1 Understanding the Stability, Biological Impact, and Exposure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ellagitannins with a Glucopyranose Core Have Higher Affinity to Proteins Than Acyclic Ellagitannins by Isothermal Titration Calorimetry
Ellagitannins with a glucopyranose core have higher affinity to proteins than acyclic ellagitannins by isothermal titration calorimetry Article Supplemental Material Karonen, M., Oraviita, M., Mueller-Harvey, I., Salminen, J.-P. and Green, R. J. (2019) Ellagitannins with a glucopyranose core have higher affinity to proteins than acyclic ellagitannins by isothermal titration calorimetry. Journal of Agricultural and Food Chemistry, 67 (46). pp. 12730-12740. ISSN 0021-8561 doi: https://doi.org/10.1021/acs.jafc.9b04353 Available at http://centaur.reading.ac.uk/87023/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1021/acs.jafc.9b04353 Publisher: American Chemical Society All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Supporting Information Ellagitannins with a Glucopyranose Core Have Higher Affinity to Proteins than Acyclic Ellagitannins by Isothermal Titration Calorimetry Maarit Karonen*,†, Marianne Oraviita†, Irene Mueller-Harvey‡, Juha-Pekka Salminen†, and Rebecca J. Green*,§ †Natural Chemistry Research Group, Department of Chemistry, University of Turku, Vatselankatu 2, Turun Yliopisto, Turku FI-20014, Finland ‡School of Agriculture, Policy and Development, University of Reading, Earley Gate, P.O. Box 236, Reading RG6 6AT, United Kingdom §School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights, P.O. -
Relatives of Temperate Fruits) of the Book Series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources Ed C
Volume 6 (Relatives of Temperate Fruits) of the book series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources ed C. Kole 2011 p179-197 9 Rubus J. Graham* and M. Woodhead Scottish Crop Research Institute, Dundee, DD2 5DA, UK *Corresponding author: [email protected] Abstract The Rosaceae family consists of around 3, 000 species of which 500 belong to the genus Rubus. Ploidy levels range from diploid to dodecaploid with a genomic number of 7, and members can be difficult to classify into distinct species due to hybridization and apomixes. Species are distributed widely across Asia, Europe, North and South America with the center of diversity now considered to be in China, where there are 250-700 species of Rubus depending on the taxonomists. Rubus species are an important horticultural source of income and labor being produced for the fresh and processing markets for their health benefits. Blackberries and raspberries have a relatively short history of less than a century as cultivated crops that have been enhanced through plant breeding and they are only a few generations removed from their wild progenitor species. Rubus sp. are typically found as early colonizers of disturbed sites such as pastures, along forest edges, in forest clearings and along roadsides. Blackberries are typically much more tolerant of drought, flooding and high temperatures, while red raspberries are more tolerant of cold winters. Additionally, they exhibit vigorous vegetative reproduction by either tip layering or root suckering, permitting Rubus genotypes to cover large areas. The attractiveness of the fruits to frugivores, especially birds, means that seed dispersal can be widespread with the result that Rubus genotypes can very easily be spread to new sites and are very effective, high-speed invaders. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
UNIVERSITY of CALIFORNIA Los Angeles Ellagic Acid and Urolithin
UNIVERSITY OF CALIFORNIA Los Angeles Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biochemistry, Molecular and Structural Biology by Brenda Chan 2018 © Copyright by Brenda Chan 2018 ABSTRACT OF THE THESIS Ellagic Acid and Urolithin A Improve Insulin Sensitivity in Diet-Induced Insulin Resistant Mice and Reduce Detrimental Effects of Palmitate Administration in Differentiated C2C12 Myotubes. by Brenda Chan Master of Science in Biochemistry, Molecular and Structural Biology University of California, Los Angeles, 2018 Professor Catherine F. Clarke, Chair Insulin resistance has been spreading as food and sedentary lifestyles are becoming more common. Major bodily complications often result, necessitating a search for affordable solutions. Phytochemicals are commonly used in alternative medicine but less so in areas where obesity and T2D prevail. This thesis studies ellagic acid (EA) and its metabolite urolithin A (UA) as potential treatments for insulin resistance, focusing on the main site of glucose uptake, skeletal muscle. In diet-induced insulin-resistant mice, long-term dietary EA&UA administration reduced glucose levels in IPITTs, while UA alone also reduced serum FFA and fasting glucose levels. Mitochondrial turnover and ROS detoxification markers increased with treatment, indicating improved mitochondrial quality control. Differentiated C2C12 mouse myotubes were utilized to study cellular effects of EA and UA. In insulin resistant myotubes, treatment enhanced ATP ii production and reduced ROS, cytotoxicity, and apoptosis. With insulin, UA increased uncoupled respiration while decreasing ROS, implying increased fuel oxidation without adding oxidative stress. -
Pomegranate: Nutraceutical with Promising Benefits on Human Health
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 Review Pomegranate: nutraceutical with promising benefits on human health Anna Caruso 1, +, Alexia Barbarossa 2,+, Antonio Tassone 1 , Jessica Ceramella 1, Alessia Carocci 2,*, Alessia Catalano 2,* Giovanna Basile 1, Alessia Fazio 1, Domenico Iacopetta 1, Carlo Franchini 2 and Maria Stefania Sinicropi 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende (Italy); anna.caruso@unical .it (Ann.C.), [email protected] (A.T.), [email protected] (J.C.), [email protected] (G.B.), [email protected] (A.F.), [email protected] (D.I.), [email protected] (M.S.S.) 2 Department of Pharmacy‐Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari (Italy); [email protected] (A.B.), [email protected] (Al.C.), [email protected] (A.C.), [email protected] (C.F.) + These authors equally contributed to this work. * Correspondence: [email protected] Abstract: The pomegranate, an ancient plant native to Central Asia, cultivated in different geographical areas including the Mediterranean basin and California, consists of flowers, roots, fruits and leaves. Presently, it is utilized not only for the exterior appearance of its fruit but above all, for the nutritional and health characteristics of the various parts composing this last one (carpellary membranes, arils, seeds and bark). The fruit, the pomegranate, is rich in numerous chemical compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) of high biological and nutraceutical value that make it the object of study for many research groups, particularly in the pharmaceutical sector. -
Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity Through Augmentation of Mitochondrial Function and Biogenesis
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nutrition and Health Sciences -- Faculty Publications Nutrition and Health Sciences, Department of 2019 Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity through Augmentation of Mitochondrial Function and Biogenesis Ashley Mulcahy Toney University of Nebraska-Lincoln Rong Fan University of Nebraska-Lincoln Yibo Xian University of Nebraska-Lincoln Virginia Chaidez University of Nebraska-Lincoln, [email protected] Amanda E. Ramer-Tait University of Nebraska-Lincoln, [email protected] FSeeollow next this page and for additional additional works authors at: https:/ /digitalcommons.unl.edu/nutritionfacpub Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Enzymes and Coenzymes Commons, Human and Clinical Nutrition Commons, Molecular, Genetic, and Biochemical Nutrition Commons, and the Other Nutrition Commons Toney, Ashley Mulcahy; Fan, Rong; Xian, Yibo; Chaidez, Virginia; Ramer-Tait, Amanda E.; and Chung, Soonkyu, "Urolithin A, a Gut Metabolite, Improves Insulin Sensitivity through Augmentation of Mitochondrial Function and Biogenesis" (2019). Nutrition and Health Sciences -- Faculty Publications. 238. https://digitalcommons.unl.edu/nutritionfacpub/238 This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nutrition and Health Sciences -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ashley Mulcahy Toney, Rong Fan, Yibo Xian, Virginia Chaidez, Amanda E. Ramer-Tait, and Soonkyu Chung This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ nutritionfacpub/238 Published in Obesity Biology and Integrated Physiology 27 (2019), pp. -
In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: a Case of Padma Hepatenr Formulation
Article In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepatenr Formulation Daniil N. Olennikov 1,*, Nina I. Kashchenko 1,: and Nadezhda K. Chirikova 2,: Received: 28 August 2015 ; Accepted: 30 September 2015 ; Published: 13 October 2015 1 Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy Street 6, Ulan-Ude 670-047, Russia; [email protected] 2 Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian; [email protected] * Correspondence: [email protected]; Tel.: +7-9021-600-627; Fax: +7-3012-434-243 : These authors contributed equally to this work. Abstract: Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media. -
6 Health Aspects and Antiaflatoxigenic Activity of Phytochemicals in Tree
OF Health Aspects 6 and Antiaflatoxigenic Activity of Phytochemicals in Tree Nuts Russell]. Molyneux, Noreen Mahoney, long H. Kim, and Bruce C. Campbell CONTENTS 6.1 Introduction............................................................................................................................. 95 6.2 Aflatoxinsin Tree Nuts ........................................................................................................... 96 6.3 Allatoxin Resistance Phytochemicals in Tree Nuts................................................................97 6.3.1 Varietal Resistance of Tree Nut Species .....................................................................98 6.3.2 Antiaflatoxigenic Constituents in Specific Tissues .....................................................98 6.4 Isolation and Identification of Walnut Antiatlatoxigenic Constituents...................................99 6.4.1 Bioassay-Directed Fractionation .................................................................................99 6.4.2 Analysis of Hydrolysable Tannin Content in Walnuts ..............................................100 6.4.3 Gallic and Ellagic Acid Content in Tree Nuts...........................................................101 6.4.3.1 Variation of Gallic and Ellagic Acids with Maturity .................................101 6.4.3.2 Variation of Gallic and Ellagic Acids with Cultivar..................................101 6.4.3.3 Structure—Activity Relationships ...............................................................103 6.5 Mechanism -
Table 2 of Supporting Information
Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2016 Table S1 Supplementary Information. Optimized SRM conditions used for quantification for the analysis of phenolic compounds by UPLC-MS/MS. Quantification Phenolic compound MW Collision energy Standard used for quantification SRM Cone voltage (v) (eV) Catechol 110 108.9 90.9 40 15 Catechol Catechol sulfate 190 189 109 20 15 Catechol Catechol glucuronide 286 285 123 40 15 Catechol Pyrogallol sulfate 206 205 125 20 15 Catechol Methyl pyrogallol sulfate 220 219 124 20 25 Catechol Pyrogallol glucuronide 302 301 125 20 10 Catechol Pyrogallol glucuronide-sulfate 382 381 125 20 10 Catechol p-Hydroxybenzoic acid 138 137 93 30 15 p-Hydroxybenzoic acid Hydroxybenzoic acid 138 137 93 30 15 p-Hydroxybenzoic acid Protocatechuic acid 154 153 109 40 15 Protocatechuic acid Gallic acid 170 169 125 35 10 Gallic acid Gallic acid hexoside 332 331 169 40 15 Gallic acid Mono-O-galloylquinic acid 344 343 191 40 15 Gallic acid Di-O-galloylquinic acid 496 495 191 40 25 Gallic acid Tri-O-galloylquinic acid 648 647 495 40 15 Gallic acid Tetra-O-galloylquinic acid 630 629 477 40 15 Gallic acid Mono-O-galloylshikimic acid 326 325 169 40 20 Gallic acid Di-O-galloylshikimic acid 478 477 325 40 20 Gallic acid Gallic acid sulphate 250 249 169 35 15 Gallic acid Gallic acid glucuronide 346 345 169 35 15 Gallic acid Syringic acid 198 197 182 30 10 Syringic acid Ellagic acid arabinoside 434 433 300 40 30 Ellagic acid Ellagic acid glucuronide -
Concentrations of Blood Serum and Urinal Ellagitannin Metabolites Depend Largely on the Post-Intake Time and Duration of Strawberry Phenolics Ingestion in Rats
Pol. J. Food Nutr. Sci., 2019, Vol. 69, No. 4, pp. 379–386 DOI: 10.31883/pjfns/111866 http://journal.pan.olsztyn.pl Original article Section: Nutritional Research Concentrations of Blood Serum and Urinal Ellagitannin Metabolites Depend Largely on the Post-Intake Time and Duration of Strawberry Phenolics Ingestion in Rats Ewa Żary-Sikorska1*, Monika Kosmala2, Joanna Milala2, Bartosz Fotschki3, Katarzyna Ognik4, Jerzy Juśkiewicz3 1Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology University of Science and Technology, Kaliskiego 7, 85–796 Bydgoszcz, Poland 2Institute of Food Technology and Analysis, Łódź University of Technology, Stefanowskiego 4/10, 90–924 Łódź, Poland 3Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–748 Olsztyn, Poland 4Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Akademicka 13, 20–950 Lublin, Poland Key words: strawberry, ellagitannins, metabolites, urine, serum, rat The different duration of a strawberry phenolic fraction intake and different post-intake time were experimental factors affecting the concentrations of ellagitannin metabolites in the urine and blood serum of rats. For four days, the animals were gavaged once a day as follows: group C (water, days 1–4), group F1–4 (fraction, days 1–4), group F1–3 (fraction, days 1–3; water, day 4), group F1–2 (fraction, days 1, 2; water, days 3, 4), group F3–4 (water, days 1, 2; fraction, days 3, 4), and group F4 (water, days 1–3; and fraction, day 4). The daily dosage of the fraction gavaged to one rat was 20 mg/kg of body weight. -
Universidade Federal Do Rio De Janeiro Kim Ohanna
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO KIM OHANNA PIMENTA INADA EFFECT OF TECHNOLOGICAL PROCESSES ON PHENOLIC COMPOUNDS CONTENTS OF JABUTICABA (MYRCIARIA JABOTICABA) PEEL AND SEED AND INVESTIGATION OF THEIR ELLAGITANNINS METABOLISM IN HUMANS. RIO DE JANEIRO 2018 Kim Ohanna Pimenta Inada EFFECT OF TECHNOLOGICAL PROCESSES ON PHENOLIC COMPOUNDS CONTENTS OF JABUTICABA (MYRCIARIA JABOTICABA) PEEL AND SEED AND INVESTIGATION OF THEIR ELLAGITANNINS METABOLISM IN HUMANS. Tese de Doutorado apresentada ao Programa de Pós-Graduação em Ciências de Alimentos, Universidade Federal do Rio de Janeiro, como requisito parcial à obtenção do título de Doutor em Ciências de Alimentos Orientadores: Profa. Dra. Mariana Costa Monteiro Prof. Dr. Daniel Perrone Moreira RIO DE JANEIRO 2018 DEDICATION À minha família e às pessoas maravilhosas que apareceram na minha vida. ACKNOWLEDGMENTS Primeiramente, gostaria de agradecer a Deus por ter me dado forças para não desistir e por ter colocado na minha vida “pessoas-anjo”, que me ajudaram e me apoiaram até nos momentos em que eu achava que ia dar tudo errado. Aos meus pais Beth e Miti. Eles não mediram esforços para que eu pudesse receber uma boa educação e para que eu fosse feliz. Logo no início da graduação, a situação financeira ficou bem apertada, mas eles continuaram fazendo de tudo para me ajudar. Foram milhares de favores prestados, marmitas e caronas. Meu pai diz que fez anos de curso de inglês e espanhol, porque passou anos acordando cedo no sábado só para me levar no curso que eu fazia no Fundão. Tinha dia que eu saía do curso morta de fome e quando eu entrava no carro, tinha uma marmita com almoço, com direito até a garrafa de suco. -
Ellagitannin–Lipid Interaction by HR-MAS NMR Spectroscopy
molecules Article Ellagitannin–Lipid Interaction by HR-MAS NMR Spectroscopy Valtteri Virtanen * , Susanna Räikkönen, Elina Puljula and Maarit Karonen Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland; [email protected] (S.R.); [email protected] (E.P.); maarit.karonen@utu.fi (M.K.) * Correspondence: vtjvir@utu.fi; Tel.: +358-29-450-3205 Abstract: Ellagitannins have antimicrobial activity, which might be related to their interactions with membrane lipids. We studied the interactions of 12 different ellagitannins and pentagalloylglucose with a lipid extract of Escherichia coli by high-resolution magic angle spinning NMR spectroscopy. The nuclear Overhauser effect was utilized to measure the cross relaxation rates between ellagitannin and lipid protons. The shifting of lipid signals in 1H NMR spectra of ellagitannin–lipid mixture due to ring current effect was also observed. The ellagitannins that showed interaction with lipids had clear structural similarities. All ellagitannins that had interactions with lipids had glucopy- ranose cores. In addition to the central polyol, the most important structural feature affecting the interaction seemed to be the structural flexibility of the ellagitannin. Even dimeric and trimeric ellagitannins could penetrate to the lipid bilayers if their structures were flexible with free galloyl and hexahydroxydiphenoyl groups. Keywords: E. coli; HR-MAS-NMR; interaction; lipid membrane; tannins; UPLC-DAD-MS Citation: Virtanen, V.; Räikkönen, S.; Puljula, E.; Karonen, M. 1. Introduction Ellagitannin–Lipid Interaction by HR-MAS NMR Spectroscopy. Tannins are a group of specialized plant metabolites, which, when included in the di- Molecules 2021, 26, 373. etary feed of ruminants, have been shown to induce many beneficial effects such as increas- https://doi.org/10.3390/ ing their effective amino acid absorption, lowering their methane production, and acting as molecules26020373 anthelmintics [1–6].