Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease cells Review Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease Stephanie Gladyck 1, Siddhesh Aras 1,2, Maik Hüttemann 1 and Lawrence I. Grossman 1,2,* 1 Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; [email protected] (S.G.); [email protected] (S.A.); [email protected] (M.H.) 2 Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA * Correspondence: [email protected] Abstract: Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein–protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and Citation: Gladyck, S.; Aras, S.; Hüttemann, M.; Grossman, L.I. discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX Regulation of COX Assembly and assembly and control of its activity through protein–protein interactions, which is further modulated Function by Twin CX9C by cell signaling pathways. Interestingly, select members of the CX9C protein family, including Proteins—Implications for Human MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria Disease. Cells 2021, 10, 197. https:// but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, doi.org/10.3390/cells10020197 opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease. Received: 21 December 2020 Keywords: intermembrane space proteins; ETC complex assembly; mitochondrial regulation Accepted: 12 January 2021 Published: 20 January 2021 Publisher’s Note: MDPI stays neutral 1. Introduction with regard to jurisdictional claims in Mitochondria are the major source of cellular energy that is required to sustain life. published maps and institutional affil- iations. They are double-membrane organelles in which the process of cellular respiration and ATP production takes place. This process, oxidative phosphorylation, occurs at the electron transport chain (ETC), a series of four protein complexes embedded in the inner mitochon- drial membrane (IM). The complexes create a proton gradient by pumping protons from the matrix to the intermembrane space (IMS), which is coupled with electron transfer down Copyright: © 2021 by the authors. the chain. The electrochemical proton gradient thereby produced is used by ATP synthase Licensee MDPI, Basel, Switzerland. (complex V) to generate ATP from ADP and phosphate. This article is an open access article Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the ETC and is distributed under the terms and responsible for reducing oxygen to water. Physiologically, the mammalian complex is a conditions of the Creative Commons Attribution (CC BY) license (https:// dimer, with each monomer composed of 13 tightly bound subunits embedded in the IM, creativecommons.org/licenses/by/ an assembly supported by several crystal structures resolved from COX in bovine heart [1,2]. 4.0/). However, more recently, monomeric crystal structures of COX were also published [3,4] Cells 2021, 10, 197. https://doi.org/10.3390/cells10020197 https://www.mdpi.com/journal/cells Cells 2021, 10, 197 2 of 26 and monomeric COX was also reported in a supercomplex [5]. It is therefore possible that an equilibrium exists between dimeric and monomeric COX, which could be subject to regulation. In addition, a 14th subunit has been proposed—NDUFA4—which was originally believed to be a subunit of complex I [6,7]. A structural study showed that NDUFA4 appears to be a subunit in the COX monomer, likely adding to the stability of the complex [7]. NDUFA4 as part of the COX monomer is located at the interface of the dimeric complex, where it would prevent or interfere with dimer formation and which could be a reason that the protein was never detected in the dimeric crystal structure. The validity of NDUFA40s role as a true subunit has been questioned and it was argued that, because NDUFA4 may bind to both complexes I and IV and is not consistently found in COX preparations, it may function as an assembly factor for the respirasome [8]. The three largest subunits are encoded by the mitochondrial genome whereas the other subunits are encoded by the nuclear genome. Among the mitochondrial-encoded subunits, subunits I and II contain the catalytic centers. The latter consist of metal centers that are involved in the electron acceptance from complex III via cytochrome c and the pathway of the electron through the complex itself: electrons received from cytochrome c first reach the CuA center in subunit II, are then transferred to heme a in subunit I, and finally reach the heme a3-CuB site of subunit I, where oxygen is reduced to water. There are various modes of regulation of COX activity [1], summarized in Table1. The purpose of this review is to explore the regulation of COX through the interaction with proteins of the twin CX9C family. Members of this protein family have been shown to be important in COX complex assembly and function, as well as for direct regulation of the oxidase [9] (Table2). Note that the 13 tightly bound COX subunits are traditionally distinguished by Roman numerals introduced by the Kadenbach lab, whereas auxiliary proteins are designated with Arabic numerals (yeast nomenclature can be found in Table2 ). Table 1. COX regulation. Types of Regulation of COX Expression of tissue-, developmental-, and/or species-specific isoforms of subunits Interaction with small molecules Reversible phosphorylation of subunits Protein–protein interactions Supercomplex formation The twin CX9C family of proteins is characterized by its unique motif of two cysteines separated by usually nine amino acid residues. This motif is found in the coiled-coil-helix- coiled-coil-helix (CHCH) domain, where pairs of cysteines form a helix turn helix fold by forming disulfide bonds with one another [10–12]. Another family of proteins, called the “small Tim” proteins, contains a similar but shorter twin CX3C motif and plays chaperone roles in the TIM22 pathway for insertion of proteins into the IMS-facing side of the inner membrane (IM) [13]. The CHCH domain is important for the import of the proteins into the intermembrane space (IMS) of the mitochondria. IMS import is facilitated through the Mia40/CHCHD4 redox mechanism [14,15]. The first studies of this family of proteins took place in Saccharomyces cerevisiae, where a detailed study found that 13 of the 14 yeast family members were conserved across species [16]. A follow-up study contained a genome-wide analysis to determine family member functions, with six of the CX9C proteins determined to be involved in COX assembly [9]. Recently, more information has become available through further research into the function of twin CX9C family members. Cells 2021, 10, 197 3 of 26 Table 2. Human and yeast proteins, nomenclature, and functions of twin CX9C proteins with COX [9]. Human Protein Yeast Protein Function CX9C Proteins COX17 Cox17p COX copper chaperone COX19 Cox19p COX assembly CMC1 Cmc1p COX assembly CMC2 Cmc2p COX assembly COA5 Pet191p COX assembly COA6 Coa6p COX assembly CHCHD7 Cox23p COX assembly COX/complex III CHCHD8 Coa4p assembly/function MNRR1/CHCHD2 Mix17p Activity regulation CHCHD10 Mix17p Activity regulation CMC4 Cmc4p Unknown COX VIb1 Cox12p Subunit Cytochrome c Oxidase COX I Cox1p COX II Cox2p COX III Cox3p COX IV Cox4p COX Va Cox5Ap COX Vb Cox5Bp Subunit COX VI Cox6p COX VII Cox7p COX VIII COX8p COX IX Cox9p COX XIII Cox13p 2. COX Regulation through Assembly The biogenesis and maturation of COX is critical for its proper function. There are multiple steps in this tightly regulated process: the insertion of metal groups in COX I and COX II, the import and folding of nuclear encoded subunits, and the proper assembly of the subunits into the complex. Over 30 auxiliary proteins are involved in the biogenesis of the core enzyme composed of COX I, COX II, and COX III [17]. The hypothesized assembly pathway favors a modular–linear assembly, where subunits are first assembled into module intermediates and then these modules are assembled into the COX monomer (Figure1)[ 18,19]. The first step of monomer assembly is the synthesis of mitochondrially encoded COX I, including the insertion of heme a, which is followed by its association with the COX IV and COX Va module [18,20]. The COX II module, which requires the insertion of the CuA center into the subunit before assembly can continue [21–24], forms a complex intermediate with COX VIc, COX VIIb, COX VIIc, and COX VIIIa. The COX III module consists of COX III, COX VIa, COX VIb, and COX VIIa. These modules are then assembled in a linear fashion, upon which NDUFA4 interacts to assist in the stabilization of the COX monomer [18].
Recommended publications
  • Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes
    International Journal of Molecular Sciences Review Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes Iria Roca, Ana Fernández-Marmiesse, Sofía Gouveia, Marta Segovia and María L. Couce * Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; [email protected] (I.R.); [email protected] (A.F.-M.); sofi[email protected] (S.G.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +34-981-950-102 Received: 3 April 2018; Accepted: 23 May 2018; Published: 27 May 2018 Abstract: The biggest challenge geneticists face when applying next-generation sequencing technology to the diagnosis of rare diseases is determining which rare variants, from the dozens or hundreds detected, are potentially implicated in the patient’s phenotype. Thus, variant prioritization is an essential step in the process of rare disease diagnosis. In addition to conducting the usual in-silico analyses to predict variant pathogenicity (based on nucleotide/amino-acid conservation and the differences between the physicochemical features of the amino-acid change), three important concepts should be borne in mind. The first is the “mutation tolerance” of the genes in which variants are located. This describes the susceptibility of a given gene to any functional mutation and depends on the strength of purifying selection acting against it. The second is the “mutational architecture” of each gene. This describes the type and location of mutations previously identified in the gene, and their association with different phenotypes or degrees of severity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Genetic Dissection of Mitochondrial Respiratory Chain Biogenesis
    A GENETIC DISSECTION OF MITOCHONDRIAL RESPIRATORY CHAIN BIOGENESIS An Undergraduate Research Scholars Thesis by AARON GRIFFIN, SARAH THERIAULT, SHRISHIV TIMBALIA Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Vishal Gohil May 2014 Major: Biochemistry, Genetics Biochemistry Biochemistry TABLE OF CONTENTS Page ABSTRACT .....................................................................................................................................1 CHAPTER I INTRODUCTION ...............................................................................................................3 II MATERIALS AND METHODS .........................................................................................7 Yeast strains, plasmids, and culture conditions .......................................................7 Yeast growth measurements ..................................................................................10 Yeast oxygen consumption and mitochondrial isolation .......................................11 SDS-PAGE and Western blotting ..........................................................................11 Sporulation, tetrad dissection, and genotyping ......................................................12 High-throughput phenotypic analysis of yeast strains ...........................................15 III RESULTS ..........................................................................................................................16
    [Show full text]
  • COX17 (NM 005694) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC210756 COX17 (NM_005694) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: COX17 (NM_005694) Human Tagged ORF Clone Tag: Myc-DDK Symbol: COX17 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC210756 representing NM_005694 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCGGGTCTGGTTGACTCAAACCCTGCCCCGCCTGAGTCTCAGGAGAAGAAGCCGCTGAAGCCCTGCT GCGCTTGCCCGGAGACCAAGAAGGCGCGCGATGCGTGTATCATCGAGAAAGGAGAAGAACACTGTGGACA TCTAATTGAGGCCCACAAGGAATGCATGAGAGCCCTAGGATTTAAAATA ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC210756 representing NM_005694 Red=Cloning site Green=Tags(s) MPGLVDSNPAPPESQEKKPLKPCCACPETKKARDACIIEKGEEHCGHLIEAHKECMRALGFKI TRTRPLEQKLISEEDLAANDILDYKDDDDKV Chromatograms: https://cdn.origene.com/chromatograms/mk8114_f02.zip Restriction Sites: SgfI-MluI This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 COX17 (NM_005694) Human Tagged ORF Clone – RC210756 Cloning Scheme: Plasmid Map: ACCN: NM_005694 ORF Size: 189 bp This product is
    [Show full text]
  • Ncomms8214.Pdf
    ARTICLE Received 20 Feb 2015 | Accepted 17 Apr 2015 | Published 26 May 2015 DOI: 10.1038/ncomms8214 OPEN Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast Jing Hou1, Anne Friedrich1, Jean-Sebastien Gounot1 & Joseph Schacherer1 Genetic variation within a species could cause negative epistasis leading to reduced hybrid fitness and post-zygotic reproductive isolation. Recent studies in yeasts revealed chromo- somal rearrangements as a major mechanism dampening intraspecific hybrid fertility on rich media. Here, by analysing a large number of Saccharomyces cerevisiae crosses on different culture conditions, we show environment-specific genetic incompatibility segregates readily within yeast and contributes to reproductive isolation. Over 24% (117 out of 481) of cases tested show potential epistasis, among which 6.7% (32 out of 481) are severe, with at least 20% of progeny loss on tested conditions. Based on the segregation patterns, we further characterize a two-locus Dobzhansky–Mu¨ller incompatibility case leading to offspring respiratory deficiency caused by nonsense mutation in a nuclear-encoding mitochondrial gene and tRNA suppressor. We provide evidence that this precise configuration could be adaptive in fluctuating environments, highlighting the role of ecological selection in the onset of genetic incompatibility and reproductive isolation in yeast. 1 Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 28 rue Goethe, 67083 Strasbourg, France. Correspondence
    [Show full text]
  • Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
    Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples.
    [Show full text]
  • Predicting Gene Ontology Biological Process from Temporal Gene Expression Patterns Astrid Lægreid,1,4 Torgeir R
    Methods Predicting Gene Ontology Biological Process From Temporal Gene Expression Patterns Astrid Lægreid,1,4 Torgeir R. Hvidsten,2 Herman Midelfart,2 Jan Komorowski,2,3,4 and Arne K. Sandvik1 1Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; 2Department of Information and Computer Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; 3The Linnaeus Centre for Bioinformatics, Uppsala University, SE-751 24 Uppsala, Sweden The aim of the present study was to generate hypotheses on the involvement of uncharacterized genes in biological processes. To this end,supervised learning was used to analyz e microarray-derived time-series gene expression data. Our method was objectively evaluated on known genes using cross-validation and provided high-precision Gene Ontology biological process classifications for 211 of the 213 uncharacterized genes in the data set used. In addition,new roles in biological process were hypothesi zed for known genes. Our method uses biological knowledge expressed by Gene Ontology and generates a rule model associating this knowledge with minimal characteristic features of temporal gene expression profiles. This model allows learning and classification of multiple biological process roles for each gene and can predict participation of genes in a biological process even though the genes of this class exhibit a wide variety of gene expression profiles including inverse coregulation. A considerable number of the hypothesized new roles for known genes were confirmed by literature search. In addition,many biological process roles hypothesi zed for uncharacterized genes were found to agree with assumptions based on homology information.
    [Show full text]
  • Characterization of the Small RNA Transcriptomes of Cell Protrusions and Cell Bodies of Highly Metastatic Hepatocellular Carcinoma Cells Via RNA Sequencing
    ONCOLOGY LETTERS 22: 568, 2021 Characterization of the small RNA transcriptomes of cell protrusions and cell bodies of highly metastatic hepatocellular carcinoma cells via RNA sequencing WENPIN CAI1*, JINGZHANG JI2*, BITING WU2*, KAIXUAN HAO2, PING REN2, YU JIN2, LIHONG YANG2, QINGCHAO TONG2 and ZHIFA SHEN2 1Department of Laboratory Medicine, Wen Zhou Traditional Chinese Medicine Hospital; 2Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China Received July 11, 2020; Accepted February 23, 2021 DOI: 10.3892/ol.2021.12829 Abstract. Increasing evidence suggest that hepatocellular differentially expressed miRNAs and circRNAs. The interac‑ carcinoma (HCC) HCCLM3 cells initially develop pseudo‑ tion maps between miRNAs and circRNAs were constructed, podia when they metastasize, and microRNAs (miRNAs/miRs) and signaling pathway maps were analyzed to determine the and circular RNAs (circRNAs) have been demonstrated to molecular mechanism and regulation of the differentially serve important roles in the development, progression and expressed miRNAs and circRNAs. Taken together, the results metastasis of cancer. The present study aimed to isolate the of the present study suggest that the Boyden chamber assay cell bodies (CBs) and cell protrusions (CPs) from HCCLM3 can be used to effectively isolate the somatic CBs and CPs of cells, and screen the miRNAs and circRNAs associated with HCC, which can be used to screen the miRNAs and circRNAs HCC infiltration and metastasis in CBs and CPs. The Boyden associated with invasion and metastasis of HCC. chamber assay has been confirmed to effectively isolate the CBs and CPs from HCCLM3 cells via observation of microtu‑ Introduction bule immunofluorescence, DAPI staining and nuclear protein H3 western blotting.
    [Show full text]
  • Whole Exome Should Be Preferred Over Sanger Sequencing in Suspected Mitochondrial Myopathy
    Neurobiology of Aging 78 (2019) 166e167 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Letter to the editor Whole exome should be preferred over Sanger sequencing in suspected mitochondrial myopathy With interest we read the article by Rubino et al. about Sanger X-linked trait of inheritance, whole exome sequencing rather than sequencing of the genes CHCHD2 and CHCHD10 in 62 Italian pa- Sanger sequencing of single genes is recommended to detect the tients with a mitochondrial myopathy without a genetic defect underlying genetic defect. In case of a maternal trait of inheritance, (Rubino et al., 2018). The authors found the previously reported however, sequencing of the mtDNA is recommended. Whole exome variant c.307C>A in the CHCHD10 gene (Perrone et al., 2017)in1of sequencing is preferred over Sanger sequencing as myopathies or the 62 patients (Rubino et al., 2018). We have the following com- phenotypes in general that resemble an MID are in fact due to ments and concerns. mutations in genes not involved in mitochondrial functions, rep- If no mutation was found in 61 of the 62 included myopathy resenting genotypic heterogeneity. patients, how can the authors be sure that these patients had We do not agree that application of SIFT and polyphem 2 is indeed a mitochondrial disorder (MID). We should be informed on sufficient to confirm pathogenicity of a variant. Confirmation of the which criteria and by which means the diagnosis of an MID was pathogenicity requires documentation of the variant in other established in the 61 patients, who did not carry a mutation in the populations, segregation of the phenotype with the genotype CHCHD2 and CHCHD10 genes, respectively.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Sperm-Specific COX6B2 Enhances Oxidative Phosphorylation, Proliferation, and Survival in Lung Adenocarcinoma
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.09.030403; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Sperm-specific COX6B2 Enhances Oxidative Phosphorylation, Proliferation, and Survival in Lung Adenocarcinoma Chun-Chun Cheng1, Joshua Wooten2, Kathleen McGlynn1, Prashant Mishra3, Angelique W. Whitehurst1* 1Department of Pharmacology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, Texas 75390-8807, USA. 2Nuventra, 3217 Appling Way, Durham, NC 27703 3Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA. *Correspondence: [email protected], 214-645-6066 (p), 214-645- 6347 (f) Running Title: COX6B2 promotes oxidative phosphorylation and survival in NSCLC. Keywords: COX6B2, oxidative phosphorylation, cancer testis antigen, cytochrome c oxidase, hypoxia Significance: COX6B2 a protein normally only expressed in testes is overexpressed in lung cancer and correlates with poor outcome in lung adenocarcinoma. Expression of COX6B2 enhances oxidative phosphorylation, proliferation, survival and growth of tumors in hypoxia. Funding sources: AWW, CC, and KM were supported by NIH (R01CA196905). AWW and JW were supported by SU2C (SU2C-AACR-IRG1211). The UTSW shared tissue resource was supported by the Simmons Cancer Center Core grant from National Cancer Institute (P30CA142543). The authors declare no potential conflicts of interest. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.09.030403; this version posted April 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • New Perspective in Diagnostics of Mitochondrial Disorders
    Pronicka et al. J Transl Med (2016) 14:174 DOI 10.1186/s12967-016-0930-9 Journal of Translational Medicine RESEARCH Open Access New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole‑exome sequencing at a national paediatric centre Ewa Pronicka1,2*, Dorota Piekutowska‑Abramczuk1†, Elżbieta Ciara1†, Joanna Trubicka1†, Dariusz Rokicki2, Agnieszka Karkucińska‑Więckowska3, Magdalena Pajdowska4, Elżbieta Jurkiewicz5, Paulina Halat1, Joanna Kosińska6, Agnieszka Pollak7, Małgorzata Rydzanicz6, Piotr Stawinski7, Maciej Pronicki3, Małgorzata Krajewska‑Walasek1 and Rafał Płoski6* Abstract Background: Whole-exome sequencing (WES) has led to an exponential increase in identification of causative vari‑ ants in mitochondrial disorders (MD). Methods: We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. Results: Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found.
    [Show full text]