Mouse Chchd2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Chchd2 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Chchd2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Chchd2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Chchd2 gene (NCBI Reference Sequence: NM_024166 ; Ensembl: ENSMUSG00000070493 ) is located on Mouse chromosome 5. 4 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 4 (Transcript: ENSMUST00000094280). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Chchd2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-326M9 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 11.11% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 3014 bp, and the size of intron 2 for 3'-loxP site insertion: 1354 bp. The size of effective cKO region: ~750 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Chchd2 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7250bp) | A(23.99% 1739) | C(22.68% 1644) | T(29.05% 2106) | G(24.29% 1761) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr5 - 129884434 129887433 3000 browser details YourSeq 201 1350 1786 3000 90.1% chr18 - 60902538 60903146 609 browser details YourSeq 190 1350 1603 3000 92.9% chr11 - 113670879 113671227 349 browser details YourSeq 185 1350 1599 3000 92.3% chr11 - 77638951 77642925 3975 browser details YourSeq 173 1350 1775 3000 85.8% chr15 + 81517571 81517979 409 browser details YourSeq 168 1228 1525 3000 90.0% chr2 - 155693906 155694525 620 browser details YourSeq 166 1349 1594 3000 89.3% chr1 + 74673631 74674173 543 browser details YourSeq 164 1230 1520 3000 91.1% chr1 - 134484416 134485071 656 browser details YourSeq 163 1346 1649 3000 88.7% chr14 + 26857541 26858082 542 browser details YourSeq 159 1222 1516 3000 90.0% chr17 + 53532874 53533312 439 browser details YourSeq 155 1231 1525 3000 88.7% chr18 - 49712776 49877499 164724 browser details YourSeq 155 1239 1525 3000 91.1% chr14 + 7763242 7763850 609 browser details YourSeq 155 1228 1573 3000 87.5% chr11 + 107593046 107593507 462 browser details YourSeq 154 1322 1520 3000 89.4% chr7 + 25441261 25441882 622 browser details YourSeq 150 1349 1528 3000 92.3% chr18 - 36623361 36623708 348 browser details YourSeq 150 1347 1525 3000 93.2% chr10 - 116670759 116670942 184 browser details YourSeq 149 1222 1509 3000 81.5% chr4 - 41152465 41152712 248 browser details YourSeq 149 82 232 3000 99.4% chr4 + 34485727 34485877 151 browser details YourSeq 149 1350 1648 3000 87.6% chr11 + 76291425 76291988 564 browser details YourSeq 146 1348 1534 3000 90.7% chr5 - 150406005 150406202 198 Note: The 3000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr5 - 129880684 129883683 3000 browser details YourSeq 485 883 1558 3000 97.5% chr5 + 129900123 129901036 914 browser details YourSeq 374 1102 2525 3000 92.4% chrX - 103762794 103763185 392 browser details YourSeq 365 1102 2525 3000 93.1% chr4 + 34486129 34486503 375 browser details YourSeq 360 1102 2523 3000 92.8% chr4 - 148067820 148068195 376 browser details YourSeq 293 1102 2525 3000 87.1% chr15 + 63760442 63760816 375 browser details YourSeq 292 1114 2525 3000 86.2% chr4 - 6507714 6508090 377 browser details YourSeq 286 1102 2525 3000 88.5% chrX - 142533263 142533603 341 browser details YourSeq 262 1102 2510 3000 85.5% chr11 - 6650181 6650539 359 browser details YourSeq 186 2301 2525 3000 92.7% chr7 + 28000121 28000347 227 browser details YourSeq 167 2287 2525 3000 89.2% chr16 + 30255536 30255785 250 browser details YourSeq 162 2301 2525 3000 95.1% chr13 - 26899241 26899465 225 browser details YourSeq 143 1421 1581 3000 92.4% chr9 - 65599551 65599706 156 browser details YourSeq 137 1421 1580 3000 91.0% chr7 - 19122464 19122619 156 browser details YourSeq 130 1432 1581 3000 95.9% chr11 + 102191689 102191851 163 browser details YourSeq 126 1437 1581 3000 96.4% chr1 + 72649951 72650096 146 browser details YourSeq 121 1455 1583 3000 96.9% chr4 - 59559698 59559826 129 browser details YourSeq 118 1450 1581 3000 94.7% chr8 - 3561153 3561284 132 browser details YourSeq 116 1449 1580 3000 94.0% chr1 + 145403637 145403768 132 browser details YourSeq 108 1459 1581 3000 94.4% chr10 - 76390754 76390878 125 Note: The 3000 bp section downstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Chchd2 coiled-coil-helix-coiled-coil-helix domain containing 2 [ Mus musculus (house mouse) ] Gene ID: 14004, updated on 21-Aug-2019 Gene summary Official Symbol Chchd2 provided by MGI Official Full Name coiled-coil-helix-coiled-coil-helix domain containing 2 provided by MGI Primary source MGI:MGI:1261428 See related Ensembl:ENSMUSG00000070493 Gene type protein coding RefSeq status PROVISIONAL Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Etohi6; AL033347 Expression Ubiquitous expression in adrenal adult (RPKM 1404.4), duodenum adult (RPKM 1158.2) and 28 other tissues See more Orthologs human all Genomic context Location: 5; 5 G1.3 See Chchd2 in Genome Data Viewer Exon count: 4 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 5 NC_000071.6 (129881161..129887470, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 5 NC_000071.5 (130357032..130363340, complement) Chromosome 5 - NC_000071.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Chchd2 ENSMUSG00000070493 Description coiled-coil-helix-coiled-coil-helix domain containing 2 [Source:MGI Symbol;Acc:MGI:1261428] Gene Synonyms Etohi6 Location Chromosome 5: 129,881,156-129,887,470 reverse strand. GRCm38:CM000998.2 About this gene This gene has 2 transcripts (splice variants), 294 orthologues, 1 paralogue and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Chchd2-201 ENSMUST00000094280.3 915 153aa ENSMUSP00000091835.3 Protein coding CCDS19702 Q9D1L0 TSL:1 GENCODE basic APPRIS P1 Chchd2-202 ENSMUST00000131645.1 2069 No protein - Retained intron - - TSL:2 26.32 kb Forward strand 129.875Mb 129.880Mb 129.885Mb 129.890Mb 129.895Mb Genes Zbed5-203 >retained intron (Comprehensive set... Zbed5-201 >protein coding Zbed5-202 >protein coding Contigs < AC242408.2 AC164071.3 > Genes (Comprehensive set... < Phkg1-201protein coding < Chchd2-201protein coding < Phkg1-204protein coding < Gm42790-201TEC < Chchd2-202retained intron < Phkg1-202protein coding < Phkg1-205lncRNA < Phkg1-206retained intron Regulatory Build 129.875Mb 129.880Mb 129.885Mb 129.890Mb 129.895Mb Reverse strand 26.32 kb Regulation Legend CTCF Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000094280 < Chchd2-201protein coding Reverse strand 6.32 kb ENSMUSP00000091... MobiDB lite Low complexity (Seg) PROSITE profiles PS51808 PANTHER PTHR13523:SF3 PTHR13523 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend synonymous variant Scale bar 0 20 40 60 80 100 120 153 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • © 2019 Jan C. Lumibao
    © 2019 Jan C. Lumibao CHCHD2 AND THE TUMOR MICROENVIRONMENT IN GLIOBLASTOMA BY JAN C. LUMIBAO DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nutritional Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2019 Urbana, Illinois Doctoral Committee: Professor Brendan A. Harley, Chair Professor H. Rex Gaskins, Director of Research Assistant Professor Andrew J. Steelman Professor Rodney W. Johnson Professor Emeritus John W. Erdman ABSTRACT Glioblastoma (GBM) is the most common, aggressive, and deadly form of primary brain tumor in adults, with a median survival time of only 14.6 months. GBM tumors present with chemo- and radio-resistance and rapid, diffuse invasion, making complete surgical resection impossible and resulting in nearly universal recurrence. While investigating the genomic landscape of GBM tumors has expanded understanding of brain tumor biology, targeted therapies against cellular pathways affected by the most common genetic aberrations have been largely ineffective at producing robust survival benefits. Currently, a major obstacle to more effective therapies is the impact of the surrounding tumor microenvironment on intracellular signaling, which has the potential to undermine targeted treatments and advance tumor malignancy, progression, and resistance to therapy. Additionally, mitochondria, generally regarded as putative energy sensors within cells, also play a central role as signaling organelles. Retrograde signaling occurring from
    [Show full text]
  • CHCHD2 (NM 016139) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC209806 CHCHD2 (NM_016139) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CHCHD2 (NM_016139) Human Tagged ORF Clone Tag: Myc-DDK Symbol: CHCHD2 Synonyms: C7orf17; MIX17B; MNRR1; NS2TP; PARK22 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC209806 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCGCGTGGAAGCCGAAGCCGCACCTCCCGCATGGCCCCTCCGGCCAGCCGGGCCCCTCAGATGAGAG CTGCACCCAGGCCAGCACCAGTCGCTCAGCCACCAGCAGCGGCACCCCCATCTGCAGTTGGCTCTTCTGC TGCTGCGCCCCGGCAGCCAGTTCTGATGGCCCAGATGGCAACCACTGCAGCTGGCGTGGCTGTGGGCTCT GCTGTGGGGCACACATTGGGTCACGCCATTACTGGGGGCTTCAGTGGAGGAAGTAATGCTGAGCCTGCGA GGCCTGACATCACTTACCAGGAGCCTCAGGGAACCCAGCCAGCACAGCAGCAGCAGCCTTGCCTCTATGA GATCAAACAGTTTCTGGAGTGTGCCCAGAACCAGGGTGACATCAAGCTCTGTGAGGGTTTCAATGAGGTG CTGAAACAGTGCCGACTTGCAAACGGATTGGCC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC209806 protein sequence Red=Cloning site Green=Tags(s) MPRGSRSRTSRMAPPASRAPQMRAAPRPAPVAQPPAAAPPSAVGSSAAAPRQPVLMAQMATTAAGVAVGS AVGHTLGHAITGGFSGGSNAEPARPDITYQEPQGTQPAQQQQPCLYEIKQFLECAQNQGDIKLCEGFNEV LKQCRLANGLA TRTRPLEQKLISEEDLAANDILDYKDDDDKV Restriction Sites: SgfI-MluI This product
    [Show full text]
  • Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease
    cells Review Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease Stephanie Gladyck 1, Siddhesh Aras 1,2, Maik Hüttemann 1 and Lawrence I. Grossman 1,2,* 1 Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; [email protected] (S.G.); [email protected] (S.A.); [email protected] (M.H.) 2 Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA * Correspondence: [email protected] Abstract: Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein–protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species.
    [Show full text]
  • Chchd10, a Novel Bi-Organellar Regulator of Cellular Metabolism: Implications in Neurodegeneration
    Wayne State University Wayne State University Dissertations January 2018 Chchd10, A Novel Bi-Organellar Regulator Of Cellular Metabolism: Implications In Neurodegeneration Neeraja Purandare Wayne State University, [email protected] Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Molecular Biology Commons Recommended Citation Purandare, Neeraja, "Chchd10, A Novel Bi-Organellar Regulator Of Cellular Metabolism: Implications In Neurodegeneration" (2018). Wayne State University Dissertations. 2125. https://digitalcommons.wayne.edu/oa_dissertations/2125 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. CHCHD10, A NOVEL BI-ORGANELLAR REGULATOR OF CELLULAR METABOLISM: IMPLICATIONS IN NEURODEGENERATION by NEERAJA PURANDARE DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2018 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved By: Advisor Date © COPYRIGHT BY NEERAJA PURANDARE 2018 All Rights Reserved ACKNOWLEDGEMENTS First, I would I like to express the deepest gratitude to my mentor Dr. Grossman for the advice and support and most importantly your patience. Your calm and collected approach during our discussions provided me much needed perspective towards prioritizing and planning my work and I hope to carry this composure in my future endeavors. Words cannot describe my gratefulness for the support of Dr. Siddhesh Aras. You epitomize the scientific mind. I hope that I have inculcated a small fraction of your scientific thought process and I will carry this forth not just in my career, but for everything else that I do.
    [Show full text]
  • CHCHD2 Antibody Cat
    CHCHD2 Antibody Cat. No.: 19-066 CHCHD2 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human IMMUNOGEN: A synthetic Peptide of human CHCHD2 TESTED APPLICATIONS: Flow, IHC, WB WB: ,1:200 - 1:500 APPLICATIONS: IHC: ,1:50 - 1:100 Flow: ,1:20 - 1:50 POSITIVE CONTROL: 1) A-549 2) MCF7 PREDICTED MOLECULAR Observed: 17kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal September 30, 2021 1 https://www.prosci-inc.com/chchd2-antibody-19-066.html ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, pH7.3. STORAGE CONDITIONS: Store at 4˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: CHCHD2 Coiled-coil-helix-coiled-coil-helix domain-containing protein 2, mitochondrial, Aging- ALTERNATE NAMES: associated gene 10 protein, HCV NS2 trans-regulated protein, NS2TP, CHCHD2, C7orf17 GENE ID: 51142 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The protein encoded by this gene belongs to a class of eukaryotic CX(9)C proteins characterized by four cysteine residues spaced ten amino acids apart from one another. These residues form disulfide linkages that define a CHCH fold. In response to stress, the protein translocates from the mitochondrial intermembrane space to the nucleus where it binds to a highly conserved 13 nucleotide oxygen responsive element in the promoter of cytochrome oxidase 4I2, a subunit of the terminal enzyme of the electron transport BACKGROUND: chain. In concert with recombination signal sequence-binding protein J, binding of this protein activates the oxygen responsive element at four percent oxygen. In addition, it has been shown that this protein is a negative regulator of mitochondria-mediated apoptosis.
    [Show full text]
  • [KO Validated] CHCHD2 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science [KO Validated] CHCHD2 Rabbit pAb Catalog No.: A16645 KO Validated Basic Information Background Catalog No. The protein encoded by this gene belongs to a class of eukaryotic CX(9)C proteins A16645 characterized by four cysteine residues spaced ten amino acids apart from one another. These residues form disulfide linkages that define a CHCH fold. In response to stress, the Observed MW protein translocates from the mitochondrial intermembrane space to the nucleus where 16kDa it binds to a highly conserved 13 nucleotide oxygen responsive element in the promoter of cytochrome oxidase 4I2, a subunit of the terminal enzyme of the electron transport Calculated MW chain. In concert with recombination signal sequence-binding protein J, binding of this 15kDa protein activates the oxygen responsive element at four percent oxygen. In addition, it has been shown that this protein is a negative regulator of mitochondria-mediated Category apoptosis. In response to apoptotic stimuli, mitochondrial levels of this protein decrease, allowing BCL2-associated X protein to oligomerize and activate the caspase Primary antibody cascade. Pseudogenes of this gene are found on multiple chromosomes. Alternative splicing results in multiple transcript variants. Applications WB, IHC, IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 51142 Q9Y6H1 IHC 1:50 - 1:200 Immunogen 1:50 - 1:200 IF Recombinant fusion protein containing a sequence corresponding to amino acids 75-145 of human CHCHD2 (NP_057223.1). Synonyms CHCHD2;C7orf17;MNRR1;NS2TP;PARK22 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃.
    [Show full text]
  • Loss of Parkinson&Rsquo;S Disease-Associated
    ARTICLE Received 1 Jun 2016 | Accepted 3 Apr 2017 | Published 7 Jun 2017 DOI: 10.1038/ncomms15500 OPEN Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c Hongrui Meng1,*, Chikara Yamashita2,*, Kahori Shiba-Fukushima3, Tsuyoshi Inoshita3, Manabu Funayama1, Shigeto Sato2, Tomohisa Hatta4, Tohru Natsume4, Masataka Umitsu5, Junichi Takagi5, Yuzuru Imai2,6 & Nobutaka Hattori1,2,3,6 Mutations in CHCHD2 have been identified in some Parkinson’s disease (PD) cases. To understand the physiological and pathological roles of CHCHD2, we manipulated the expression of CHCHD2 in Drosophila and mammalian cells. The loss of CHCHD2 in Drosophila causes abnormal matrix structures and impaired oxygen respiration in mitochondria, leading to oxidative stress, dopaminergic neuron loss and motor dysfunction with age. These PD-associated phenotypes are rescued by the overexpression of the translation inhibitor 4E-BP and by the introduction of human CHCHD2 but not its PD-associated mutants. CHCHD2 is upregulated by various mitochondrial stresses, including the destabilization of mitochondrial genomes and unfolded protein stress, in Drosophila. CHCHD2 binds to cytochrome c along with a member of the Bax inhibitor-1 superfamily, MICS1, and modulated cell death signalling, suggesting that CHCHD2 dynamically regulates the functions of cytochrome c in both oxidative phosphorylation and cell death in response to mitochondrial stress. 1 Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan. 2 Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan. 3 Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
    [Show full text]
  • Novel Functions of Mitochondrial Proteins in Health and Disease
    NOVEL FUNCTIONS OF MITOCHONDRIAL PROTEINS IN HEALTH AND DISEASE A Dissertation Presented to the Faculty of the Weill Cornell Graduate School of Medical Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Suzanne R. Burstein June 2017 © 2017 Suzanne R. Burstein NOVEL FUNCTIONS OF MITOCHONDRIAL PROTEINS IN HEALTH AND DISEASE Suzanne R. Burstein, Ph.D. Cornell University 2017 Mitochondria are organelles critical for many cellular functions including energy production, ion homeostasis, cellular protein trafficking, and apoptosis induction. While the mitochondrial protein machinery that performs these roles has been studied for many years, the functions of many of these proteins have not been fully elucidated. This dissertation is focused on understanding the functions of two proteins in mitochondria, and their involvement in disease. We describe a novel function for estrogen receptor beta (ERβ) in brain mitochondria. We find that ERβ modulates cyclophilin D-dependent mitochondrial permeability transition (MPT) in brain. MPT is critical in cell death following brain injuries, such as stroke. Based on sex differences in ERβ modulation of MPT, we suggest that it may contribute to sex differences in cellular responses to ischemia. We also explore the protein CHCHD10, a mitochondrial protein with yet unknown function. This protein is of particular interest, as its mutations have been recently associated with familial myopathy and neurodegenerative diseases, such as ALS. We find that CHCHD10 binds to its homolog CHCHD2, and both of these proteins bind to the mitochondrial protein P32. Transient silencing of CHCHD10 expression in HEK293 cells triggers the induction of mitochondria-dependent apoptosis.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Loss of Function CHCHD10 Mutations in Cytoplasmic TDP-43 Accumulation and Synaptic Integrity
    ARTICLE Received 22 Aug 2016 | Accepted 7 Apr 2017 | Published 6 Jun 2017 DOI: 10.1038/ncomms15558 OPEN Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity Jung-A. A. Woo1,2,*, Tian Liu1,2,*, Courtney Trotter1,2,*, Cenxiao C. Fang1,2, Emillio De Narvaez1,2, Patrick LePochat1,2, Drew Maslar1,2, Anusha Bukhari1,2, Xingyu Zhao1,2, Andrew Deonarine3, Sandy D. Westerheide3 & David E. Kang1,2,4 Although multiple CHCHD10 mutations are associated with the spectrum of familial and sporadic frontotemporal dementia–amyotrophic lateral sclerosis (FTD–ALS) diseases, neither the normal function of endogenous CHCHD10 nor its role in the pathological milieu (that is, TDP-43 pathology) of FTD/ALS have been investigated. In this study, we made a series of observations utilizing Caenorhabditis elegans models, mammalian cell lines, primary neurons and mouse brains, demonstrating that CHCHD10 normally exerts a protective role in mitochondrial and synaptic integrity as well as in the retention of nuclear TDP-43, whereas FTD/ALS-associated mutations (R15L and S59L) exhibit loss of function phenotypes in C. elegans genetic complementation assays and dominant negative activities in mammalian systems, resulting in mitochondrial/synaptic damage and cytoplasmic TDP-43 accumulation. As such, our results provide a pathological link between CHCHD10-associated mitochon- drial/synaptic dysfunction and cytoplasmic TDP-43 inclusions. 1 USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA. 2 Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida 33613, USA. 3 Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, College of Arts and Sciences, Tampa, Florida 33620, USA.
    [Show full text]
  • Identification of CHCHD2 Mutations in Patients with Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Frontotemporal Dementia in China
    MOLECULAR MEDICINE REPORTS 18: 461-466, 2018 Identification ofCHCHD2 mutations in patients with Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal dementia in China XIXI LIU1, BIN JIAO1‑3, WEIWEI ZHANG1, TINGTING XIAO1, LIHUA HOU1, CHUZHENG PAN1, BEISHA TANG1-6 and LU SHEN1‑3,7 1Department of Neurology, Xiangya Hospital; 2Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008; 3National Clinical Research Center for Geriatric Diseases, Changsha, Hunan 410078; 4Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069; 5Collaborative Innovation Center for Brain Science, Shanghai 200032; 6Collaborative Innovation Center for Genetics and Development, Shanghai 200433; 7Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan, Changsha, Hunan 410008, P.R. China Received December 1, 2017; Accepted April 26, 2018 DOI: 10.3892/mmr.2018.8962 Abstract. Recently, the coiled-coil-helix-coiled-coil-helix important functions. Mutations of CHCHD genes have been domain 2 (CHCHD2) gene was identified as a possible causative identified to be associated with various human neurodegenera- gene for Parkinson's disease (PD). Three other neurodegenera- tive diseases (1). CHCHD10, which is a CHCHD protein, was tive diseases, Alzheimer's disease (AD), amyotrophic lateral identified to be associated with amyotrophic lateral sclerosis sclerosis (ALS) and frontotemporal dementia (FTD), share (ALS), frontotemporal dementia (FTD) and Alzheimer's significant overlaps with PD in clinical phenotypes, patho- disease (AD) in Chinese population (2,3). Recently, the logical features and genetic heredities, and it is still unclear CHCHD2 gene was identified as a possible causative gene for whether CHCHD2 variants could explain these three diseases.
    [Show full text]
  • Systematic Analysis of Rare Variants in Mitochondrial Function-Associated Genes for Autosomal-Dominant Parkinson's Disease In
    Systematic analysis of rare variants in mitochondrial function-associated genes for autosomal-dominant Parkinson’s disease in a Chinese population Yongping Chen Sichuan University West China Hospital Xiaojing Gu Sichuan University West China Hospital Ruwei Ou Sichuan University West China Hospital Lingyu Zhang Sichuan University West China Hospital Yanbing Hou Sichuan University West China Hospital Kuncheng Liu Sichuan University West China Hospital Bei Cao Sichuan University West China Hospital Qianqian Wei Sichuan University West China Hospital Wei Song Sichuan University West China Hospital Bi Zhao Sichuan University West China Hospital Ying Wu Sichuan University West China Hospital Jingqiu Cheng Sichuan University West China Hospital huifang shang ( [email protected] ) Sichuan University West China Hospital Department of Neurology https://orcid.org/0000-0003-0947-1151 Research article Keywords: Parkinson’s disease, autosomal dominant, mitochondrial function-associated genes, HTRA2, CHCHD2, burden analysis Posted Date: April 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-23120/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract Background Mitochondrial dysfunction is involved in the pathogenicity of Parkinson’s disease (PD). However, the genetic roles of mitochondrial function-associated genes responsible for PD need to be replicated in different cohorts. Methods Whole-exome and Sanger sequencing were used to identify the genetic etiology of 400 autosomal dominant-inherited PD (ADPD) patients. Variants in six dominant inherited mitochondrial function-associated genes, including HTRA2, CHCHD2, CHCHD10, TRAP1, HSPA9 and RHOT1, were analyzed. Results A total of 12 rare variants identied in the ve genes accounted for 3% of ADPD cases, including 0.5% in HTRA2, 0.8% in CHCHD2, 1% in TRAP1, 0.3% in RHOT1 and 0.5% in HSPA9.
    [Show full text]