V71 P97 Rosentreter Et Al.PDF

Total Page:16

File Type:pdf, Size:1020Kb

V71 P97 Rosentreter Et Al.PDF Roger Rosenireter,Bureau ofLand Management1387S Vinne Way, Boise ldaho 83709. GregoryD. Hayward,Departrnent of Zoologyand Physloogy tln versityof Wyomng Larame Wyomng 82071 ano MarciaWicklow-Howard, B ologyDepartment Bo se StateUn versity Boise. ldaho 83725. NorthernFlying Squirrel Seasonal Food Habits in the InteriorConifer Forestsof Centralldaho, USA Abstract Microhistological analysis of 200 scals collected from two arlilicial nest boxes used by nofthem flying squirrels (Gldr.dm-vr rdbrrrllr) in central ldaho show disdnc! seasonalvariation. The llying squirrelsconsumed hypogeous, myconhizal fungi in the summcr and arboreallichens and hypogeous,mycorrhizal fungi in |he winter Dominant summerlbods included boleloid genera and kxcrrgdrlsr, while dominant winter foods include lichens in thc genus Brjrr.ia, boletoid generaand the genus Gzrrie,"ld. Central Idaho conifer lbresls developedunder a continenul climate characterizedby summer drougb! and long. sno*'covered winter and spring condirions. Theseclimatic and vegetationconditions are considerablydiflerent from thosefound west ofthe Cascadesnhere most studiesof northernfl]'ing squirrelshave becn conducted. lntroduction chemical testsfor speciesdeterminations, raises doubts regardingthe identity of somelichen genera flying squinel (Glaricomys Studies of northem and speciesreported. An understandingof the diets in western North America sabrinus) taxa consumedby flying squirrelsis futher con- (McKeever Fogel andTrappe 1978,Maser 1960, fused becausethe genusU-rr".r has frequently been 1991,Hall et al. 1978,Maser et al. 1985,Carey misapplied to Alectoria, which it superficially a complexfunctional 1991,Carey 1995) suggest resemblesboth morphologicallyand ecologically. mycorrhizal lungi critical relationship in which Alectoria has been subdivided (Brodo and growth trees are dispersedby arboreal to the of Hawkswonh 1977) into severalgenera, includ- Mountains.the diet rodents.West ofthe Cascade irgAlectorie arLdBr)ioi.iQ. We suspectthat many flying squirrel consistslargely of of the nonhern reportsof Usneaare eitherAlectoria sarmentosa Mountains and in fungi. East of the Cascade or Bryoria species. Alaska.where winters are long andsnow-covered, northern flying squirrelsconsume fungi and ar- Therefore,based on chemisty andtaxonomic not boreallichens (Maser et al. 1986,McKeever 1960, confusion,we suggestthat flying squirrels do Mowrey et al. 1984). Lichen speciesrepofted in regularlyconsume any ofthe previouslyreported lichen taxaexcept B whichlacks ilying squirrel diets include: Bryorid Jremontii ry-oriafremontii, secondarychemical compounds(Brodo and (Tuck.) Brodo and Hawkswotth (Maser et al. 1986), Hawksworth1977, Rosentreter and Eslick 1993). Alec t o r i afre nontii (Al ect o r ia syn.= B ryo ria ) and Usnea ceratina Ach. (McKeever 1960), Usnea Previous studieshave identified lichen tiag- barbata(L.)\'/eber exWigg. (Cowan1936), and ments from stomachcontents or scatsof the north- Letharia, Ph;lscia,and unidentifiedlichens (Hall em flying squirrel. In studiesof northem flying 1991). Other authorshave merely classifiedthe squirrelrecovery in WestVirginia, Mitchell (1994) "lichens" observedfood by the category (Conner recordedlichen presencein scatsby quantifying 1960,Maser et al. 1978). the presenceof algal cells. Unfortunately voucher specimensof lichens In this study,we soughtto identify the range were either not made or have not been located of fbods consumedby northem flying squirrels for studiesby Maser et al. (1986),McKeever in an interior forestof the Nothern Rocky Moun- (1960),or Mowrey and Zasada(1984), leaving tains. We were particularly interestedin the di- the taxonomy unverified. The complexity of li- versity of myconhizal fungi eatenby the squir- chen taxonomy, which in some casesrequires rels and the relative consumption of fungi and NorthwestScience, Vol.71, No. 2, 1997 97 O l997bl $c Nodnqe$ Scientific Ai$ciation All nghrsr.scscd. lichen. We also wishedto determinethe seasonal potentialArleJ lttsiocarpa habitat series(Steele vadation in lbods consuned in light of the long et al. 1981)at ca. 1920m elevation.The winrer periodofdeep snow-cover experienced by squinels scatbox site was dominatedby Abies lasiocarpa in thisregion. while the summerscat box was dominatedby Plzas contort.r. Thetwo communallatrine boxesprob- StudyArea ably representscats tiom between2 l2 individual squinels.Maser et al. (1981)reported aggrega We examined flying squirrel scatscollected on tions of northem flying squirrels, the PayetteNational Forestin centralIdaho near and we have observedup to six adult squirrelsin a nest McCall,Idaho, USA. Scatswere collected in two box at onetime. Scats werc storeddryuntil drainages,the Nofth Fork PayetteRiverand Goose analysisbegan in December1993. Creek. The PayetteNational Forestis mountain ous;elevations range from l.520to 2,140m. lts Laboratoryanalysis climatehas a strongPacific coastal influence during \ interbul follr'$sconlinenlJl patternr in .rrm- Dried flying squirrel scatswere placedin forma- mer (Finklin 1988). Annual precipitationaver- Iin (47oformaldehyde) to prevent any exposure agesover 100cm a year andfalls largely as snow, to Hantavirus.One hundred scats were randomly which accumulatesto depthsof 1.5 to 2 m. In selectedfuom each of the two large communal most yea.rs50% of the ground at higher eleva- latrines.Each scat was soaked in a glassvial in tions is coveredby snowuntil afier June 1st. The approximately2 ml tbrmalin and then set on a landscapeis dominatedby conifer fbrests,most slidewarrner at 45'C tbr 2.1hours(summer scats) standssupporting a sparseshrub layer but an ex- or 48 hou$ (winter scats)to soften. Winter scitts tensiveground Jayer of low shrubs(Vaccialln), were harder and required more time to soften. grasses.and fbrbs. Foresttypes included spnrce-fir After the warm soaking, scatswere crushed in (Picea engelmannliParry- Ari.r-r lasiocarpa the glass vials with a glassrod. An eyedropper (Hook.r Nun.'. Douglt:-t.rrr Ptetdotsuqa ntn:ie:ii was insertedinto the vial and squeezedquickly (Mirb.) Franco) and I odgepolepine (Pinus contortLl eight times to thoroughly mix the sample. One Dougl.)(Steele et al. 1981). drop of the mixture was placed on a clean glass slide. Two dropsof Melzer'ssolution were added. Methods The slide was allowed to partially air dry. Two dropsofPoly-vinyl alcohd (PVA)were then added. Fied lVethods and a plastic cover slip was placed over the ma terial. Ten random area views were examined Northem flying squirrel scatswere collected in under a light microscopeat 400x, or when view- 1989frorn a systemofartiflcial woodennest boxes ing larger structures,100x. This method was a established on the Payette National Forest modification ofColgan et al. (in press),Maser et (Hayward and Rosentreter1994). Scarsdepos- al. (1986)and Mclntire and Carey (1989). Algal ited during the winter monthsand collectedin cells were comparedto fiesh specimensof the early June when snow still covered the ground common Bryr)rla species from the study area were classified as winter scats.Scats deposited (Hayward and Rosentreter1994). A\l BDoriq fiomJune throughAugustwere classified as sum- specrescontained the algal genus Trebouxiq. mer scats.These seasonallyproduced scats dif- Trebouxiaare green. single-celled algae with round f'ered in color and hardness;winter scatswere to ovate cells and a distinctive starchpyrenoid. harderand darker Nomenclaturelbr thelichens follows Egan(1987). Someboxes were usedos communal latdnes Fungalspores were identified by useofCastellano rather than roosts or natal nests and provided a etal. (1989). Nomenclaturetbr fungi fbllows that largenumber ofscats, numberingfrom 20 to 400 usedby Castellanoet al. (1989). per box. Two such latrine boxes liom compa- Permanentyoucher slides were made ofeach rable habitatswere sampledand analyzed. One type oftungal sporeby addingfive or more drops latrine box containedsummer scats and the other of PVA and drying slides on a warmer ar 30"C containedonly winter scats. Both latrine box for approximately 30 minutes. Voucher speci- siteswere in older aged stands(greater than 180 mens of sporeswere veritied by TeresaLabe1. yearsold) with north-facingaspects classified as Wesley Colgan III. and Michael Castellano. 98 Rosentreter.Hayward, and Wicklow-Howard Voucher slides are stored with the mycological is indicatedby the higher frequencyofalgal cells collectionsat the SnakeRiver Plains Herbarium ln the scats. (SRP) at Boise StateUniversity. L Cnens The presenceof each type of fungal spore, vascularplant tissue,or algal cell was recorded Winter scats contained a higher frequency of and tiequency of occurrencecalculated for each Trebouxia(86Vc), the phycobiont algafor the ar- type of material (Holechekand Cross 1982). boreallichenBryoria, than the summerscats (25clo) Abundance, relative density, or percentageby (Tablei). Thewinter scats also had a higherin- volume(Maseret al. 1978)were not rateddue to cidenceof intact lichens,suggestjng that asfungi different spore sizes,making theseratings diffi- becamescarce in winter. Iichenswere more fre- cullan.l inlccurale (Willirms 1987). quently eaten. Results Fungi SeasonalVariat on Flying squirel scatscontained spores represent- ing manyta\a offungi (Tablel). TheAscomyotina Resultsfiom microhistologicalinvestigations fungi thatre lichenizedare considered lichen and demonstrateddistinct differencesbetween sum- are not included here asAscomyotina. The per- merand winter scats (Fig. 1).Dominant summer centageof Ascomycotinato Basidiomycotina
Recommended publications
  • Broad-Scale Distribution of Epiphytic Hair Lichens Correlates More with Climate and Nitrogen Deposition Than with Forest Structure P.-A
    1348 ARTICLE Broad-scale distribution of epiphytic hair lichens correlates more with climate and nitrogen deposition than with forest structure P.-A. Esseen, M. Ekström, B. Westerlund, K. Palmqvist, B.G. Jonsson, A. Grafström, and G. Ståhl Abstract: Hair lichens are strongly influenced by forest structure at local scales, but their broad-scale distributions are less under- stood. We compared the occurrence and length of Alectoria sarmentosa (Ach.) Ach., Bryoria spp., and Usnea spp. in the lower canopy of > 5000 Picea abies (L.) Karst. trees within the National Forest Inventory across all productive forest in Sweden. We used logistic regression to analyse how climate, nitrogen deposition, and forest variables influence lichen occurrence. Distributions overlapped, but the distribution of Bryoria was more northern and that of Usnea was more southern, with Alectoria's distribution being interme- diate. Lichen length increased towards northern regions, indicating better conditions for biomass accumulation. Logistic regression models had the highest pseudo R2 value for Bryoria, followed by Alectoria. Temperature and nitrogen deposition had higher explanatory power than precipitation and forest variables. Multiple logistic regressions suggest that lichen genera respond differently to increases in several variables. Warming decreased the odds for Bryoria occurrence at all temperatures. Corresponding odds for Alectoria and Usnea decreased in warmer climates, but in colder climates, they increased. Nitrogen addition decreased the odds for Alectoria and Usnea occurrence under high deposition, but under low deposition, the odds increased. Our analyses suggest major shifts in the broad-scale distribution of hair lichens with changes in climate, nitrogen deposition, and forest management. Key words: climate change, epiphytic lichens, forest structure, nitrogen deposition, temperature.
    [Show full text]
  • Morphological Traits in Hair Lichens Affect Their Water Storage
    Morphological traits in hair lichens affect their water storage Therese Olsson Student Degree Thesis in Biology 30 ECTS Master’s Level Report passed: 29 August 2014 Supervisor: Per-Anders Esseen Abstract The aim with this study was to develop a method to estimate total area of hair lichens and to compare morphological traits and water storage in them. Hair lichens are an important component of the epiphytic flora in boreal forests. Their growth is primarily regulated by available water, and light when hydrated. Lichens have no active mechanism to regulate their 2 water content and their water holding capacity (WHC, mg H2O/cm ) is thus an important factor for how long they remain wet and metabolically active. In this study, the water uptake and loss in five hair lichens (Alectoria sarmentosa, three Bryoria spp. and Usnea dasypoga) were compared. Their area were estimated by combining photography, scanning and a computer programme that estimates the area of objects. Total area overlap of individual branches was calculated for each species, to estimate total area of the lichen. WHC and specific thallus mass (STM) (mg DM/cm2) of the lichens were calculated. Bryoria spp. had a significantly lower STM compared to U. dasypoga and A. sarmentosa, due to its thinner branches and higher branch density. Bryoria also had a lower WHC compared to A. sarmentosa, promoting a rapid uptake and loss of water. All species had a significant relationship between STM and WHC, above a 1:1 line for all species except U. dasypoga. The lower relationship in U. dasypoga is explained by its less developed branching in combination with its thick branches.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • Lichens of Alaska's South Coast
    United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Taxonomy of Bryoria Section Implexae (Parmeliaceae, Lecanoromycetes) in North America and Europe, Based on Chemical, Morphological and Molecular Data
    Ann. Bot. Fennici 51: 345–371 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 22 September 2014 © Finnish Zoological and Botanical Publishing Board 2014 Taxonomy of Bryoria section Implexae (Parmeliaceae, Lecanoromycetes) in North America and Europe, based on chemical, morphological and molecular data Saara Velmala1,*, Leena Myllys1, Trevor Goward2, Håkon Holien3 & Pekka Halonen4 1) Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland (*corresponding author’s e-mail: [email protected]) 2) UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada (mailing address: Enlichened Consulting Ltd., 5369 Clearwater Valley Road, Upper Clearwater, BC V0E 1N1, Canada) 3) Nord-Trøndelag University College, Serviceboks 2501, N-7729 Steinkjer, Norway 4) Botanical Museum, Department of Biology, P.O. Box 3000, FI-90014 University of Oulu, Finland Received 31 Jan. 2014, final version received 13 June 2014, accepted 18 June 2014 Velmala, S., Myllys, L., Goward, T., Holien, H. & Halonen, P. 2014: Taxonomy of Bryoria section Implexae (Parmeliaceae, Lecanoromycetes) in North America and Europe, based on chemical, morphological and molecular data. — Ann. Bot. Fennici 51: 345–371. Ninety-seven ingroup specimens of Bryoria section Implexae (Parmeliaceae, Leca- noromycetes) were studied using molecular, chemical, morphological and geographic characters. The molecular data included nuclear ribosomal markers (ITS, IGS) and the partial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. In addition to par- simony analyses, a haplotype network was constructed. Phylogenetic analyses strongly supported the monophyly of the section Implexae. The specimens were grouped into two monophyletic clades. Clade 1 encompassed all esorediate material from North America, whereas Clade 2 included both sorediate North American material and all European material.
    [Show full text]
  • CBD First National Report
    FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10
    [Show full text]
  • Pacific Northwest Fungi Project
    North American Fungi Volume 6, Number 7, Pages 1-8 Published July 19, 2011 Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska Peter R. Nelson1,2, James Walton3, Heather Root1 and Toby Spribille4 1 Department of Botany and Plant Pathology, Cordley Hall 2082, Oregon State University Corvallis, Oregon, 2 National Park Service, Central Alaska Network, 4175 Geist Road, Fairbanks, Alaska, 3 National Park Service, Southwest Alaska Network, 240 West 5th Ave., Anchorage, Alaska, 4 Institute of Plant Sciences, University of Graz, Holteigasse 6, A-8010 Graz, Austria. Nelson, P. R., J. Walton, H. Root, and T. Spribille. 2011. Hypogymnia pulverata (Parmeliaceae) and Collema leptaleum (Collemataceae), two macrolichens new to Alaska. North American Fungi 6(7): 1-8. doi: 10.2509/naf2011.006.007 Corresponding author: Peter R. Nelson, [email protected] Accepted for publication July 18, 2011. http://pnwfungi.org Copyright © 2011 Pacific Northwest Fungi Project. All rights reserved. Abstract: Hypogymnia pulverata is a foliose macrolichen distinguished by its solid medulla and laminal soredia. Though widespread in Asia, it is considered rare in North America, where it is currently known from three widely separated locations in Québec, Oregon, and Alaska. We document the first report of this species from Alaska and from several new localities within south-central and southwestern Alaska. Collema leptaleum is a non-stratified, foliose cyanolichen distinguished by its multicellular, fusiform ascospores and a distinct exciple cell type. It is globally distributed, known most proximately from Kamchatka, Japan and eastern North America, but considered rare in Europe. It has not heretofore been reported from western North America.
    [Show full text]
  • Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria Succini Mägdefrau
    RESEARCH ARTICLE Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau Ulla Kaasalainen1*, Jochen Heinrichs2, Michael Krings3, Leena Myllys4, Heinrich Grabenhorst5, Jouko Rikkinen6, Alexander R. Schmidt1 1 Department of Geobiology, University of Göttingen, Göttingen, Germany, 2 Department of Biology and Geobio-Center, University of Munich (LMU), Munich, Germany, 3 Department of Earth and Environmental Sciences, University of Munich (LMU), and Bavarian State Collection for Palaeontology and Geology, Munich, Germany, 4 Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland, 5 c/o Amber Study Group, Geological-Palaeontological Institute and Museum, University of Hamburg, Hamburg, Germany, 6 Department of Biosciences, University of Helsinki, Helsinki, Finland * [email protected] OPEN ACCESS Abstract Citation: Kaasalainen U, Heinrichs J, Krings M, One of the most important issues in molecular dating studies concerns the incorporation of Myllys L, Grabenhorst H, Rikkinen J, et al. (2015) Alectorioid Morphologies in Paleogene Lichens: New reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in ex- Evidence and Re-Evaluation of the Fossil Alectoria tant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacte- succini Mägdefrau. PLoS ONE 10(6): e0129526. ria. Several lichen fossils have been used as minimum age constraints in recent studies doi:10.1371/journal.pone.0129526 concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoro- Academic Editor: Peter Wilf, Penn State University, mycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the UNITED STATES Eocene amber inclusion Alectoria succinic as a minimum age constraint.
    [Show full text]
  • A Liber Amicorum: Irwin Brodo
    The Lichenologist 48(5): 343–346 (2016) © British Lichen Society, 2016 doi:10.1017/S0024282916000360 A Liber Amicorum: Irwin Brodo FIG. 1. Irwin Brodo in Newfoundland, Canada, 2007. This issue of The Lichenologist is dedicated to career in lichenology began. The absence Irwin (Ernie) Brodo (Fig. 1) on the occasion of a lichenologist at Cornell prompted of his 80th birthday. Ernie to seek the assistance of Mason Hale at Ernie has been a mainstay in North the Smithsonian Institution to complete American lichenology for over 50 years. He ecological studies on lichens, but he was was born on November 7, 1935 in New York largely self-taught during this time. With City, where he obtained an undergraduate his interest in lichens piqued, Ernie headed degree in biology at the City College of to Michigan State University (MSU) to New York (now part of the City University of complete a doctorate under the supervision New York) in 1957. In 1959, he received a of Henry Imshaug. He received his master’s degree from Cornell University in Ph.D. in 1965 for a series of ecological and Ithaca, New York, where his distinguished floristic studies on the lichens of Long Island. Downloaded from http:/www.cambridge.org/core. Duke University Libraries, on 03 Oct 2016 at 15:15:24, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0024282916000360 344 THE LICHENOLOGIST Vol. 48 A B C D E F FIG. 2. Irwin Brodo. A, in the field with Jennifer Staniforth in the Yukon Territory, Canada; B, in the laboratory with Chicita Culberson at Duke University, USA; C, atop Mount Washington with notable north-eastern American cryptogamists, New Hampshire, USA; D, in the field in Israel; E, identifying specimens in Australia; F, in front of the new Canadian Museum of Nature Building with the first author in 2006, Québec, Canada.
    [Show full text]
  • Piedmont Lichen Inventory
    PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al.
    [Show full text]
  • Tarset and Greystead Biological Records
    Tarset and Greystead Biological Records published by the Tarset Archive Group 2015 Foreword Tarset Archive Group is delighted to be able to present this consolidation of biological records held, for easy reference by anyone interested in our part of Northumberland. It is a parallel publication to the Archaeological and Historical Sites Atlas we first published in 2006, and the more recent Gazeteer which both augments the Atlas and catalogues each site in greater detail. Both sets of data are also being mapped onto GIS. We would like to thank everyone who has helped with and supported this project - in particular Neville Geddes, Planning and Environment manager, North England Forestry Commission, for his invaluable advice and generous guidance with the GIS mapping, as well as for giving us information about the archaeological sites in the forested areas for our Atlas revisions; Northumberland National Park and Tarset 2050 CIC for their all-important funding support, and of course Bill Burlton, who after years of sharing his expertise on our wildflower and tree projects and validating our work, agreed to take this commission and pull everything together, obtaining the use of ERIC’s data from which to select the records relevant to Tarset and Greystead. Even as we write we are aware that new records are being collected and sites confirmed, and that it is in the nature of these publications that they are out of date by the time you read them. But there is also value in taking snapshots of what is known at a particular point in time, without which we have no way of measuring change or recognising the hugely rich biodiversity of where we are fortunate enough to live.
    [Show full text]