. 95 6.2 Aflatoxinsin Tree Nuts ........................................................................................................... 96 6.3 Allatoxin Resistance Phytochemicals in Tree Nuts................................................................97 6.3.1 Varietal Resistance of Tree Nut Species .....................................................................98 6.3.2 Antiaflatoxigenic Constituents in Specific Tissues .....................................................98 6.4 Isolation and Identification of Walnut Antiatlatoxigenic Constituents...................................99 6.4.1 Bioassay-Directed Fractionation .................................................................................99 6.4.2 Analysis of Hydrolysable Tannin Content in Walnuts ..............................................100 6.4.3 Gallic and Ellagic Acid Content in Tree Nuts...........................................................101 6.4.3.1 Variation of Gallic and Ellagic Acids with Maturity .................................101 6.4.3.2 Variation of Gallic and Ellagic Acids with Cultivar..................................101 6.4.3.3 Structure—Activity Relationships ...............................................................103 6.5 Mechanism
    [Show full text]
  • One Step Purification of Corilagin and Ellagic Acid from Phyllanthus
    PHYTOCHEMICAL ANALYSIS Phytochem. Anal. 13, 1–3 (2002) DOI: 10.1002/pca.608 One Step Purification of Corilagin and Ellagic Acid from Phyllanthus urinaria using High-Speed Countercurrent Chromatography Liu Jikai,1* Huang Yue,1 Thomas Henkel2 and Karlheinz Weber2 1Department of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, People s Republic of China 2Bayer AG, Pharma Research, D-42096 Wuppertal, Germany High-speed countercurrent chromatography (HSCCC) has been successfully applied to the preparative separation of corilagin and ellagic acid in one step from the Chinese medicinal plant Phyllanthus urinaria L. by use of direct and successive injections of a crude methanolic extract. Some aspects concerning the practical use of this technique in the described application are considered. Copyright # 2001 John Wiley & Sons, Ltd. Keywords: High-speed countercurrent chromatography (HSCCC); one step purification; corilagin; ellagic acid; Phyllanthus urinaria. INTRODUCTION al., 1993; Cheng et al., 1995) and infectious disease (anti- viral, Yoon et al., 2000). The present report deals with the one-step isolation of compounds 1 and 2 from the Most separations in the natural product field are methanolic extract of aerial parts of P. urinaria, and performed through chromatography on solid supports, demonstrates the rapid and efficient access of the but all-liquid techniques are currently attracting con- constituents using HSCCC. siderable interest. High-speed countercurrent chroma- tography (HSCCC) is an all-liquid technique that employs no solid support and functions using a multi- layer coil rotating at high speed in a device that creates a fluctuating acceleration field which produces successive bands of mixing and settling along a continuous tube (Conway, 1995).
    [Show full text]
  • BUL 855 Growing Currants, Gooseberries and Jostaberries
    BUL 855 Growing Currants, Gooseberries & Jostaberries In the Inland Northwest & Intermountain West by Danny L. Barney and Esmaeil Fallahi Growing Currants, Gooseberries & Jostaberries In the Inland Northwest & Intermountain West Introduction.....................................................................................................1 Selecting a site................................................................................................2 Recommended cultivars ...............................................................................3 Currants.....................................................................................................4 Gooseberries ............................................................................................8 Jostaberries..............................................................................................11 Preparing your site and planting ................................................................11 Soil tests and preplant fertilization ....................................................11 Preplant weed control...........................................................................12 Amending the soil..................................................................................12 Types of planting stock.........................................................................12 Plant spacing...........................................................................................12 Caring for your plants..................................................................................13
    [Show full text]
  • Currants RED, BLACK, and CLOVE
    currants RED, BLACK, AND CLOVE Currants are small red, black, or white berries Note from Thaddeus: that grow dangling clusters that resemble grapes. The name “currant” is believed to be derived from Can You Dry Currants for Sale? “Corinth grape,” a small grape cultivar that grew on the Greek island of Corinth. The dried Corinth grapes came to be called “currants” – a derivative of the Currants belong to the genus Ribes, which is word “Corinth” -- and the fruit of the same genus as gooseberries. Currants and gooseberries both produce sour fruit on cold the hardy currant shrubs eventually tolerant shrubs, but the two types of fruit are distinct. acquired the same name, leading to Currants are cold hardy shrubs that grow between two and six feet tall with upright canes, and the confusion among American consumers. canes lack thorns. Currants are borne on small The “dried currants” sold in many clusters that look like small grapes (Figure 10). grocery stores and used in specialty Gooseberry fruit is three or four times larger than currants and the fruit is usually borne individually baking are actually small dried grapes. or in small clusters. Gooseberry bushes have a Black and red currants are rarely spreading growth habit with prominent thorns sticking out of the canes near the fruit. dried due to a combination of intense resinous favors and prominent seeds. 32 perennial fruit for northern climates Figure 10. Fruit of the black currant. Figure 11. Fruit of the white currant. Figure 12. Fruit of the red currant. Currants are native to North America, Europe, and sections: the black currants, the red currants, and northern Asia and were incorporated into local diets the clove or golden currant (Table 6).
    [Show full text]
  • 1 Universidade Federal Do Rio De Janeiro Instituto De
    UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DE ALIMENTOS Ana Beatriz Neves Martins DEVELOPMENT AND STABILITY OF JABUTICABA (MYRCIARIA JABOTICABA) JUICE OBTAINED BY STEAM EXTRACTION RIO DE JANEIRO 2018 1 Ana Beatriz Neves Martins DEVELOPMENT AND STABILITY OF JABUTICABA (MYRCIARIA JABOTICABA) JUICE OBTAINED BY STEAM EXTRACTION Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Ciência de Alimentos do Instituto de Química, da Universidade Federal do Rio de Janeiro como parte dos requisitos necessários à obtenção do título de Mestre em Ciência de Alimentos. Orientadores: Prof.ª Mariana Costa Monteiro Prof. Daniel Perrone Moreira RIO DE JANEIRO 2018 2 3 Ana Beatriz Neves Martins DEVELOPMENT AND STABILITY OF JABUTICABA (MYRCIARIA JABOTICABA) JUICE OBTAINED BY STEAM EXTRACTION Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Ciência de Alimentos do Instituto de Química, da Universidade Federal do Rio de Janeiro como parte dos requisitos necessários à obtenção do título de Mestre em Ciência de Alimentos. Aprovada por: ______________________________________________________ Presidente, Profª. Mariana Costa Monteiro, INJC/UFRJ ______________________________________________________ Profª. Maria Lúcia Mendes Lopes, INJC/UFRJ ______________________________________________________ Profª. Lourdes Maria Correa Cabral, EMPBRAPA RIO DE JANEIRO 2018 4 ACKNOLEDGEMENTS Ninguém passa por essa vida sem alguém pra dividir momentos, sorrisos ou choros. Então, se eu cheguei até aqui, foi porque jamais estive sozinha, e não poderia deixar de agradecer aqueles que estiveram comigo, fisicamente ou em pensamento. Primeiramente gostaria de agradecer aos meus pais, Claudia e Ricardo, por tudo. Pelo amor, pela amizade, pela incansável dedicação, pelos valores passados e por todo esforço pra que eu pudesse ter uma boa educação.
    [Show full text]
  • Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2020 doi:10.20944/preprints202004.0100.v1 Peer-reviewed version available at Appl. Sci. 2020, 10, 3353; doi:10.3390/app10103353 Review Formulation strategies to improve oral bioavailability of ellagic acid Guendalina Zuccari 1,*, Sara Baldassari 1, Giorgia Ailuno 1, Federica Turrini 1, Silvana Alfei 1, and Gabriele Caviglioli 1 1 Department of Pharmacy, Università di Genova, 16147 Genova, Italy * Correspondence: [email protected]; Tel.: +39 010 3352627 Featured Application: An updated description of pursued approaches for efficiently resolving the low bioavailability issue of ellagic acid. Abstract: Ellagic acid, a polyphenolic compound present in fruits and berries, has recently been object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as chemopreventive agent has been debated because of its poor bioavailability associated to low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro-nanoparticles, inclusion complexes, self- emulsifying systems, polymorphs have been proposed. Here, we have listed an updated description of pursued micro/nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material.
    [Show full text]
  • Currant Report 2001
    Currantly Speaking, Ribes Gets a Bum Rap By Bob Peterson & Jacqueline King, WSU – Mount Vernon Description & History The genus Ribes is the taxonomic home to the American Gooseberry (R. hirtellum), the European Gooseberry (R. grossularia), the European red, pink, and white currant species (R. rubrum, R. petraeum, and R. sativum), and the black currant species from Europe and Asia (R. nigrum and R. ussuriense). A new addition to the Ribes taxonomy grouping is 'Jostaberry' (R. nigrum x hirtellum) a hybridization of black currant and gooseberry. The Ribes genus is native to the Northern Hemisphere with the bulk of commercial production centered in Northern Europe. Ribes species are well adapted to USDA Hardiness Zones 3 to 5, and to cooler, more temperate climate areas with sufficient winter chilling such as we have in the Pacific Northwest. Somewhat susceptible to intense sun and heat, they are more adapted to partial shade and northern exposure sites. Cultivated in Europe since the early 1500's and brought over to North America by colonists in the late 1700's, currants are prized for their culinary versatility, be it fresh dried, juiced, fermented, cooked or preserved. The first red currant recipes came to America with immigrants from Scotland, England, Wales and France and included classics like Cumberland sauce, summer pudding, and the famous French preserve, Bar le Duc jelly, from the town of the same name in Lorraine. Commercial Production For growersinterested in currants as an alternative crop, the juice market is probably the most promising. The cool maritime climate of western Washington is well suited to production of high quality fruit.
    [Show full text]
  • A Focus on Colon Cancer Prevention and Treatment
    molecules Review Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment Sadia Afrin 1, Francesca Giampieri 1, Massimiliano Gasparrini 1, Tamara Y. Forbes-Hernandez 1, Alfonso Varela-López 2, José L. Quiles 2, Bruno Mezzetti 3 and Maurizio Battino 1,4,* 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy; [email protected] (S.A.); [email protected] (F.G.); [email protected] (M.G.); [email protected] (T.Y.F.-H.) 2 Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain; [email protected] (A.V.-L.); [email protected] (J.L.Q.) 3 Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy; [email protected] 4 Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain * Correspondence: [email protected]; Tel.: +39-071-220-4646; Fax: +39-071-220-4123 Academic Editor: Derek J. McPhee Received: 30 December 2015; Accepted: 26 January 2016; Published: 30 January 2016 Abstract: Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK.
    [Show full text]
  • Positional Distribution of Fatty Acids in Plant Triacylglycerols: Contributing Factors and Chromatographic/Mass Spectrometric Analysis
    POSITIONAL DISTRIBUTION OF FATTY ACIDS IN PLANT TRIACYLGLYCEROLS: CONTRIBUTING FACTORS AND CHROMATOGRAPHIC/MASS SPECTROMETRIC ANALYSIS HEIDI LESKINEN Department of Biochemistry and Food Chemistry, University of Turku Turku 2010 Supervised by Professor Heikki Kallio, Ph.D. Department of Biochemistry and Food Chemistry University of Turku Turku, Finland Jukka-Pekka Suomela, Ph.D. Department of Biochemistry and Food Chemistry University of Turku Turku, Finland Reviewed by Docent Päivi Laakso, Ph.D. Eurofins Scientific Finland Oy Raisio, Finland Wm. Craig Byrdwell, Ph.D. U.S.D.A.- Agricultural Research Service Beltsville Human Nutrition Research Center Beltsville, Maryland, USA Opponent Professor Arnis Kuksis, Ph.D. Banting and Best Department of Medical Research University of Toronto Toronto, Ontario, Canada ISBN 978-951-29-4163-6 (PRINT) ISBN 978-951-29-4164-3 (PDF) Painosalama Oy – Turku, Finland 2009 In memory of my beloved father, who encouraged and supported me in my studies CONTENTS ABSTRACT............................................................................................................................... 6 LIST OF ABBREVIATIONS................................................................................................... 8 SYSTEMATIC NAMES, TRIVIAL NAMES AND ABBREVIATIONS OF FATTY ACIDS DISCUSSED IN THE TEXT...................................................................................... 10 LIST OF ORIGINAL PUBLICATIONS................................................................................ 11 1 INTRODUCTION.................................................................................................................
    [Show full text]
  • Program and Abstracts (PDF)
    PSNA News Phytochemical Society of North America Sociedad Fitoquímica de América del Norte Société Phytochimique de L’Amerique du Nord Volume 46, Number 1 July 2007 From the President Norman G. Lewis The hour is rapidly approaching: The next PSNA annual meeting will be held in the Donald Danforth Plant Science Center from July 21- 25, 2007. I am delighted—and hope that everyone is—with the quite fantastic range of scientific topics to be covered. These of course reflect the remarkable scientific diversity of the PSNA membership, and the field of phytochemistry in its many forms and in its allied fields. The program for this year’s annual meeting, the short biographies of the invited speakers, and the abstracts follow the newsletter below. The progress made in restructuring some of the PSNA’s activities is also described. See you in St. Louis! 2007 PSNA Annual Meeting Venue: The Donald Danforth Plant Science Center (DDPSC) We are particularly grateful to Roger Beachy, President, DDPSC, for agreeing to have their wonderful Center serve as the venue for this year’s meeting. Conference delegates will have the added treat of being shuttled from the hotel to the DDPSC for the various technical sessions—for many, this will remind you of your early childhood days—as you will learn! Donald Danforth Plant Science Center The DDPSC was founded in 1998 as a non-profit research institute with a main focus being on improving the human condition through plant science. Since its opening in 2001, some of its important missions include basic and applied research, education and training, with goals of feeding the hungry, improving human health, preserving and renewing the environment, as well as helping address the area of renewable energy through biofuels.
    [Show full text]
  • Lactone - Wikipedia
    3/28/2021 Lactone - Wikipedia Lactone Lactones are cyclic carboxylic esters, containing a 1-oxacycloalkan-2-one structure (−C(=O)−O−), or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring.[1] Lactones are formed by intramolecular esterification of the corresponding hydroxycarboxylic acids, which takes place spontaneously when the ring that is formed is five- or six-membered. Lactones with three- or four-membered rings (α- lactones and β-lactones) are very reactive, making their isolation difficult. Special methods are normally required for the laboratory synthesis of small-ring lactones as well as those that contain rings larger than six-membered.[2] Contents Nomenclature Etymology Natural sources Synthesis Reactions Hydrolysis Reduction Aminolysis Polymerization Michael reaction Uses Flavors and fragrances Prebiotic Chemistry Plastics Examples dilactones See also References & notes Nomenclature Lactones are usually named according to the precursor acid molecule (aceto = 2 carbon atoms, propio = 3, butyro = 4, valero = 5, capro = 6, etc.), with a -lactone suffix and a Greek letter prefix that specifies the number of carbon atoms in the heterocycle — that is, the distance between the relevant -OH and the -COOH groups along said backbone. The first carbon atom after the carbon in the -COOH group on the parent compound is labelled α, the second will be labeled β, and so forth. Therefore, the prefixes also indicate Lactone nomenclature: α- the size of the lactone ring: α-lactone = 3-membered ring, β-lactone = 4-membered, γ- acetolactone, β-propiolactone, γ- lactone = 5-membered, etc. Macrocyclic lactones are known as macrolactones.[3] butyrolactone, and δ- valerolactone The other suffix used to denote a lactone is -olide, used in substance class names like butenolide, macrolide, cardenolide or bufadienolide.
    [Show full text]