Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2021 V. 55 № 1/1 Special Issue the Organizers
ISSN 0233-528X Aerospace and Environmental Medicine 2021 V. 55 № 1/1 special issue The Organizers: INTERNATIONAL ACADEMY OF ASTRONAUTICS (IAA) STATE SPACE CORPORATION “ROSCOSMOS” MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION RUSSIAN ACADEMY OF SCIENCES (RAS) STATE RESEARCH CENTER OF THE RUSSIAN FEDERATION – INSTITUTE OF BIOMEDICAL PROBLEMS RAS Aerospace and Environmental Medicine AVIAKOSMICHESKAYA I EKOLOGICHESKAYA MEDITSINA SCIENTIFIC JOURNAL EDITOR-IN-CHIEF Orlov O.I., M.D., Academician of RAS EDITORIAL BOARD The Organizers: Ardashev V.N., M.D., professor Baranov V.M., M.D., professor, Academician of RAS Buravkova L.B., M.D., professor, Corresponding Member of RAS Bukhtiyarov I.V., M.D., professor Vinogradova O.L., Sci.D., professor – Deputy Editor D’yachenko A.I., Tech. D., professor Ivanov I.V., M.D., professor Ilyin E.A., M.D., professor Kotov O.V., Ph.D. Krasavin E.A., Ph.D., Sci.D., professor, Corresponding Member of RAS Medenkov A.A., Ph.D. in Psychology, M.D., professor Sinyak YU.E., M.D., Tech.D., professor Sorokin O.G., Ph.D. Suvorov A.V., M.D., professor Usov V.M., M.D., professor Homenko M.N., M.D., professor Mukai Ch., M.D., Ph.D. (Japan) Sutton J., M.D., Ph.D. (USA) Suchet L.G., Ph.D. (France) ADVISORY BOARD Grigoriev A.I., M.D., professor, Academician of RAS, Сhairman Blaginin A.A., M.D., Doctor of Psychology, professor Gal’chenko V.F., Sci.D., professor, Corresponding Member of RAS Zhdan’ko I.M., M.D. Ostrovskij M.A., Sci.D., professor, Academician of RAS Rozanov A.YU., D.Geol.Mineral.S., professor, Academician of RAS Rubin A.B., Sci.D., professor, Corresponding Member of RAS Zaluckij I.V., Sci.D., professor, Corresponding Member of NASB (Belarus) Kryshtal’ O.A., Sci.D., professor, Academician of NASU (Ukraine) Makashev E.K., D.Biol.Sci., professor, Corresponding Member of ASRK (Kazakhstan) Gerzer R., M.D., Ph.D., professor (Germany) Gharib C., Ph.D., professor (France) Yinghui Li, M.D., Ph.D., professor (China) 2021 V. -
Testing the Stand-Alone Microbeam at Columbia University G
Radiation Protection Dosimetry Advance Access published December 21, 2006 Radiation Protection Dosimetry (2006), 1 of 5 doi:10.1093/rpd/ncl454 TESTING THE STAND-ALONE MICROBEAM AT COLUMBIA UNIVERSITY G. GartyÃ, G. J. Ross, A. W. Bigelow, G. Randers-Pehrson and D. J. Brenner Columbia University, Radiological Research Accelerator Facility, 136 S. Broadway, Irvington, NY 10533, USA The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a ‘home made’ 6.5 mCi polonium source, a 1 alpha particle s–1,10lm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here. INTRODUCTION AND OVERALL DESIGN the lenses. In addition to providing a secondary user facility at RARAF, the design is simple and Columbia University’s Radiological Research Accel- inexpensive enough that the SAM can be reproduced erator Facility (RARAF) currently offers its users in any large radiation biology laboratory. -
PHYSICS and SOCIETY
PHYSICS and SOCIETY THE NEWSLETTER OF THE FORUM ON PHYSICS AND SOCIETY, PUBLISHED BY THE AMERICAN PHYSICAL SOCIETY, 335 EAST 45th ST., NEW YORK, NY 10017 PRINTED BY PENNY-SAVER, MANSFIELD, PA. 16933 Volume 10, Number 3, July, 1981 TABLE OF CONTENTS Synopsis of the April, 1981 Executive Committee Meeting........................................... 2 Report of the Forum Councillor, Mike Casper........................................................... 3 Committee on Opportunities in Physics, Earl Callen................................................... 3 Possible POPA Studies, George SeideL................................................................... 4 Report on Livermore Arms Control Conference, Charles Schwartz................................ 4 The Defense of the United States, review by John Dowling.......................................... 6 Arms Control Kit, John Dowling............................................................................ 7 PHYSICS AND SOCIETY is a quarterly newsletter of the Forum on Physics and Society. a division of the American Physical Society. The newsletter is distributed free to members of the Forum and also to physics libraries upon request. It presents news of the Forum and of the American Physical Society and provides a medium for Forum members to exchange ideas. PHYSICS AND SOCIETY also presents articles and letters on the scientific and economic health of the physics com munity; on the relations of physics and the physics community to government and to society, and the social responsiblities of scientists. Contributions should be sent to the Editor: John Dowling, Physics Department, Mansfield State College, Mansfield, PA 16933, 717-662-4275. Forum on Physics & Society BULK RATE Physics Department U.S. POSTAGE PAID Mansfield State College Mansfield, Pa. Permit No.3 Mansfield, PA 16933 Educational Non-Profit ARTI-'UR 7 QOSEN **** PHYSICS DEPARTMEkT CAL POLY STATE UkIVERSITY SAN LUIS OBISPO CA 93407 PHYSICS AND SOCIETY, Volume 10, Number 3 ••••••••••••••••••••••••• July 1981 Page 2 Synop.l. -
Abstracts of Oral and Poster Presentations
European Radiation Research 2004 The 33th Annual Meeting of the European Society for Radiation Biology Abstracts of Oral and Poster Presentations Guest Editor: Géza Sáfrány The abstracts published in this issue have not been peer-reviewed. Hence the opinions expressed in them are those of the authors and not necessarily those of the editor. The abstracts are in alphabetical order according to the first author. EUROPEAN RADIATION RESEARCH 2004, AUGUST 25–28, BUDAPEST, HUNGARY · 2004; 10: S5–S219 FACTORS INFLUENCING ON CLINICAL MANIFESTATION OF HCV IN GROUP OF CLEAN-UP WORKERS OF CHERNOBYL NPP ACCIDENT ABRAMENKO I. V., CHUMAK A. A., KOVALENKO A. N., BOYCHENKO P. K., AND PLESKACH O. Y. Research Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kyiv, Ukraine Imunological monitoring of 536 clean-up workers of Chornobyl NPP accident revealed significant prevalence of hepatitic C virus (HCV) infection (19.6%) compared with non- irratiated person (9.5%). Among 105 HCV carriers clinical signs of infection was found in 39 (37.41%) persons. Factors that influenced manifestation of HCV were male gender (r = 0.3553, p<0,0001), serological signs of previous hepatitic B virus (HBV) infection (r = 0.2896, p = 0.003), anti- bodies against cytomegalovirus (CMV) and T. gondii in serum (r = 0.3418, p<0.0001). –z Logistic regression (P = 1/1+e , where z = 1.5040 – 1.8405 × Mix(1) – 2.6026 × Mix(2) – 0.6567 × Mix(3); Mix(1) – serological signs of one of above menshioned infec- tions, Mix(2) – serological signs of two infections, and Mix(3) – serological signs of previous HBV, CMV and T. -
Expanding the Question-Answering Potential of Single-Cell Microbeams at RARAF, USA
J. Radiat. Res., 50: Suppl., A21-A28 (2009) Expanding the Question-answering Potential of Single-cell Microbeams at RARAF, USA Alan BIGELOW1,*, Guy GARTY1, Tomoo FUNAYAMA1,2, Gerhard RANDERS-PEHRSON1, David BRENNER1 and Charles GEARD1 Microbeam/Particle accelerator/Cell irradiation/Radiation biology. Charged-particle microbeams, developed to provide targeted irradiation of individual cells, and then of sub-cellular components, and then of 3-D tissues and now organisms, have been instrumental in chal- lenging and changing long accepted paradigms of radiation action. However the potential of these valuable tools can be enhanced by integrating additional components with the direct ability to measure biological responses in real time, or to manipulate the cell, tissue or organism of interest under conditions where information gained can be optimized. The RARAF microbeam has recently undergone an accelerator upgrade, and been modified to allow for multiple microbeam irradiation laboratories. Researchers with divergent interests have expressed desires for particular modalities to be made available and ongoing developments reflect these desires. The focus of this review is on the design, incorporation and use of mul- tiphoton and other imaging, micro-manipulation and single cell biosensor capabilities at RARAF. Addi- tionally, an update on the status of the other biology oriented microbeams in the Americas is provided. west National Laboratory,4) the Gray Cancer Institute,5,6) and INTRODUCTION Columbia University.7) Since that time, the number -
1 the Creation, Shipping, and Use of Radioactive Material Is Highly Regulated
Brooke Buddemeier, CHP Global Security Principal Directorate LLNLLLNL--PRESPRES--491531491531 1 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The creation, shipping, and use of radioactive material is highly regulated (IAEA, NRC, DOT, et)tc.). High Activity Sources can only be produced by sophisticated methods (e.g. reactors & accelerators). High activity sources can only be obtained after special licensing to ensure their safe use and their security. Similar regulations exist in other countries were radioactive material is produced or used. 2 LLNLLLNL--PRESPRES--491531491531 Buddemeier 1 1 --1010 kiloCi 1 - 500 10 --100100 (when spent) kiloCi kiloCi Fuel Assembly (when spent) . Spent Nuclear Fuel & High Level Waste 0010.01 - 020.2 1-10 . Radioisotope Thermoelectric kiloCi kiloCi Generators (RTG) . Medical & Radiographic sources 3 LLNLLLNL--PRESPRES--491531491531 Buddemeier CDC Emergency Preparedness & Response Radionuclides Radionuclide Half Life Radiation Information (years) billions of Natural uranium is comprised of several different isotopes. Uranium α, When enriched in the isotope of U-235, it’s used to power years + progeny nuclear reactor or nuclear weapons. Am-241 is used for neutron generation (AmBe), in industrial Americium-241 430 y α devices that measure density and thickness, and in smoke dilldetectors in small amounts. Radionuclide thermoelectric generators and heat sources Plutonium-238 88 y α (primarily for space applications) Blood irradiators, tumor treatment through external Cesium-137 30.2 y β exposure. Also used for industrial radiography. Radionuclide thermoelectric generators, industrial gauges Strontium-90 29 y β and to treat bone tumors. -
Asia Treads the Nuclear Path, Unaware That Self- Assured Destruction Would Result from Nuclear War
The Journal of Asian Studies Vol. 76, No. 2 (May) 2017: 437–456. © The Association for Asian Studies, Inc., 2017 doi:10.1017/S0021911817000080 Asia Treads the Nuclear Path, Unaware That Self- Assured Destruction Would Result from Nuclear War OWEN B. TOON, ALAN ROBOCK, MICHAEL MILLS AND LILI XIA F THE NINE COUNTRIES known to have nuclear weapons, six are located in Asia and Oanother, the United States, borders the Pacific Ocean. Russia and China were the first Asian nations with nuclear weapons, followed by Israel, India, Pakistan, and North Korea. Most of the world’s nuclear powers are reducing their arsenals or maintaining them at historic levels, but several of those in Asia—India, Pakistan, and North Korea— continue to pursue relentless and expensive programs of nuclear weapons development and production. Hopefully, the nuclear agreement reached in July 2015 between Iran, the European Union, and the five permanent members of the United Nations Security Council will be a step toward eliminating nuclear weapons throughout Asia and the rest of the world. As we will discuss below, any country possessing a nuclear arsenal is on a path leading toward self-assured destruction, and is a threat to people everywhere on Earth. Nuclear-armed countries are a threat to people everywhere partly because of the destructive power of single weapons—one weapon is enough to destroy a small city— and partly because of the growing ability of nations to launch missiles across the globe. Nuclear powers such as India and North Korea, the latter of which is thought currently to have a very small nuclear capability that is not in the form of useful weapons, are working on the means to deliver weapons globally. -
NRC Collection of Abbreviations
I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. -
PHYSICS and SOCIETY
PHYSICS and SOCIETY THE NEWSLETTER OF THE FORUM ON PHYSICS AND SOCIETY, PUBLISHED BY THE AMERICAN PHYSICAL SOCIETY, 335 EAST 45th ST., NEW YORK, NY 10017 PRINTED BY PENNY-SAVER, MANSFIELD, PA. 16933 Volume 10, Number 1 January, 1981 TABLE OF CONTENTS News of the Forum............................................................................................. 2 Update on the DeWitt Case.................................................................................. 2 Committee on Opportunities in Physics, Earl Callen.. ................................................. 2 Forum Sessions at the Annual APS-AAPT Meeting................................................... 3 Forum Sessions at the Phoenix APS Meeting............................................................ 5 $1,000,000,000,000 for Defense, Reviewed by John Dowling........................................ 5 Ground Zero, Leo Sartori..................................................................................... 6 Enlist New Forum Members............................... ....... ............................................ 8 PHYSICS AND SOCIETY is a quarterly newsletter of the Forum on Physics and Society. a division of the American Physical Society. The newsletter is distributed free to members of the Forum and also to physics libraries upon request. It presents news of the Forum and of the American Physical Society and provides a medium for Forum members to exchange ideas. PHYSICS AND SOCIETY also presents articles and letters on the scientific and economic health of the -
Meeting Summary President's Cancer Panel
MEETING SUMMARY PRESIDENT’S CANCER PANEL ENVIRONMENTAL FACTORS IN CANCER January 27, 2009 Phoenix, Arizona OVERVIEW This meeting was the last in the President’s Cancer Panel’s (PCP, the Panel) 2008/2009 series, Environmental Factors in Cancer. The meeting focused on radiation exposures as they relate to cancer risk. The agenda for the meeting was organized into three discussion panels. PARTICIPANTS President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair Margaret Kripke, Ph.D. National Cancer Institute (NCI), National Institutes of Health (NIH) Abby Sandler, Ph.D., Executive Secretary, PCP, NCI Beverly Laird, Ph.D., Vice-Chair, Director’s Consumer Liaison Group Panelists David J. Brenner, Ph.D., D.Sc., Director and Higgins Professor of Radiation Biophysics, Center for Radiological Research, Columbia University Medical Center David O. Carpenter, M.D., Director, Institute for Health and Environment, University at Albany School of Public Health Thomas H. Essig, M.S., Rehired Annuitant, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission (NRC) Michael Lerner, Ph.D., President and Founder, Commonweal Martha S. Linet, M.D., M.P.H., Chief and Senior Investigator, Radiation Epidemiology Branch, National Cancer Institute Mahadevappa Mahesh, Ph.D., M.S., Associate Professor of Radiology and Cardiology, Johns Hopkins University School of Medicine Fred A. Mettler, M.D., M.P.H., Professor Emeritus, Department of Radiology, New Mexico VA Healthcare System Neal A. Palafox, M.D., M.P.H., Professor and Chair, Family Medicine and Community Health, John A. Burns School of Medicine, University of Hawai’i at Manoa Trisha Thompson Pritikin, Esq., M.Ed., Hanford Downwinder, Berkeley, CA Jonathan Samet, M.D., M.S., Professor and Chair, Department of Preventive Medicine, University of Southern California (USC)/Norris Comprehensive Cancer Center William A. -
Antinuclear Politics, Atomic Culture, and Reagan Era Foreign Policy
Selling the Second Cold War: Antinuclear Cultural Activism and Reagan Era Foreign Policy A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy William M. Knoblauch March 2012 © 2012 William M. Knoblauch. All Rights Reserved. 2 This dissertation titled Selling the Second Cold War: Antinuclear Cultural Activism and Reagan Era Foreign Policy by WILLIAM M. KNOBLAUCH has been approved for the Department of History and the College of Arts and Sciences by __________________________________ Chester J. Pach Associate Professor of History __________________________________ Howard Dewald Dean, College of Arts and Sciences 3 ABSTRACT KNOBLAUCH, WILLIAM M., Ph.D., March 2012, History Selling the Second Cold War: Antinuclear Cultural Activism and Reagan Era Foreign Policy Director of Dissertation: Chester J. Pach This dissertation examines how 1980s antinuclear activists utilized popular culture to criticize the Reagan administration’s arms buildup. The 1970s and the era of détente marked a decade-long nadir for American antinuclear activism. Ronald Reagan’s rise to the presidency in 1981 helped to usher in the “Second Cold War,” a period of reignited Cold War animosities that rekindled atomic anxiety. As the arms race escalated, antinuclear activism surged. Alongside grassroots movements, such as the nuclear freeze campaign, a unique group of antinuclear activists—including publishers, authors, directors, musicians, scientists, and celebrities—challenged Reagan’s military buildup in American mass media and popular culture. These activists included Fate of the Earth author Jonathan Schell, Day After director Nicholas Meyer, and “nuclear winter” scientific-spokesperson Carl Sagan. -
Building MR-Simulation Competency in Radiotherapy
Radiation Oncology MRI Building MR-simulation competency in radiotherapy FieldStrength MRI magazine User experiences - November 2019 www.philips.com/mrinrt Starting from scratch, The Christie develops a MR-sim education and training program for proton beam radiotherapy service In the development of the National Health Services’ first high energy proton beam “The biggest problem in therapy (PBT) center at Manchester’s The Christie Hospital, acquisition of a dedicated ensuring the safe and MRI system for PBT planning was essential. MRI can provide exceptional soft tissue smooth implementation visualization for precise target and organs-at-risk (OAR) delineation for treatment planning and monitoring on-treatment variation – an imperative for safely delivering of an MR-sim service proton therapy. was a lack of knowledge, However, integrating MRI in a radiotherapy department presented a challenge – experience and training” radiotherapy personnel typically have little or no experience in safely and effectively operating in an MRI environment, while diagnostic radiographers have no or limited exposure to the needs of pre-treatment radiotherapy. To enable the safe, smooth implementation of an MR-sim Service, the Christie team developed and executed a training and education program for all PBT employees. The Christie NHS Foundation Trust The Christie NHS Foundation Trust in Manchester, UK, is the largest single site cancer centre in Europe, treating more than 44,000 patients a year. The centre has access to 15 linear accelerators and offers both proton beam therapy and MR-guided therapy. The Christie pre-treatment staff of the Proton Beam Therapy Center consists of: • One Diagnostic Band 7 Superintendent (MR Responsible Person) • Two Diagnostic Band 6 Senior Radiographers • Two Therapy Band 7 Superintendents • Two Therapy Band 6 Pre-treatment Radiographers Thomas Edwards is pre-treatment principal radiographer for protons at the Christie NHS Foundation Trust and has worked in radiotherapy for 16 years, specializing in radiotherapy imaging.