Mississippi River Commission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geotechnical Overview
I-66 CORRIDOR STUDY WESTERN KENTUCKY TO MISSOURI BALLARD / MCCRACKEN COUNTY - ITEM # 1-23.00 APPENDIX 5 – GEOTECHNICAL OVERVIEW Prepared for Kentucky Transportation Cabinet (KYTC) – Division of Planning Kentucky Transportation Cabinet (KYTC) – District 1 Missouri Department of Transportation (MoDOT) Prepared by Parsons Brinckerhoff Quade & Douglas, Inc. In Association With: Qk4 Third Rock Consultants, LLC Cultural Resource Analysts, Inc. Fuller, Mossbarger, Scott & May FEBRUARY 2005 Table of Contents Section Page No. 1. Project Description ................................................................ 1 2. Scope of Work ........................................................................ 2 3. Physiographic and Stratigraphic Setting............................. 3 3.1. Topography and Drainage............................................... 3 3.2. Stratigraphy..................................................................... 3 3.3. Soils and Unconsolidated Materials................................ 4 3.4. Groundwater................................................................... 4 3.5. Regional Seismicity ........................................................ 4 4. Existing Corridor Features ................................................... 6 4.1. General............................................................................ 6 4.2. Domestic and Public Areas............................................. 6 4.3. Other Features................................................................. 6 5. Geotechnical Concerns ......................................................... -
US Foreign-Trade Zones: Trade Agreement Parity
Order Code RL34688 U.S. Foreign-Trade Zones: Trade Agreement Parity (TAP) Proposal September 29, 2008 Mary Jane Bolle Specialist in International Trade and Finance Foreign Affairs, Defense, and Trade Division U.S. Foreign-Trade Zones: Trade Agreement Parity (TAP)Proposal Summary The National Association of Foreign Trade Zones (NAFTZ) has developed the Trade Agreement Parity (TAP) proposal, introduced as H.R. 6415 (Pascrell) to address what NAFTZ claims as the “unintended consequences” of free trade agreements. These are that free trade agreements (FTAs), in granting tariff advantages to businesses that import components or products from FTA countries, put companies that import components from third countries (not a party to an FTA) at a tariff disadvantage. Critics, however, say the effects the bill generally seeks to address are the exact intended consequences of FTAs: the United States extends preferential tariff treatment to components from an FTA partner country in exchange for that country’s lowering of its tariff rates on U.S. products. The TAP proposal would permit certain businesses to permanently “borrow”U.S. free trade agreements (FTAs) in order to import components at rates below those they would normally be charged under U.S. tariff law. There would be two stipulations: (1) the products using third-country components would have to be produced in a U.S. foreign-trade zone; and (2) the product would have to meet the rules-of-origin (domestic content) requirements of any FTA – which could be satisfied by using entirely third country parts and U.S. labor, without input from any other FTA partner country. -
Background and Rationale Document Proposed Petroleum Refining Industry Standard
BACKGROUND AND RATIONALE DOCUMENT PROPOSED PETROLEUM REFINING INDUSTRY STANDARD (for selected contaminants) UNDER ONTARIO’S LOCAL AIR QUALITY REGULATION February 2016 Ontario Ministry of the Environment and Climate Change Environmental Sciences and Standards Division Standards Development Branch The information contained in this document is confidential and proprietary to the Government of Ontario. Unauthorized distribution or use of this document or the information contained herein is strictly prohibited. Copyright & Disclaimer The Government of Ontario reserves the right to make changes in the information contained in this publication without prior notice. 2016 Government of Ontario. All rights reserved. Other product or brand names are trademarks or registered trademarks of their respective holders. This document contains proprietary and confidential information about Government of Ontario, disclosure or reproduction is prohibited without the prior express written permission from Government of Ontario. Cette publication hautement spécialisée Background and Rationale Document Proposed Petroleum Refining Industry Standard February 2016 n'est disponible qu'en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère de l'Environnement et de l’Action en matière de changement climatique au 327-5519 ou par courriel à [email protected]. Translation: This highly specialized publication Background and Rationale Document Proposed Petroleum Refining Industry Standard under Ontario's Local Air Quality Regulation February 2016 is available in English only in accordance with Regulation 671/92, which exempts it from translation under the French Language Services Act. -
Mississippi River and Tributaries Project Authorized by the Flood Control Act of 1928 and Amended by FCA ‘65
Mississippi River & Tributaries Project Historic Flood of 2011 Mr. Donald R. Davenport Hydraulic Engineer/Silver Jacket Coordinator Memphis District US Army Corps of Engineers BUILDING STRONG® Flooded 26,000 sq. miles 600,000 homeless Over 250 people killed Economic Damages ~$1B MR&T Project & 2011 Flood Facts • MR&T Project Authorized After the 1927 Flood-Flood Control Act of 1928 •Designed for a Project Design Flood (PDF) – Extreme Event w/Reasonable Chance of Occurrence •2011 Flood Exceeded 1927 and/or 1937 floods but was only about 80- 85% of PDF •MR&T Project contained the 2011 Flood despite being only 89% Complete while: •No MR&T Levees failed or were overtopped •Used 3 of 4 Floodways during the 2011 Flood (not Atchafalaya in New Orleans District) •Backwater Areas’ Flooding Limited to Interior Flooding Although Came Close to Using Yazoo BW Area in the Vicksburg Distrit US Army Corps of Engineers BUILDING STRONG® Project Design Flood Rainfall 6 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. US Army Corps of Engineers BUILDING STRONG® Memphis District Boundaries MRT Project in Memphis District .1,160 miles of Levees & Floodwalls .275 miles of Berms .1,300 Relief Wells .4 Corps Pumping Stations .1,300 miles of Channels .600 miles of Navigation Channel . 2 Harbors The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. -
The International Journal of Science & Technoledge
The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Monetizing the Flared Associated Natural Gas in Real-Time Via Synthetic Fuels Production Dr. Azunna I. B. Ekejiuba Senior Lecturer, Petroleum Engineering Department, Federal University of Technology Owerri/ Principle Researcher, Azuberth’s Research Complex, Owerri, Nigeria Abstract: The basic organic compound which serve as raw materials for the preparation of the many specific synthetic compounds are obtained from four sources: plant live, wastes, coal tar, petroleum (crude oil and natural gas). Wood was the first of man’s fuel and is still the primary energy source in most parts of the world. At the onset of the industrial revolution, charcoal from wood was replaced by coke from coal. Subsequently, the development of the internal-combustion engine and the automobile created a vast new market for gasoline product made from crude oil; kerosene use for lighting and heating oil began to replace coal in many energy markets. Thus, the industrial revolution lead to the change from the use of hand tools, using human mechanical energy to machine and power tools, which allowed the conversion of energy in falling water to mechanical energy (water wheels) or conversion of chemical energy in wood or coal to mechanical energy (steam engine) for industrial processes. Synthetic fuels are liquid or gaseous fuels extracted or fabricated from solid earth materials that are rich in hydrocarbons, such asbiomass (plants and plant-derived substance e.g., waste), coal, oil shale, tar sands, natural gas instead of refining crude oil. This paper reviewed the development of the GTL process technology from its recognition in 1902, to the evolving micro-channel technology. -
Overview of the Mississippi River & Tributaries (Mr&T)
1 OVERVIEW OF THE MISSISSIPPI RIVER & TRIBUTARIES (MR&T) - ATCHAFALAYA BASIN PROJECT 237 217 200 80 252 237 217 200 119 174 237 217 200 27 .59 255 0 163 131 239 110 112 62 102 130 Port255 Of0 Morgan163 City132 –65 Stakeholder135 92 Meeting102 56 120 255 0 163 122 53 120 56 130 48 111 Durund Elzey Assistance Deputy District Engineer (ADPM) US Army Corps of Engineers New Orleans District 11 February 2019 2 TOPICS OF DISCUSSION • Passing the MR&T Project Design Flood • The Jadwin Plan • The Morganza Floodway • The Old River Control Complex • MR&T Atchafalaya Basin Flood Control Project • Atchafalaya Basin Levee Construction • Atchafalaya Basin O&M • Atchafalaya River Dredging • The Atchafalaya Basin Floodway System (ABFS) Project • Sedimentation Issues • Path Forward 3 THE FLOOD OF 1927 Flood Control Act of 1928 4 and the Jadwin Plan The Morganza Floodway 5 6 Old River Control Structures Authorized 1973 Flood . The Low Sill Control Structure was undermined and the Wing Wall failed . The Old River Overbank Control Structure and the Morganza Control Structure were opened to relieve stress on the Low Sill Control Structure . Due to severe damage to the Low Sill Control Structure, USACE recommended construction of the Auxiliary Control Structure, which was completed in 1986 Morganza Control Structure Operated for First Time View of Old River Control Complex Old River Lock Auxiliary Control Structure Low Sill Control Structure Overbank Control Structure S.A. Murray Hydro 9 The Flood of 2011 10 Extent of 1927 Flood (in Blue) Versus 2011 Flood (in Green) Passing the Project Design Flood 11 The MR&T Atchafalaya Basin Project The MR&T Atchafalaya Basin Project Major Components • 451 Miles of Levees and Floodwalls • 4 Navigation Locks . -
Mississippi River
Mississippi River In 2011 the lower Mississippi River carried the greatest volume of floodwaters ever recorded, exceeding the his- toric flood of 1927. In that earlier flood, considered the most destructive river flood in the history of the United States, levees were breached or overtopped in 145 loca- tions, 70,000 km2 were inundated, and 700,000 people were displaced for weeks to months. Officially hundreds of people died but more likely thousands of rural resi- dents were killed (Barry 1997). The flood exposed two primary limitations to river and floodplain management of the time. First, flood manage- ment relied excessively on levees (the “levees-only” ap- proach) which presumed that nearly the entire floodplain could be disconnected from river floods. Second, flood- plain and river management was uncoordinated. In response to the flood, the U.S. Army Corps of Engineers developed the Mississippi Rivers and Tributaries Project (MR&T). The MR&T coordinated levee placement and design, dam development and operations, floodplain management and navigation for the lower Mississippi Riv- er basin, including several major tributaries (U.S. Army Corps of Engineers 2008). In addition to replacing a piecemeal approach to river management with a comprehensive system approach, the MR&T also moved floodplain management away from the “levees only” approach and included floodplain storage and conveyance as critical components of flood-risk man- Figure 1. The Mississippi River and Tributaries Project. Floodways agement. Four floodways were designated, portions of the are circled in red. (US Army Corps of Engineers) historic floodplain that would reconnect to the river and convey floodwaters during the highest floods (Figure 1). -
Environmental, Health, and Safety Guidelines for Petroleum Refining
ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES PETROLEUM REFINING November 17, 2016 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR PETROLEUM REFINING INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS Guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables— such as host country context, assimilative capacity of the environment, and other project factors—are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent. -
1973 Flood Again Justified the Federal Flood Control Projects in the Mississippi River Basin
~~\SSIPPI 11ft? ~~ AND -€4 TRIBUT ARIES DEPARTMENT OF THE ARMY CORPS OF ENG INEERS LOWER MISS ISSIPPI VA LLEY DIVISION Vicksburg, Mississippi S\5SIPPI ~\-r:o AND TRIBUT ARIES POST-FLOOD REPORT 1l~13) Published by LOWER MISSISSIPPI VALLEY DIVISION AND MRC in cooperation with NORTH CENTRAL DIVISION, MISSOURI RIVER DIVISION, SOUTHWESTERN DIVISION, AND OHIO RIVER DIVISION SYLLABUS Throughout the autumn of 1972, above average rainfall began to fill fl ood control reservoirs along the tribu tary streams of the Miss issippi River. By December 1972, the basin had become saturated and very linle additional rainfall could be absorbed. Corps hydrologists noted an ominous pattern in hydrograph readings at Cairo, Illinois, the lOpOr the Lower Val ley, where the Mississippi and Ohio Rivers join. In ea rly i'vlarch 1973, morc storms developed over the Missouri River Basin, then moved into the nonheast over the Upper Mississippi and Illinois River Basins. Others blew lOW Arkansas, Louisiana, Mississippi, Tennessee, and Kentucky. On 9 March all indications we(e that a major flood had begun. Later storms in March and April added more fl oodwaters. It took until mid-June 1973 [or the flood to run its coursefrom the State of Iowa to the Gulf of Mexico. The magnitude of the nood varied greatly in the tributary basins,'buton an overall basis and particularly o n the lower Mis sissippi River the flood ranked as one of the great fl oods of Mississippi River history. Federal flood con trol works throughout the basin, although many projens were still under construction, were highly effenive for the purposes for which they were designed and constructed. -
The 2011 Mississippi River Basin Flood: a Perspective on Forecasting, Water Management, and Flood Fight Chandra S
The 2011 Mississippi River Basin Flood: A Perspective on Forecasting, Water Management, and Flood Fight Chandra S. Pathak, PhD, PE, D.WRE, F.ASCE HH&C Community of Practice Engineering and Construction US Army Corps of Engineers - HQ US Army Corps of Engineers BUILDING STRONG® Acknowledgement Authors: Jeff Graschel (NOAA) Robert R. Holmes, PhD, P.E., D.WRE (USGS) Andrea G Veilleux, PhD (USGS) Charles E. Shadie, PE, D.WRE (USACE) Deborah H. Lee, PE, PH, D.WRE (USACE) Ron W. Bell, P.E. (USACE) Jody S. Farhat, PE, D.WRE (USACE) BUILDING STRONG® BUILDING STRONG® Mississippi River Watershed BUILDING STRONG® National Weather Service Role Provide weather, water and climate forecasts and warnings to: • Protect life and property • Enhance the national economy River Flood Forecasting is a collaborative effort between many agencies BUILDING STRONG® NWS River Forecast Centers 13 River Forecast Centers issue river guidance BUILDING STRONG® Pre-Event Conditions • Winter Outlook predicted wetter than average for Ohio & TN Valleys • Historic snow water equivalents occurred over Upper Miss Valley • Above normal rainfall in Feb caused elevated streamflow in the Ohio Valley BUILDING STRONG® Pre-Event Conditions • Spring flood Outlook indicated Above Average to High Flood Risk for Mississippi, Ohio, & Tennessee Valleys • Briefings provided to partners to convey flood risk • Then it started to “Rain” BUILDING STRONG® Rainfall Overview BUILDING STRONG® Communication/Collaboration • Continuous forecast coordination between NWS forecasters and USACE decision -
GETTING to NET ZERO September 2020 Contents
GETTING TO NET ZERO September 2020 Contents 01 Foreword by Patrick Pouyanné, 18 46 Chairman and Chief Executive Officer, Total Acting on emissions Shaping tomorrow’s 19 Energy efficiency energy 21 Target of zero routine 47 08 Interview with Marie-Christine OGCI: Oil and Gas flaring by 2030 Coisne-Roquette, Lead Companies pool their efforts Foreword by Independent Director at Total 22 Controlling methane 49 O n the front lines Patrick Pouyanné, emissions on carbon pricing Chairman and Chief 50 Industr y associations: reviewing to work better Executive Officer, Total 09 25 together Net Zero by 2050 Acting on products 10 Our Ambition 26 Natural gas, biogas 15 Scope 3: new objectives and hydrogen: allies of the energy transition 17 An indicator to measure product carbon intensity 29 Electricity: building 53 a world leader Appendices 32 Decarbonizing and saving liquid energies TOGETHER, 34 Acting on demand 35 Mobility, transportation, GETTING TO NET ZERO SEPTEMBER 2020 LET’S SPEED UP industry: promoting less carbon-intensive energy 40 THE ENERGY Investing in carbon sinks 41 De veloping carbon sinks TRANSITION 44 Mobilizing R&D for the energy transition TO CREATE A CARBON-NEUTRAL SOCIETY BY 2050 01 Total took a major step forward in 2020 in its response to “It’s our job to meet growing the climate challenge by setting energy needs while reducing a new ambition to get to net zero emissions for its global business carbon emissions.” by 2050, together with society. In this way, Total intends to contribute to the Paris Agreement’s carbon neutrality objective for the second half of the century. -
Attachment Fly Sheets Challenge Response 042215
Arx Advantage, LLC Robbye G. Meyer 8801 Francia Trail Austin, Texas 78748 (512) 963-2555 [email protected] April 22, 2015 Texas Department of Housing and Community Affairs Attention: Jean Latsha 221 East 11th Street Austin, Texas 78701 RE: Response to Challenge of Application #15159 Abbington Commons of Whitewright Dear Ms. Latsha, Arx Advantage, LLC is the consulting firm representing the Abbington Commons of Whitewright (“Abbington”) proposed development. We appreciate the opportunity to respond to the challenge set forth by Mr. Shackleford, who is representing the Courtyard Apartments. The challenge alleges violations of §10.101(a)(3)(D) and (J) of the Uniform Multifamily Rules pertaining to undesirable site features. Specifically, the challenge states “located within 2 miles of the proposed site for the Abbington Commons is an ammonium nitrate (“AN”) storage facility which constitutes a potentially hazardous use and potentially exposes the residents to an environmental factor that may adversely affect the health and safety of the residents. Located within 960 feet of the Abbington Commons site is the El Dorado Chemical Company.” Section 10.101(a)(3)(D) pertains to “Development Sites located within 2 miles of potentially hazardous uses such as nuclear plants or large refineries (e.g. oil refineries producing more than 100,000 barrels of oil daily).” There are 2 nuclear plants and 24 oil refineries currently operating in Texas and none are within 2 miles of the development site. The Abbington site is neither a nuclear plant nor a large refinery; therefore, this subsection should not even be a consideration. The challenge clearly states that the El Dorado is a Chemical Plant.