1 Domestic Dogs As Invasive Species: from Local To

Total Page:16

File Type:pdf, Size:1020Kb

1 Domestic Dogs As Invasive Species: from Local To DOMESTIC DOGS AS INVASIVE SPECIES: FROM LOCAL TO GLOBAL IMPACTS By EDUARDO ANDRÉS SILVA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Eduardo Andres Silva 2 To Pili and Jose Antonio 3 ACKNOWLEDGMENTS I would like to thank my wife Pilar and my son Jose Antonio for all their support and tolerance during the years of my PhD. My dad, mom, brother, sisters, and grandmother were also very supportive despite the distance. I would also like to thank my advisor and friend Katie, for being a real guide, a great person and a good friend. The insightful comments by Dr. Lyn Branch, Dr. Rob Fletcher, Dr. Mel Sunquist and Dr. Mary Christman to each of my “doubts” as well as the learning during their courses were fundamental for the success of my project. Long discussions with Drs. Jaime Jiménez, Mauricio Soto and Maximiliano Sepulveda were also of crucial importance for the practical implementation of my study. My field assistants, Andres Silva, Gabriel Ortega and Felipe Osorio and The Nature Conservancy, through the staff of Reserva Costera Valdiviana, and in particular Alfredo Almonacid, Erwin Ovando, Liliana Pezoa, Gerardo Ponce, Omar Ponce, Danilo González, Patricia Póveda and José Vistoso provided invaluable logistical support in the field. Willandia Chaves, Jackson Frechette, Fangyuan Hua, Ping Huang, Santiago Espinosa, Mauricio Nuñez-Regueiro and Rosalyn Johnson provided valuable comments on the different manuscripts. Claudio Verdugo, Alejandro Aleuy and Daniel González-Acuña provided the rescue center data and Jim Sanderson provided the cameras that were used for Chapter 2. All of them (CV, AA, DG, JS) as well as G. Ortega and F. Osorio contributed to Chapter 2. My work was possible thanks to a fellowship provided by Fulbright and Conicyt during the first four years and a teaching assistantship provided by the Natural Area Teaching Laboratory and School of Natural Resources and 4 Environment during the last year of my program. I particularly appreciate the commitment of my program officers at Fulbright, IIE and Conicyt: Anna Rendon, Mariana Guajardo, Karina Sapunar, Lucia Montero, Ricardo Contador, Megan Spillman, María Paz Pechini, Carolina Ulloa, Sylvia Boulangger and Paula Ortega. Finally, I would like to strongly acknowledge the support of Debra Anderson from the University of Florida International Center, who was always there to talk about anything you may need. My field work was possible thanks to multiple funding agencies: the Tropical Conservation and Development program of the University of Florida, the Mohammed bin Zayed Conservation Fund, Feline Conservation Federation, Panthera, Idea Wild, Scott Neotropical Fund of Cleveland Zoological Society and Cleveland Metroparks Zoo, and the US Fish & Wildlife Service Wildlife Without Borders Program. In addition, Patagonia Inc. kindly provided field clothing. I look forward to continue collaborating with each of these partners. The study was approved by the Non-Regulatory Animal Research System of the University of Florida (IFAS ARC # 016-08WEC-ADD002) and the IRB02 (IFIRB# 2010-U-500). 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 9 LIST OF FIGURES ........................................................................................................ 11 ABSTRACT ................................................................................................................... 12 CHAPTER 1 INTRODUCTION .................................................................................................... 14 Invasive Species and Synanthropy ......................................................................... 14 Domestic Carnivores as Subsidized Invasive Predators ......................................... 15 Domestic Dogs and their Association with People .................................................. 17 Domestic Dogs and their Interactions with Vertebrates .......................................... 19 Research Overview ................................................................................................. 19 2 EVALUATING MORTALITY SOURCES FOR THE VULNERABLE PUDU PUDU PUDA IN CHILE: IMPLICATIONS FOR THE CONSERVATION OF A THREATENED DEER ......................................................................................... 21 Introductory Remarks .............................................................................................. 21 Methods .................................................................................................................. 22 Causes of Mortality ........................................................................................... 22 Diet of Native Predators ................................................................................... 23 Camera-Trap Surveys ...................................................................................... 24 Results .................................................................................................................... 25 Pudu Mortality................................................................................................... 25 Predator Diet .................................................................................................... 26 Occurrence of Pudus and Predators in Protected Areas .................................. 26 Discussion .............................................................................................................. 27 Mortality Sources .............................................................................................. 27 Implications for Pudu Conservation .................................................................. 28 3 DOMESTIC DOGS SHAPE THE LANDSCAPE-SCALE DISTRIBUTION OF A THREATENED FOREST UNGULATE .......................................................... 35 Introductory Remarks .............................................................................................. 35 Methods .................................................................................................................. 39 Study Area ........................................................................................................ 39 Interviews ......................................................................................................... 40 Camera Trapping .............................................................................................. 40 6 Vegetation Density Scores ............................................................................... 41 Use of Space Models ....................................................................................... 42 Model structure and rationale for dogs ....................................................... 42 Model structure and rationale for pudus ..................................................... 43 Model fitting ................................................................................................ 44 Test of Alternative Hypotheses ......................................................................... 45 Results .................................................................................................................... 45 Interviews: Dog Management and Interaction with Pudu .................................. 45 Use of Space Models ....................................................................................... 46 Models of dog distribution .......................................................................... 46 Models of pudu distribution ........................................................................ 46 Pudu-Dog Interactions Detected Through Cameras ......................................... 47 Assessment of Alternative Hypotheses ............................................................ 48 Discussion .............................................................................................................. 48 Dog Effects on the Distribution of Pudu ............................................................ 48 A Worldwide ‘Dog Problem’ for Prey Species? ................................................. 51 Management Implications ................................................................................. 54 4 INFLUENCE OF CARE OF DOMESTIC CARNIVORES ON THEIR PREDATION ON VERTEBRATES ......................................................................... 60 Introductory Remarks .............................................................................................. 60 Methods .................................................................................................................. 62 Study Site ......................................................................................................... 62 Domestic Carnivore Management and Demography ........................................ 63 Diet ................................................................................................................... 64 Data Analyses .................................................................................................. 65 Results .................................................................................................................... 66 Domestic Carnivore Management ...................................................................
Recommended publications
  • Cheetah Conservation Fund Farmlands Wild and Native Species
    Cheetah Conservation Fund Farmlands Wild and Native Species List Woody Vegetation Silver terminalia Terminalia sericea Table SEQ Table \* ARABIC 3: List of com- Blue green sour plum Ximenia Americana mon trees, scrub, and understory vegeta- Buffalo thorn Ziziphus mucronata tion found on CCF farms (2005). Warm-cure Pseudogaltonia clavata albizia Albizia anthelmintica Mundulea sericea Shepherds tree Boscia albitrunca Tumble weed Acrotome inflate Brandy bush Grevia flava Pig weed Amaranthus sp. Flame acacia Senegalia ataxacantha Wild asparagus Asparagus sp. Camel thorn Vachellia erioloba Tsama/ melon Citrullus lanatus Blue thorn Senegalia erubescens Wild cucumber Coccinea sessilifolia Blade thorn Senegalia fleckii Corchorus asplenifolius Candle pod acacia Vachellia hebeclada Flame lily Gloriosa superba Mountain thorn Senegalia hereroensis Tribulis terestris Baloon thron Vachellia luederitziae Solanum delagoense Black thorn Senegalia mellifera subsp. Detin- Gemsbok bean Tylosema esculentum ens Blepharis diversispina False umbrella thorn Vachellia reficience (Forb) Cyperus fulgens Umbrella thorn Vachellia tortilis Cyperus fulgens Aloe littoralis Ledebouria spp. Zebra aloe Aloe zebrine Wild sesame Sesamum triphyllum White bauhinia Bauhinia petersiana Elephant’s ear Abutilon angulatum Smelly shepherd’s tree Boscia foetida Trumpet thorn Catophractes alexandri Grasses Kudu bush Combretum apiculatum Table SEQ Table \* ARABIC 4: List of com- Bushwillow Combretum collinum mon grass species found on CCF farms Lead wood Combretum imberbe (2005). Sand commiphora Commiphora angolensis Annual Three-awn Aristida adscensionis Brandy bush Grevia flava Blue Buffalo GrassCenchrus ciliaris Common commiphora Commiphora pyran- Bottle-brush Grass Perotis patens cathioides Broad-leaved Curly Leaf Eragrostis rigidior Lavender bush Croton gratissimus subsp. Broom Love Grass Eragrostis pallens Gratissimus Bur-bristle Grass Setaria verticillata Sickle bush Dichrostachys cinerea subsp.
    [Show full text]
  • 2018 Annual Progress Report Reporting Period January-December 2018
    2018 Annual Progress Report Reporting Period January-December 2018 By Dr Laurie Marker Executive Director Cheetah Conservation Fund P.O. Box 1755 Otjiwarongo, Namibia Phone: 067 306225 Fax: 067 306247 Email: [email protected] Internal Use Only 1 Table Of Contents I. Executive Summary 4 II. Organisational Structure 6 III. Research 7 A. POPULATION DYNAMICS 7 B. MEDICAL EXAMINATIONS 8 1. EXAMINATIONS UNDER ANAESTHESIA 8 2. EXAMINATIONS WITHOUT ANAESTHESIA 9 3. HEALTH-RELATED MEDICAL EXAMINATIONS: CAPTIVE CHEETAHS 10 4. DENTAL PROCEDURES ON CCF’S WILD AND CAPTIVE CHEETAHS 12 5. RELEASED CHEETAH EXAMINATIONS 12 6. WILD CHEETAH EXAMINATIONS 13 7. DEATHS, EUTHANASIA, AND NECROPSIES 13 8. NON-CHEETAH CARNIVORE EXAMINATIONS AND NECROPSIES 14 C. HEALTH AND REPRODUCTION 16 1. GENOME RESOURCE BANK 16 D. CONSERVATION GENETICS 16 1. LIFE TECHNOLOGIES CONSERVATION GENETICS LABORATORY 16 2. SCAT DETECTION DOGS 20 E. LARGE CARNIVORE RESEARCH AND ECOLOGY 23 1. GO GREEN PROJECT – CARNIVORE LANDSCAPE DISTRIBUTION AND ABUNDANCE 23 2. PILOT PROJECTS: E-SHEPHERD COLLARS AND FOXLIGHTS 32 3. CHEETAH RELEASES AND MONITORING 46 F. ECOSYSTEM RESEARCH 54 1. WEATHER MONITORING 54 2. GAME MONITORING 55 3. BUSH ENCROACHMENT AND BIODIVERSITY 62 4. CHEETAH/LEOPARD CAMERA TRAP STUDY 63 5. GIRAFFE IDENTIFICATION 64 6. CCF RHINO RESERVE 66 7. VISITING RESEARCHERS 66 G. SCIENTIFIC PUBLICATIONS AND PAPERS 67 1. BOOKS 67 2. BOOK CHAPTERS 67 3. PAPERS 70 4. SUBMITTED PAPERS 70 5. PAPERS IN PREPARATION 70 IV. Conservation 71 A. LIVESTOCK GUARDING DOG PROGRAMME 71 1. PROGRAMME OVERVIEW 71 2. BREEDING AND PUPPY PLACEMENTS 72 3. FOLLOW-UP ON PRIOR PLACEMENTS AND HEALTH SURVEY 74 4.
    [Show full text]
  • Fur Trade and the Biotic Homogenization of Subpolar Ecosystems
    Chapter 14 Fur Trade and the Biotic Homogenization of Subpolar Ecosystems Ramiro D. Crego, Ricardo Rozzi, and Jaime E. Jiménez Abstract At the southern end of the Americas exist one of the last pristine ecosys- tems in the world, the sub-Antarctic Magellanic forests ecoregion, protected by the Cape Horn Biosphere Reserve (CHBR). Despite its remote location, the CHBR has been subject to the growing infuences of globalization, a process that has driven cultural, biotic, and economic transformations in the region since the mid-twentieth century. One of the most important threats to these unique ecosystems is the increase of biological invasions. Motivated by the expanding fur industry that responded to the globalization process, American beavers (Castor canadensis), muskrats (Ondatra zibethicus), and American minks (Neovison vison) were introduced, inde- pendently, to the southern tip of South America. Research has shown that these three North American species have reassembled their native interactions to affect negatively the invaded ecosystems of the CHBR. Beavers affect river fow and R. D. Crego (*) Department of Biological Sciences, University of North Texas, Denton, TX, USA Instituto de Ecología y Biodiversidad, Santiago, Chile Sub-Antarctic Biocultural Conservation Program, University of North Texas, Denton, TX, USA R. Rozzi Department of Philosophy and Religion and Department of Biological Sciences, University of North Texas, Denton, TX, USA Sub-Antarctic Biocultural Conservation Program, University of North Texas, Denton, TX, USA Instituto de Ecología y Biodiversidad and Universidad de Magallanes, Punta Arenas, Chile J. E. Jiménez Department of Biological Sciences, University of North Texas, Denton, TX, USA Instituto de Ecología y Biodiversidad, Santiago, Chile Sub-Antarctic Biocultural Conservation Program, University of North Texas, Denton, TX, USA Department of Philosophy and Religion, University of North Texas, Denton, TX, USA Universidad de Magallanes, Punta Arenas, Chile © Springer Nature Switzerland AG 2018 233 R.
    [Show full text]
  • Galidictis Grandidieri, Grandidier's Vontsira
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T8834A45198057 Galidictis grandidieri, Grandidier’s Vontsira Assessment by: Hawkins, F. View on www.iucnredlist.org Citation: Hawkins, F. 2015. Galidictis grandidieri. The IUCN Red List of Threatened Species 2015: e.T8834A45198057. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T8834A45198057.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Carnivora Eupleridae Taxon Name: Galidictis grandidieri Wozencraft, 1986 Common Name(s): • English: Grandidier’s Vontsira, Giant-striped Mongoose, Grandidier's Mongoose Assessment Information Red List Category & Criteria: Endangered B1ab(i,ii,iii,v) ver 3.1 Year Published: 2015 Date Assessed: March 2, 2015 Justification: This species is listed as Endangered under B1ab(i,ii,iii,v).
    [Show full text]
  • Phylogeographic and Diversification Patterns of the White-Nosed Coati
    Molecular Phylogenetics and Evolution 131 (2019) 149–163 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America T ⁎ Sergio F. Nigenda-Moralesa, , Matthew E. Gompperb, David Valenzuela-Galvánc, Anna R. Layd, Karen M. Kapheime, Christine Hassf, Susan D. Booth-Binczikg, Gerald A. Binczikh, Ben T. Hirschi, Maureen McColginj, John L. Koprowskik, Katherine McFaddenl,1, Robert K. Waynea, ⁎ Klaus-Peter Koepflim,n, a Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA b School of Natural Resources, University of Missouri, Columbia, MO 65211, USA c Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico d Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA e Department of Biology, Utah State University, Logan, UT 84322, USA f Wild Mountain Echoes, Vail, AZ 85641, USA g New York State Department of Environmental Conservation, Albany, NY 12233, USA h Amsterdam, New York 12010, USA i Zoology and Ecology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia j Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA k School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA l College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA m Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Endangered Species: the Marine Otter by Gale, Cengage Learning, Adapted by Newsela Staff on 04.20.18 Word Count 436 Level 400L
    Endangered Species: The marine otter By Gale, Cengage Learning, adapted by Newsela staff on 04.20.18 Word Count 436 Level 400L Image 1. Marine otters are sometimes called "sea cats." Photo from Wikimedia Commons. Have you ever seen a sea otter? You might have spotted one in the ocean or at a zoo. Sea otters are one kind of otter. The marine otter is another kind. The marine otter lives in South America. It lives along the west coast. That is where the land touches the Pacific Ocean. This otter is sometimes called a sea cat. It is about the size of a cat. It has a long body. Its head is flat. The marine otter has tiny ears and long whiskers. It has short legs and webbed feet. This makes the otter a great swimmer. The otters feed on sea animals. They like crabs and oysters. They swim on their backs to eat. The otters put their catch on their chests. Then they grab a rock. They use it to crack open the hard shells. This article is available at 5 reading levels at https://newsela.com. Habitat And Population It is hard to count marine otters. They like to live alone. So they are not usually seen in big groups. Scientists think there are not many left. They do not know the exact number. But they think there might be only 2,000 marine otters in the wild today. Sea otters live in water all the time. Marine otters are different. They live on land. They always live in rocky places close to water, though.
    [Show full text]
  • Digital Appendix 1 List of Searching Criteria Used by Mammal Species
    Digital Appendix 1 List of searching criteria used by mammal species Common Name Scientific Name Search Criteria "Atelocynus microtis" OR "Short-eared dog" OR "small-eared dog" OR "zorro de oreja corta" OR "perro selvático" OR "cachorro-do-mato-de- Short-eared dog Atelocynus microtis orelhas-curtas" "Catagonus wagneri" OR "Chacoan Peccary" OR Chacoan Peccary Catagonus wagneri "pecarí del Chaco" OR "pecarí quimilero" “Dasyprocta punctate” OR "Central American Central American Agouti Dasyprocta punctata Agouti" OR "agutí centroamericano" “Dasypus sabanicola” OR "Northern Long-nosed Northern Long-nosed Armadillo" OR "Savanna armadillo" OR "Llanos Armadillo Dasypus sabanicola long-nosed armadillo" OR "cachicamo sabanero" “Eira barbara” OR "Tayra" OR "cabeza de mate" Taira Eira barbara OR "irara" “Galictis vittata” OR "Greater Grison" OR "furão- Greater Grison Galictis vittata grande" OR "grisón grande" OR "galictis vittatta" “Herpailurus yagouaroundi” OR Yaguarundi OR yagouaroundi OR "Puma yagouaroundi" OR Yaguarundi Herpailurus yagouaroundi Jaguarundi "Hydrochoerus hydrochaeris" OR capybara OR "Capivara" OR "chigüire" OR "capibara" OR Capybara Hydrochoerus hydrochaeris "Hydrochaeris hydrochaeris" “Leopardus colocolo” OR "pampas cat" OR "colocolo" OR "felis colocolo" OR "gato de las Colocolo Leopardus colocolo pampas" "Leopardus pardalis" OR jaguatirica OR ocelote Ocelot Leopardus pardalis OR ocelot “Leopardus wiedii” OR "margay" OR"Felis Margay Leopardus wiedii wiedii" OR "gato-maracajá" “Lontra longicaudis” OR "neotropical otter" OR "neotropical
    [Show full text]
  • The Impact of Forest Logging and Fragmentation on Carnivore Species Composition, Density and Occupancy in Madagascar’S Rainforests
    The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests B RIAN D. GERBER,SARAH M. KARPANTY and J OHNY R ANDRIANANTENAINA Abstract Forest carnivores are threatened globally by Introduction logging and forest fragmentation yet we know relatively little about how such change affects predator populations. arnivores are one of the most threatened groups of 2009 This is especially true in Madagascar, where carnivores Cterrestrial mammals (Karanth & Chellam, ). have not been extensively studied. To understand better the Declines of predators are often attributed to habitat loss effects of logging and fragmentation on Malagasy carnivores and fragmentation but few quantitative studies have we evaluated species composition, density of fossa examined how carnivore populations and communities 2002 Cryptoprocta ferox and Malagasy civet Fossa fossana, and change with habitat loss or fragmentation (Crooks, ; 2005 carnivore occupancy in central-eastern Madagascar. We Michalski & Peres, ). This is particularly true for ’ photographically-sampled carnivores in two contiguous Madagascar s carnivores, with knowledge lacking about ff (primary and selectively-logged) and two fragmented rain- their ecology and the e ects of anthropogenic disturbances 2010 forests (fragments , 2.5 and . 15 km from intact forest). (Irwin et al., ), especially in the eastern rainforest where Species composition varied, with more native carnivores in only short-term studies have been conducted (Gerber et al., 2010 16 the contiguous than fragmented rainforests. F. fossana was ). With only % of the original primary forests extant absent from fragmented rainforests and at a lower density in Madagascar and those remaining becoming smaller and 2007 in selectively-logged than in primary rainforest (mean more isolated over time (Harper et al., ), habitat loss −2 1.38 ± SE 0.22 and 3.19 ± SE 0.55 individuals km , respect- and fragmentation are serious threats to many endemic 2010 ively).
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Complete Issue
    ISSN 1023-9030 IUCN Otter Spec. Group Bull. 21 (2)/2004 IUCN OTTER SPECIALIST GROUP BULLETIN Volume 21 (2) October 2004 IUCN Otter Spec. Group Bull. 21(2) 2004 CONTENT Note from the Editor................................................................................................. 60 IUCN/SCC OSG GROUP In Memoriam Claus Reuther .................................................................................... 61 ARTICLES Assessing the Distribution of Reintroduced Populations of River Otters in 63 Pennsylvania (USA) – Development of a Landscape Level Approach .……………... First Physical Evidence of the Nearctic River Otter (Lontra canadensis) collected in 70 New Mexico, USA, since 1953 …………………………… ……………………….. High Mortality of Nearctic River Otters on a Florida, USA, Interstate Highway 76 during an Extreme Drought REPORTS Intraspecific Agonism between Giant Otters ……………………………………… 89 Preliminary Study of the Tracks of Captive Otters (Lutra lutra) as a Tool for Field Research ……………………………………………………………........................ 93 Literature..………………..............................................................................…....... 100 Congress Announcements.................................................................................….... 101 - 2 - IUCN Otter Spec. Group Bull. 21(2) 2004 IUCN OTTER SPECIALIST GROUP BULLETIN The IUCN Otter Specialist Group Bulletin appears biannually. Articles, reports, symposium announcements and information on recent publications are welcome. All submissions should be typed double-spaced. The submission
    [Show full text]