A Focus on Colon Cancer Prevention and Treatment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of LYCH (Lycium Chinense P. Mill.) Leaf Hydrolysates on the Growth of Pediococcus Acidilactici IMT101
ABSTRACT Title of Document: Effect of LYCH (Lycium chinense P. Mill.) leaf hydrolysates on the growth of Pediococcus acidilactici IMT101 Yi-Chun Yeh, Master of Science, 2006 Directed By: Associate Professor, Y. Martin Lo, Department of Nutrition and Food Science Growth stimulating effects of LYCH leaf hydrolysates on P. acidilactici IMT101 cells were observed when MRS broth was supplemented with 20% (v/v) H1+H2, the mixture of hydrolysates prepared by a tea-making process. Cells grown on MRS containing H1+H2 showed a shortened lag phase while yielding a cell concentration (Xs) significantly higher than other conditions. The maximal specific growth rate (µmax) was also the highest among all. Microwave-assisted extraction (MAE) at 80°C for 2 hrs (M802h) released more amino acids but less sugar (fructose, glucose, and sucrose) than in H1+H2. No correlations between amino acids and cell growth were found. In the absence of FOS, the high glucose concentration in the H1+H2 hydrolysates was found responsible for the stimulatory effects on P. acidilactici growth. These effects of LYCH leaf hydrolysates indicate the potential of developing new applications in promoting the growth of other probiotic cells using a simple process. Keywords P. acidilactici, Lycium chinense, cell yield, specific cell growth rate, probiotic EFFECT OF CHINESE WOLFBERRY (LYCIUM CHINENSE P. MILL.) LEAVE HYDROLYSATES PREPARED BY TEA-MAKING PROCESS AND MICROWAVE EXTRACTION ON THE GROWTH OF PEDIOCOCCUS ACIDILACTICI IMT101 By Yi-Chun Yeh Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2006 Advisory Committee: Associate Professor: Y. -
Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities Against Multidrug-R
pathogens Article Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities Gowoon Kim 1, Ren-You Gan 1,2,* , Dan Zhang 1, Arakkaveettil Kabeer Farha 1, Olivier Habimana 3, Vuyo Mavumengwana 4 , Hua-Bin Li 5 , Xiao-Hong Wang 6 and Harold Corke 1,* 1 Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (G.K.); [email protected] (D.Z.); [email protected] (A.K.F.) 2 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China 3 School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China; [email protected] 4 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; [email protected] 5 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; [email protected] 6 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] * Correspondence: [email protected] (R.-Y.G.); [email protected] (H.C.) Received: 3 February 2020; Accepted: 29 February 2020; Published: 4 March 2020 Abstract: Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. -
Goji Berry—A Novel Nutraceutical “Superfruit” for Florida Master Gardeners1 Yujie Jiao and Guodong Liu2
HS1391 Goji Berry—a Novel Nutraceutical “Superfruit” for Florida Master Gardeners1 Yujie Jiao and Guodong Liu2 Introduction Goji berry (Lycium barbarum L.) is a native shrub to China belonging to the Solanaceae family. Common names of the crop include Chinese wolfberry, Himalayan goji, Tibetan goji, Fruktus Iycii, gougizi, goji berry, matrimony vine, Chinese boxthorn, Ningxia wolfberry, red medlar, and mede berry. It is widely cultivated and used throughout the arid and semiarid regions of northwest China (Figure 1). Figure 1. Branches of goji berry bushes (A) and cultivation in Yinchuan, Goji berries have been used in both fresh and processed Ningxia, in northern China (B). forms for food and medicine for more than 4,000 years in Credits: Yuwang Luan, Yinchuan, Ningxia, China China (Wang et al. 2015). The goji berry fruit is known This crop can be grown in Plant Hardiness Zones 4b to 9b as a “superfruit” thanks to its high levels of vitamins and as defined by the US Department of Agriculture (USDA) minerals, as well as other medicinal benefits recognized in (Figure 2). Therefore, most of Florida’s climate is favorable many countries around the world. The term “superfruit” is for goji berry, and a few Florida growers have cultivated it frequently used to refer to fruit extraordinarily rich in anti- for years. This species can tolerate infertile and unfavorable oxidants and nutrients (Chang et al. 2018; Himelrick 2018). growth conditions and hence can be mistakenly considered Goji berry has nutraceutical properties. Nutraceuticals, also invasive, but FDACS DPI (Florida Department of Agricul- called “functional foods,” aid in the prevention or treatment tural and Consumer Services, Division of Plant Industry) of certain diseases and disorders. -
BUL 855 Growing Currants, Gooseberries and Jostaberries
BUL 855 Growing Currants, Gooseberries & Jostaberries In the Inland Northwest & Intermountain West by Danny L. Barney and Esmaeil Fallahi Growing Currants, Gooseberries & Jostaberries In the Inland Northwest & Intermountain West Introduction.....................................................................................................1 Selecting a site................................................................................................2 Recommended cultivars ...............................................................................3 Currants.....................................................................................................4 Gooseberries ............................................................................................8 Jostaberries..............................................................................................11 Preparing your site and planting ................................................................11 Soil tests and preplant fertilization ....................................................11 Preplant weed control...........................................................................12 Amending the soil..................................................................................12 Types of planting stock.........................................................................12 Plant spacing...........................................................................................12 Caring for your plants..................................................................................13 -
Currants RED, BLACK, and CLOVE
currants RED, BLACK, AND CLOVE Currants are small red, black, or white berries Note from Thaddeus: that grow dangling clusters that resemble grapes. The name “currant” is believed to be derived from Can You Dry Currants for Sale? “Corinth grape,” a small grape cultivar that grew on the Greek island of Corinth. The dried Corinth grapes came to be called “currants” – a derivative of the Currants belong to the genus Ribes, which is word “Corinth” -- and the fruit of the same genus as gooseberries. Currants and gooseberries both produce sour fruit on cold the hardy currant shrubs eventually tolerant shrubs, but the two types of fruit are distinct. acquired the same name, leading to Currants are cold hardy shrubs that grow between two and six feet tall with upright canes, and the confusion among American consumers. canes lack thorns. Currants are borne on small The “dried currants” sold in many clusters that look like small grapes (Figure 10). grocery stores and used in specialty Gooseberry fruit is three or four times larger than currants and the fruit is usually borne individually baking are actually small dried grapes. or in small clusters. Gooseberry bushes have a Black and red currants are rarely spreading growth habit with prominent thorns sticking out of the canes near the fruit. dried due to a combination of intense resinous favors and prominent seeds. 32 perennial fruit for northern climates Figure 10. Fruit of the black currant. Figure 11. Fruit of the white currant. Figure 12. Fruit of the red currant. Currants are native to North America, Europe, and sections: the black currants, the red currants, and northern Asia and were incorporated into local diets the clove or golden currant (Table 6). -
Potato Psyllid in the Pacific Northwest: a Worrisome Marriage?
Potato Progress Research & Extension for the Potato Industry of Idaho, Oregon, & Washington Andrew Jensen, Editor. [email protected]; 509-760-4859 www.nwpotatoresearch.com Volume XVI, Number 14 October 6, 2016 Matrimony vine and potato psyllid in the Pacific Northwest: a worrisome marriage? David R. Horton, Jenita Thinakaran, W. Rodney Cooper, Joseph E. Munyaneza USDA-ARS Carrie H. Wohleb, Timothy D. Waters, William E. Snyder, Zhen “Daisy” Fu, David W. Crowder Washington State University Andrew S. Jensen Northwest Potato Research Consortium Until the 2011 growing season, potato psyllid was considered to be primarily or strictly a problem in regions outside of Washington, Idaho, and Oregon. This bit of complacency is fairly understandable. Despite a history of psyllid outbreaks in North America known from at least the late 1800s, no wide-scale damage had been seen in regions of the Pacific Northwest, outside of some hotspots in southeast Idaho (Fig. 1). Indeed, the accepted wisdom in the 1900s was that potato psyllid was unable to overwinter in northern latitudes, and that outbreaks extending into Montana and similar latitudes were due to dispersal by psyllids northwards from winter and spring habitats in the southern U.S. and northern Mexico (Fig. 1). The perception that potato psyllid was not a concern in the Pacific Northwest was shattered in 2011, when an outbreak of zebra chip disease caused substantial economic damage in all three states. Five years later, we still do not know what conditions led to that outbreak. The most important question was and continues to be: what are the sources of potato psyllids that colonize potato fields in late May and early June? Not Figure 1. -
Direct Shoot Organogenesis from Lycium Chinense Miller Leaf Explants and Assessment of Genetic Stability Using ISSR Markers
agronomy Article Direct Shoot Organogenesis from Lycium chinense Miller Leaf Explants and Assessment of Genetic Stability Using ISSR Markers Woo-Suk Jung 1, Ill-Min Chung 1, Seung-Hyun Kim 1, Hee-Yeon Chi 1, Chang Yeon Yu 2 and Bimal Kumar Ghimire 1,* 1 Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; [email protected] (W.-S.J.); [email protected] (I.-M.C.); [email protected] (S.-H.K.); [email protected] (H.-Y.C.) 2 Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-010-77141178 Abstract: An efficient in vitro direct shoot regeneration system has been described for Lycium chinense Miller using leaf explants. Influence of various parameters such as growth regulator concentration, explant type, effect of basal salt type, Murashige and Skoog (1962) medium (MS), Schenk and Hildebrandt (1972) medium (SH), Gamborg et al. (1968) medium (B5), and carbon sources (sucrose, maltose, and fructose) on the regenerating shoots has been studied. Micromorphological studies and genetic fidelity of regenerated shoots were assessed and compared with those of the donor plants. Among the different concentrations of plant growth regulator (PGRs) tested, MS supplemented with Citation: Jung, W.-S.; Chung, I.-M.; lower concentration of 6-benzylaminopurine (BAP) (0.5 mgL−1) and thidiazuron (TDZ) (0.5 mgL−1) Kim, S.-H.; Chi, H.-Y.; Yu, C.Y.; increased the frequency of shoot. Comparatively, indole-3-butyric acid (IBA) was more effective in Ghimire, B.K. -
Currant Report 2001
Currantly Speaking, Ribes Gets a Bum Rap By Bob Peterson & Jacqueline King, WSU – Mount Vernon Description & History The genus Ribes is the taxonomic home to the American Gooseberry (R. hirtellum), the European Gooseberry (R. grossularia), the European red, pink, and white currant species (R. rubrum, R. petraeum, and R. sativum), and the black currant species from Europe and Asia (R. nigrum and R. ussuriense). A new addition to the Ribes taxonomy grouping is 'Jostaberry' (R. nigrum x hirtellum) a hybridization of black currant and gooseberry. The Ribes genus is native to the Northern Hemisphere with the bulk of commercial production centered in Northern Europe. Ribes species are well adapted to USDA Hardiness Zones 3 to 5, and to cooler, more temperate climate areas with sufficient winter chilling such as we have in the Pacific Northwest. Somewhat susceptible to intense sun and heat, they are more adapted to partial shade and northern exposure sites. Cultivated in Europe since the early 1500's and brought over to North America by colonists in the late 1700's, currants are prized for their culinary versatility, be it fresh dried, juiced, fermented, cooked or preserved. The first red currant recipes came to America with immigrants from Scotland, England, Wales and France and included classics like Cumberland sauce, summer pudding, and the famous French preserve, Bar le Duc jelly, from the town of the same name in Lorraine. Commercial Production For growersinterested in currants as an alternative crop, the juice market is probably the most promising. The cool maritime climate of western Washington is well suited to production of high quality fruit. -
Goji Who? Morphological and DNA Based Authentication of a “Superfood”
fpls-09-01859 December 16, 2018 Time: 13:5 # 1 ORIGINAL RESEARCH published: 18 December 2018 doi: 10.3389/fpls.2018.01859 Goji Who? Morphological and DNA Based Authentication of a “Superfood” Sascha Wetters*, Thomas Horn and Peter Nick Molecular Cell Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany “Goji” (Lycium barbarum and Lycium chinense) is a generic name for medical plants with a long historical background in the traditional Chinese medicine. With the emerging trend of “Superfoods” several years ago, Goji berries soon became an established product in European countries and not only are the most popular product of traditional Chinese medicine outside of China but to this day one of the symbols of the entire “Superfood” trend. However, since Goji is an umbrella term for different plant species that are closely related, mislabeling and adulterations (unconsciously or purposely) are possible. We carefully verified the identity of Goji reference plant material based on morphological traits, mainly floral structures of several inflorescences of each individual, Edited by: Jiang Xu, in order to create a robust background for the downstream applications that were used China Academy of Chinese Medical on those reference plants and additionally on commercial Goji products. We report Sciences, China morphological and molecular based strategies for the differentiation of Lycium barbarum Reviewed by: and Lycium chinense. The two different Goji species vary significantly in seed size, Rosemary White, Commonwealth Scientific with an almost double average seed area in Lycium chinense compared to Lycium and Industrial Research Organisation barbarum. Differences could be traced on the molecular level as well; using the psbA- (CSIRO), Australia Hugo J. -
Medicinal Value of Wolfberry (Lycium Barbarum
Journal of Medicinal Plants Studies 2019; 7(4): 90-97 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Medicinal value of wolfberry (Lycium barbarum L.) NAAS Rating: 3.53 JMPS 2019; 7(4): 90-97 © 2019 JMPS Received: 04-05-2019 Suvd-Erdene Byambasuren, Junru Wang and Gokul Gaudel Accepted: 06-06-2019 Abstract Suvd-Erdene Byambasuren Wolfberry is a kind of the multipurpose medicinal plant. In world the genus Lycium (family Solanaceae) Shaanxi Key Laboratory of has eighty species. Lycium species hold diverse varieties of nutrients and bioactive elements, for example Natural Products & Chemical vitamins, carotenoids, flavonoids, polyunsaturated fatty acids, free amino acids and elemental Biology, College of Chemistry & Pharmacy, Northwest A&F components. It appears very effective in treatment of liver, eyes and many other diseases. It has a plenty University, 22 Xinong Road, of several pharmacological and therapeutic actions such as antioxidant, immunomodulatory, anti- Yangling 712100, Shaanxi, China inflammatory, anti-atherogenic, anti-fibrotic, anti-mutagenic, anti-tumer, anti-radiation, anti-fatigue, anti- aging, anti-stress, anti-yeast, cardio protective and wound healing. Wolfberry has attracted attention Junru Wang world over due to its nutritional and medicinal values. This review paper highlights the importance of Shaanxi Key Laboratory of Lycium plant parts, i.e., Fruit, flower, leaves, bark and root for curing, also encourages the upcoming Natural Products & Chemical researchers to work on wonder species. Biology, College of Chemistry & Pharmacy, Northwest A&F Keywords: Wolfberry, pharmacological, Lycium, medicine University, 22 Xinong Road, Yangling 712100, Shaanxi, China Introduction Gokul Gaudel The plant Lycium barbarum (belonging to the Solanaco family) has many names, but its (1) Key Laboratory of English name is Wolfberry, in China it is called “Gouqizi”. -
Chemical Properties, Fatty-Acid Composition, and Antioxidant Activity of Goji Berry (Lycium Barbarum L. and Lycium Chinense Mill.) Fruits
antioxidants Article Chemical Properties, Fatty-Acid Composition, and Antioxidant Activity of Goji Berry (Lycium barbarum L. and Lycium chinense Mill.) Fruits Prodromos Skenderidis 1,2 , Dimitrios Lampakis 2,* , Ioannis Giavasis 3 , Stefanos Leontopoulos 2, Konstantinos Petrotos 2, Christos Hadjichristodoulou 1 and Andreas Tsakalof 1 1 Department of Medicine, Lab of Hygiene and Epidemiology, University of Thessaly, Papakyriazi 22, 41222 Larissa, Greece; [email protected] (P.S.); [email protected] (C.H.); [email protected] (A.T.) 2 Department of Biosystems Engineering/Agricultural Technology, Technological Educational Institute of Thessaly, 41110 Larissa, Greece; [email protected] (S.L.); [email protected] (K.P.) 3 Department of Food Technology, Technological Educational Institute of Thessaly, 43100 Karditsa, Greece; [email protected] * Correspondence: [email protected] Received: 7 February 2019; Accepted: 5 March 2019; Published: 10 March 2019 Abstract: In this study, the content composition and antioxidant activity of goji berry fruits from two species (Lycium barbarum and Lycium chinense) were assessed. The total carbohydrate and phenolic contents were evaluated using attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy, while the antioxidant activity of fruits was examined with two in vitro methods, which are based on the scavenging activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2’-azino-bis(3-ethyl-benzthiazoline-sulfonic acid) (ABTS•+) free radicals. The fatty-acid profile was determined using gas chromatography coupled with mass spectrometry (GC-MS). The results of this study indicate that the fruits of L. barbarum present higher concentrations in carbohydrates and phenolics than L. chinense Mill. fruits. Furthermore, the antioxidant activity based on the half maximal + inhibitory concentration (IC50) measurements of DPPH• and ABTS• free-radical scavenging was higher in L. -
Positional Distribution of Fatty Acids in Plant Triacylglycerols: Contributing Factors and Chromatographic/Mass Spectrometric Analysis
POSITIONAL DISTRIBUTION OF FATTY ACIDS IN PLANT TRIACYLGLYCEROLS: CONTRIBUTING FACTORS AND CHROMATOGRAPHIC/MASS SPECTROMETRIC ANALYSIS HEIDI LESKINEN Department of Biochemistry and Food Chemistry, University of Turku Turku 2010 Supervised by Professor Heikki Kallio, Ph.D. Department of Biochemistry and Food Chemistry University of Turku Turku, Finland Jukka-Pekka Suomela, Ph.D. Department of Biochemistry and Food Chemistry University of Turku Turku, Finland Reviewed by Docent Päivi Laakso, Ph.D. Eurofins Scientific Finland Oy Raisio, Finland Wm. Craig Byrdwell, Ph.D. U.S.D.A.- Agricultural Research Service Beltsville Human Nutrition Research Center Beltsville, Maryland, USA Opponent Professor Arnis Kuksis, Ph.D. Banting and Best Department of Medical Research University of Toronto Toronto, Ontario, Canada ISBN 978-951-29-4163-6 (PRINT) ISBN 978-951-29-4164-3 (PDF) Painosalama Oy – Turku, Finland 2009 In memory of my beloved father, who encouraged and supported me in my studies CONTENTS ABSTRACT............................................................................................................................... 6 LIST OF ABBREVIATIONS................................................................................................... 8 SYSTEMATIC NAMES, TRIVIAL NAMES AND ABBREVIATIONS OF FATTY ACIDS DISCUSSED IN THE TEXT...................................................................................... 10 LIST OF ORIGINAL PUBLICATIONS................................................................................ 11 1 INTRODUCTION.................................................................................................................