METRIC SYSTEM One Thousand – KILO! One Hundred ­- HECTO! NAME: Ten Is Decameters

Total Page:16

File Type:pdf, Size:1020Kb

METRIC SYSTEM One Thousand – KILO! One Hundred ­- HECTO! NAME: Ten Is Decameters METRIC SYSTEM One thousand – KILO! One hundred - HECTO! NAME: Ten is decameters. DATE: One tenth – DECI! One hundredth – CENTI! One thousandth is millimeters. One decameter is ten meters. One hectometer is one hundred meters. One kilometer is one thousand meters, and here is how we remember: One thousand – KILO! One hundred - HECTO! Ten is decameters. One tenth – DECI! One hundredth – CENTI! One thousandth is millimeters. One decimeter’s one tenth of a meter. One hundredth is a centimeter. One millimeter’s one thousandth of a meter, and here is how we remember: One thousand – KILO! One hundred - HECTO! Ten is decameters. One tenth – DECI! One hundredth – CENTI! One thousandth is millimeters. Logo 1 www.numberock.com METRIC SYSTEM One thousand – ! One hundred - ! NAME: Ten is . DATE: One tenth – ! One hundredth – ! One thousandth is . One decameter is metres. One hectometer is metres. One kilometer is metres, and here is how we remember: One thousand – ! One hundred - ! Ten is . One tenth – ! One hundredth – ! One thousandth is . One decimeter’s of a metre. One is a centimetre. One millimeter’s of a metre, and here is how we remember: One thousand – ! One hundred - ! Ten is . One tenth – ! One hundredth – ! One thousandth is . Logo 2 www.numberock.com METRIC SYSTEM 1) Fill in the chart with the correct numbers for each unit: NAME: 1 DATE: KILO HECTO DECA METER DECI CENTI MILLI 2) Match each distance with the most reasonable unit: The length of a grain of sand a) Hectometre The length of a football field b) Metre The width of your pinky finger c) Centimetre The length of a truck d) Decimetre The height of a door handle e) Decametre The length of ten city blocks f) Millimetre The length of a new pencil g) Kilometre 3) Convert: Show your work if necessary. 5 Kilometres = Hectometres 10 Centimetres = Millimetres 3 Metres = Decimetres 6 Hectometres = Decametres 6 Decimetres = Millimetres 9 Decametres = Metres 4) Challenge Conversions: Show your work if necessary. 15 Hectometres = Kilometres Hectometres 45 Millimetres= Centimetres Millimetres 23 Metres = Decametres Metres 61 Decametres = Hectometres Decametres 302cm = Metres Decimetres Millimetres 1220 Metres = Kilometres HectometresLogo Decametres 3 www.numberock.com METRIC SYSTEM 5) Fill in the square with > or < to complete the inequality sentence: NAME: DATE: a) 5 Kilometres 49 Hectometres b) 10 Centimetres 90 Millimetres c) 3 Metres 1 Decimetre d) 4 Hectometres 57 Decametres e) 6 Decimetres 48 Millimetres f) 19 Decametres 9 Metres Logo 4 www.numberock.com METRIC SYSTEM 1) What unit would be the most reasonable to describe the length of a baseball or softball bat? NAME: a) 1 decametre b) 1 metre c) 10 centimetres d) 40 millimetres DATE: 2) Fill in the chart with the correct numbers for each unit: 1 KILO HECTO DECA METER DECI CENTI MILLI 3) Explain how you could use this table to convert 3 hectometres into metres. Logo 5 www.numberock.com METRIC SYSTEM 1) What unit would be the most reasonable to describe the length of a baseball or softball bat? NAME: a) 1 decametre b) 1 metre c) 10 centimetres d) 40 millimetres DATE: 2) Fill in the chart with the correct numbers for each unit: 1 KILO HECTO DECA METER DECI CENTI MILLI 3) Explain how you could use this table to convert 3 hectometres into metres. Logo 5 www.numberock.com METRIC SYSTEM Circle the best estimate for the measurement that is the DRILLS most appropriate for each item: NAME: 1) A frog’s length. 2) The length of a 3) The length of a DATE: space shuttle. raincoat. SYMBOLS - millimeter (mm) - centimeter (cm) - decimeter (dm) - meter (m) 4 cm 4 dm 59 km 59 m 1 m 1 cm - dekameter (dam) - hectometer (hm) 4) A parrot’s height. 5) A bear’s height 6) A mouse’s length. - kilometer (km) while standing. 30 m 30 cm 140 cm 140 dam 7 cm 7 dm 7) A bison’s length. 8) An armadillo’s 9) The length of a length. plane. 3 dam 3 m 1 m 1 hm 3 dam 3 dm 10) The length of a 11) The length of a 12) The length of a guitar. boat. carrot. 1 hm 1 m 10 m 10 km 26 cm 26 mm Logo 6 www.numberock.com METRIC SYSTEM 1) Convert: Show your work if necessary: HOMEWORK a) 8 Hectometres = Decametres NAME: b) 27 Decimetres = Centimetres DATE: c) 4 Decametres = Decimetres d) 6 Kilometres = Hectometres e) 7 Centimetres = Millimetres f) 2 Metres = Decimetres g) 5 Hectometres = Metres h) 4 Kilometres = Metres 2) Challenge Conversions: Show your work if necessary: a) 35 Hectometres = Kilometres Hectometres b) 49 Centimetres= Decimetres Centimetres c) 79 Metres = Decametres Metres d) 34 Decametres = Hectometres Decametres e) 410 Millimetres = Decimetres Centimetres f) 783 Metres = Hectometres Decametres Metres Logo 7 METRIC SYSTEM PAGE 2 ANSWER KEY KILO, HECTO, decametres, DECI, CENTI, millimetres ten, one hundred, one thousand KILO, HECTO, decametres, DECI, CENTI, millimetres one tenth, hundredth, one thousandth KILO, HECTO, decametres, DECI, CENTI, millimetres PAGE 3 1) 1000, 100, 10, 0.1, 0.01, 0.001 2) f, a, c, e, b, g, d 3) 50, 100, 30, 60, 600, 90 4) 1 Kilometre 5 Hectometres 4 Centimetres 5 Millimetres 2 Decametres 3 Metres 6 Hectometres 1 Decametre 3 Metres 0 Decimetres 20 millimetres 1 Kilometre 2 Hectometres 2 Decametres PAGE 4 5) a) > b) > c) > d) < e) > f) > PAGE 5 (EXIT SLIP) 1) b 2) 1000, 100, 10, 0.1, 0.01, 0.001 3) 1 hectometre is 100 metres, so 3 hectometres would be 3 x 100 metres or 300 metres Logo 8 www.numberock.com METRIC SYSTEM PAGE 6 ANSWER KEY 1) 4 cm 2) 59 m 3) 1 m 4) 30 cm 5) 140 cm 6) 7 cm 7) 3 m 8) 1 m 9) 3 dam 10) 1 m 11) 10 m 12) 26 cm PAGE 7 1) a) 80 b) 270 c) 400 d) 60 e) 70 f) 20 g) 500 h) 4,000 2) a) 3, 5 b) 4, 9 c) 7, 9 d) 3, 4 e) 4, 1 f) 7, 8, 3 Logo 9 www.numberock.com.
Recommended publications
  • Measurement Units Style Guide a Writer’S Guide to the Correct Usage of Metric Measurement Units
    Measurement units style guide A writer’s guide to the correct usage of metric measurement units This guidance is based on British and internationally agreed standards and represents best practice. It gives advice on how to use and write metric units, mistakes to avoid, what to do about conversions, and where to find further information. A brief explanation of how the metric system works is also given. Some common units Basic rules name symbol Capitals and lower case millimetre mm Names of metric units, whether alone or combined with a prefix, always start with a lower case letter (except at centimetre cm length the beginning of a sentence) - e.g. metre, milligram, watt. metre m kilometre km The symbols for metric units are also written in lower case - except those that are named after persons - e.g. milligram mg m for metre, but W for watt (the unit of power, named after the Scottish engineer, James Watt). Note that this mass gram g rule applies even when the prefix symbol is in lower case, (weight) kilogram kg as in kW for kilowatt. The symbol for litre (L) is an exception. tonne t Symbols for prefixes meaning a million or more are square metre 2 m written in capitals, and those meaning a thousand or less area hectare ha are written in lower case - thus, mL for millilitre, kW for kilowatt, MJ for megajoule (the unit of energy). square kilometre km 2 Plurals millilitre mL or ml Symbols do not change and are never pluralised : 3 cubic centimetre cm 25 kg (but 25 kilograms) volume litre L or l cubic metre m3 Punctuation and spacing watt W Do not put a full stop (period) after a unit symbol (except power kilowatt kW at the end of a sentence).
    [Show full text]
  • The Not So Short Introduction to Latex2ε
    The Not So Short Introduction to LATEX 2ε Or LATEX 2ε in 139 minutes by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl Version 4.20, May 31, 2006 ii Copyright ©1995-2005 Tobias Oetiker and Contributers. All rights reserved. This document is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this document; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Thank you! Much of the material used in this introduction comes from an Austrian introduction to LATEX 2.09 written in German by: Hubert Partl <[email protected]> Zentraler Informatikdienst der Universität für Bodenkultur Wien Irene Hyna <[email protected]> Bundesministerium für Wissenschaft und Forschung Wien Elisabeth Schlegl <noemail> in Graz If you are interested in the German document, you can find a version updated for LATEX 2ε by Jörg Knappen at CTAN:/tex-archive/info/lshort/german iv Thank you! The following individuals helped with corrections, suggestions and material to improve this paper. They put in a big effort to help me get this document into its present shape.
    [Show full text]
  • Standard Caption Abberaviation
    TECHNICAL SHEET Page 1 of 2 STANDARD CAPTION ABBREVIATIONS Ref: T120 – Rev 10 – March 02 The abbreviated captions listed are used on all instruments except those made to ANSI C39. 1-19. Captions for special scales to customers’ requirements must comply with BS EN 60051, unless otherwise specified at time of ordering. * DENOTES captions applied at no extra cost. Other captions on request. ELECTRICAL UNITS UNIT SYMBOL UNIT SYMBOL Direct Current dc Watt W * Alternating current ac Milliwatts mW * Amps A * Kilowatts kW * Microamps µA * Megawatts MW * Milliamps mA * Vars VAr * Kiloamps kA * Kilovars kVAr * Millivolts mV * Voltamperes VA * Kilovolts kV * Kilovoltamperes kVA * Cycles Hz * Megavoltamperes MVA * Power factor cos∅ * Ohms Ω * Synchroscope SYNCHROSCOPE * Siemens S Micromhos µmho MECHANICAL UNITS Inches in Micrometre (micron) µm Square inches in2 Millimetre mm Cubic inches in3 Square millimetres mm2 Inches per second in/s * Cubic millimetres mm3 Inches per minute in/min * Millimetres per second mm/s * Inches per hour in/h * Millimetres per minute mm/min * Inches of mercury in hg Millimetres per hour mm/h * Feet ft Millimetres of mercury mm Hg Square feet ft2 Centimetre cm Cubic feet ft3 Square centimetres cm2 Feet per second ft/s * Cubic centimetres cm3 Feet per minute ft/min * Cubic centimetres per min cm3/min Feet per hour ft/h * Centimetres per second cm/s * Foot pound ft lb Centimetres per minute cm/min * Foot pound force ft lbf Centimetres per hour cm/h * Hours h Decimetre dm Yards yd Square decimetre dm2 Square yards yd2 Cubic
    [Show full text]
  • Perri Et Al. 2015. Sedimentary and Thermal Evolution of The
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/270824977 Sedimentary and thermal evolution of the Eocene-Oligocene mudrocks from the southwestern Thrace Basin (NE Greece) ARTICLE in BASIN RESEARCH · JANUARY 2015 Impact Factor: 2.73 · DOI: 10.1111/bre.12112 CITATION READS 1 99 7 AUTHORS, INCLUDING: Francesco Perri Salvatore Critelli Università della Calabria Università della Calabria 54 PUBLICATIONS 469 CITATIONS 157 PUBLICATIONS 1,723 CITATIONS SEE PROFILE SEE PROFILE Francesco Muto Rocco Dominici Università della Calabria Università della Calabria 45 PUBLICATIONS 266 CITATIONS 46 PUBLICATIONS 173 CITATIONS SEE PROFILE SEE PROFILE Available from: Salvatore Critelli Retrieved on: 19 November 2015 EAGE Basin Research (2015) 1–21, doi: 10.1111/bre.12112 Sedimentary and thermal evolution of the Eocene- Oligocene mudrocks from the southwesternThrace Basin (NEGreece) F. Perri,* L. Caracciolo,† F. Cavalcante,‡ S. Corrado,§ S. Critelli,* F. Muto* and R. Dominici* *Dipartimento di Biologia, Ecologia e Scienze della Terra, Universita della Calabria, Rende (CS), Italy †Chemostrat Ltd., Sandtrak Unit, Ravenscroft Court, Buttington Cross Enterpise, Welshpool, UK ‡CNR – Istituto di Metodologie per l’Analisi Ambientale, Tito Scalo (PZ), Italy §Dipartimento di Scienze, Sezione di Scienze Geologiche, Universita degli Studi “Roma Tre”, Roma, Italy ABSTRACT Paleothermal indicators based on clay mineral and organic matter analyses, were integrated with mudrock geochemistry and stratigraphic data to define the sedimentary evolution of the southwest- ern Thrace Basin during the Eocene to Oligocene. This multi-method approach allowed us to recon- struct the burial evolution of the basin in Eocene and Oligocene times and to study the mudrock composition and relate this to their provenance and source area weathering.
    [Show full text]
  • The Square Kilometre Array (SKA) Will Be an I
    INVITED PAPER TheSquareKilometreArray This telescope, to be the largest in the world, will probe the evolution of black holes as well as the basic properties, birth and death of the Universe. By Peter E. Dewdney, Peter J. Hall, Richard T. Schilizzi, and T. Joseph L. W. Lazio ABSTRACT | The Square Kilometre Array (SKA) will be an I. INTRODUCTION ultrasensitive radio telescope, built to further the understand- Advances in astronomy over the past decades have brought ing of the most important phenomena in the Universe, the international community to the verge of charting a including some pertaining to the birth and eventual death of complete history of the Universe. In order to achieve this the Universe itself. Over the next few years, the SKA will make goal, the world community is pooling resources and ex- the transition from an early formative to a well-defined design. pertise to design and construct powerful observatories that This paper outlines how the scientific challenges are translated will probe the entire electromagnetic spectrum, from radio to into technical challenges, how the application of recent gamma-rays, and even beyond the electromagnetic spectrum, technology offers the potential of affordably meeting these studying gravitational waves, cosmic rays, and neutrinos. challenges, and how the choices of technology will ultimately The Square Kilometre Array (SKA) will be one of these be made. The SKA will be an array of coherently connected telescopes, a radio telescope with an aperture of up to a antennas spread over an area about 3000 km in extent, with an million square meters. The SKA was formulated from the 2 aggregate antenna collecting area of up to 106 m at centimeter very beginning as an international, astronomer-led (Bgrass and meter wavelengths.
    [Show full text]
  • Using Integrated Experiments and Mathematical Modeling to Upscale Biotic Weathering Processes from Pore to Field and Global Scales
    Poster presentation EGU2011-7118 – EGU General Assembly 2011, Vienna, 6th April 2011 Using integrated experiments and mathematical modeling to upscale biotic weathering processes from pore to field and global scales Jonathan Bridge*, Steven Banwart, and the NERC Weathering Science Consortium Team 1 Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom. * presenting author Summary Conceptual model: from nanoscale Mineral weathering at hyphae interfaces Figure 1 Soil mycorrhizal fungi act through chemical interactions at nanometer scale to dissolve weathering to global scale systems Section 1 • Minerals incubated in controlled microcosms with minerals, and transport weathering products to plant symbionts through metre scale Pinus sylvestris – Paxillus involutus (3-6 months) 2 cm mycelial networks at diurnal timescales [1]. Biologically-mediated soil development Section 2 • NANOSingle hypha on biotite identified and sectioned to occurs at regional scale over millenia (ka) and coupling between ecological, geological analyse sub-interface mineral composition profiles Studied and atmospheric systems is apparent over evolutionary (Ma) timescales [2]. Our hypha • Removal of K, Al, Mg, Fe over 72 day contact time hypothesis is that quantification of biologically-driven weathering reactions at Section 3 • Model fits data by diffusion-controlled hydrated molecular scale provides a basis for new conceptual approaches to processes such as soil Growth layer formation and release of ions from lattice direction • Significant new dry soil weathering process formation and atmospheric CO2 evolution that occur over much larger temporal and 100 μm spatial scales. A reaction-diffusion model based Section 4 B on ion-exchange release of K+ by To test this we have applied an integrated suite of observations at scales from nanometre Biotite chips exposed to EM fungi in microscosms protons fits depth profiles and to decimetre using common minerals, fungi and physical and chemical conditions.
    [Show full text]
  • It's a Nano World
    IT’S A NANO WORLD Learning Goal • Nanometer-sized things are very small. Students can understand relative sizes of different small things • How Scientists can interact with small things. Understand Scientists and engineers have formed the interdisciplinary field of nanotechnology by investigating properties and manipulating matter at the nanoscale. • You can be a scientist DESIGNED FOR C H I L D R E N 5 - 8 Y E A R S O L D SO HOW SMALL IS NANO? ONE NANOMETRE IS A BILLIONTH O F A M E T R E Nanometre is a basic unit of measurement. “Nano” derives from the Greek word for midget, very small thing. If we divide a metre by 1 thousand we have a millimetre. One thousandth of a millimetre is a micron. A thousandth part of a micron is a nanometre. MACROSCALE OBJECTS 271 meters long. Humpback whales are A full-size soccer ball is Raindrops are around 0.25 about 14 meters long. 70 centimeters in diameter centimeters in diameter. MICROSCALE OBJECTS The diameter of Pollen, which human hairs ranges About 7 micrometers E. coli bacteria, found in fertilizes seed plants, from 50-100 across our intestines, are can be about 50 micrometers. around 2 micrometers micrometers in long. diameter. NANOSCALE OBJECTS The Ebola virus, The largest naturally- which causes a DNA molecules, which Water molecules are occurring atom is bleeding disease, is carry genetic code, are 0.278 nanometers wide. uranium, which has an around 80 around 2.5 nanometers atomic radius of 0.175 nanometers long. across. nanometers. TRY THIS! Mark your height on the wall chart.
    [Show full text]
  • Solar Decimetre Radio Bursts
    SOLAR DECIMETRE RADIO BURSTS By R. F. MULLALy*t and T. KRISHNAN* [Manuscript recewed September 20, 1962] Summary High resolution studies (2' of arc beam) were made with the east·west arm of the Christiansen radio interferometer for about 50 21·cm solar burst events during 1958-1961. The burst sources were always closely associated in position with already existing radio plage regions of the Sun's slowly varying decimetre radiation. They had sizes of from 2 to 5' of arc, never exceeded but often approached in size their parent plage region, and showed no major movements during their development. Brightness temperatures ranged up to 2 X 109 OK (mostly between 107 and 108 OK). More bursts were observed near the Sun's centre than near the limb, and more on the western than on the eastern half. There was also a curious "gap" of 30° longitude on the eastern half of the Sun with virtually no burst activity. 1. INTRODUCTION A solar decimetre radio burst is part of a complex of simultaneous or closely successive events which may extend from optical to metre wavelengths in the electromagnetic spectrum, and sometimes involve the ejection of corpuscular streams. The characteristics of burst emission in different frequency ranges differ markedly. Further, in the same frequency range burst sources of different types may be distinguished. The basic observations required to delineate radio-frequency bursts comprise dynamic spectra, showing the variation in intensity of emission as a function of both frequency and time; and high resolution studies of the position, size, shape, movement, and brightness temperature of the emitting region.
    [Show full text]
  • Introducyon to the Metric System Bemeasurement, Provips0.Nformal, 'Hands-On Experiences For.The Stud4tts
    'DOCUMENT RESUME ED 13A 755 084 CE 009 744 AUTHOR Cáoper, Gloria S., Ed.; Mag4,sos Joel B., Ed. TITLE q Met,rits for.Theatrical COstum g: ° INSTITUTION Ohio State Univ., Columbus. enter for Vocational Education. SPONS AGENCY Ohio State Univ., Columbus. Center for.Vocational Education. PUB DATE 76 4. CONTRACT - OEC-0-74-9335 NOTE 59p.1 For a. related docuMent see CE 009 736-790 EDRS PRICE 10-$0.8.3 C-$3.50 Plus Pdstage: DESCRIPTORS *Curriculu; Fine Arts; Instructional Materials; Learning. ctivities;xMeasurement.Instrnments; *Metric, System; S condary Education; Teaching Technigue8; *Theater AttS; Units of Sttidy (Subject Fields) ; , *Vocational Eiducation- IDENTIFIERS Costumes (Theatrical) AESTRACT . Desigliedto meet tbe job-related m4triceasgrement needs of theatrical costuming students,'thiS instructio11 alpickage is one of live-for the arts and-huminities occupations cluster, part of aset b*: 55 packages for:metric instrection in diftepent occupations.. .The package is in'tended for students who already knovthe occupaiiOnal terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package.contains performance' objectiveS, learning:Activities, and'supporting information in-the form of text,.exertises,- ard tabled. In. add±tion, Suggested teaching technigueS are included. At the'back of the package*are objective-base'd:e"luation items, a-page of answers to' the exercises,and tests, a list of metric materials ,needed for the ,activities4 references,- and a/list of supPliers.t The_material is Y- designed. to accVmodate awariety of.individual teacting,:and learning k. styles, e.g., in,dependent:study, small group, or whole-class Setivity.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Table of Contents
    Table of Contents Teaching and Learning The Metric System Unit 1 1 - Suggested Teaching Sequence 1 - Objectives 1 - Rules of Notation 1 - Metric Units, Symbols, and Referents 2 - Metric Prefixes 2 - Linear Measurement Activities 3 - Area Measurement Activities 5 - Volume Measurement Activities 7 - Mass (Weight) Measurement Activities 9 - Temperature Measurement Activities 11 Unit 2 12 - Objectives 12 - Suggested Teaching Sequence 12 - Metrics in this Occupation 12 - Metric Units For Nursing Aides 13 - Trying Out Metric Units 14 - Aiding With Metrics 15 Unit 3 16 - Objective 16 - Suggested Teaching Sequence 16 - Metric-Metric Equivalents 16 - Changing Units at Work 18 Unit 4 19 - Objective 19 - Suggested Teaching Sequence 19 - Selecting and Using Metric Instruments, Tools and Devices 19 - Which Tools for the Job? 20 - Measuring Up in Nursing 20 Unit 5 21 - Objective 21 - Suggested Teaching Sequence 21 - Metric-Customary Equivalents 21 - Conversion Tables 22 - Any Way You Want It 23 Testing Metric Abilities 24 Answers to Exercises and Test 25 Temperature 26 Tools and Devices List References metrics for nurses aides TEACHING AND LEARNING THE METRIC SYSTEM This metric instructional package was designed to meet job-related Unit 2 provides the metric terms which are used in this occupation metric measurement needs of students. To use this package students and gives experience with occupational measurement tasks. should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with Unit 3 focuses on job-related metric equivalents and their relation­ the help of experienced vocational teachers, reviewed by experts, tested ships. in classrooms in different parts of the United States, and revised before distribution.
    [Show full text]
  • Land Measurements
    © delta alpha publishing MEASUREMENTS LAND LINEAR MEASURE ............................................................ 2 LAND AREA MEASURE ................................................................. 3 VOLUME MEASURE ....................................................................... 4 WEIGHT or MASS ............................................................................ 5 MEASURES OF ANGLES AND ARCS ......................................... 6 AREAS AND VOLUME CALCULATIONS ................................... 6 1 back to the top http://realestatedefined.com © delta alpha publishing LAND LINEAR MEASURE Imperial/US measurements 12 inches (in or ”) = 1 foot (ft or ’) 3 feet = 1 yard (yd) 1,760 yards = 1 mile (mi) = 5,280 feet =320 rods 5½ yards = 1 rod (rd), pole or perch = 16½ feet 40 rods = 1 furlong (fur) = 220 yards 22 yards = 1 chain = 4 rods, poles or perches 220 yards = 10 chains = 1 furlong 8 furlongs = 1 mile = 80 chains 1,852 meters =1 nautical mile = 6,076.115 feet (approx.) Surveying Measurements 7.92 inches = 1 link (li) (Gunter’s or surveyor’s chain) = 0.66 foot 100 links = 1 chain (ch) = 4 rods = 66 feet 80 chains = 1 statute mile (mi.) = 320 rods = 5,280 feet 12 inches = 1 link (Engineer’s chain) 100 links = 1 chain = 100 feet 52.8 chains = 1 mile = 5,280 feet Metric measurements 10 millimetres (mm) = 1 centimetre (cm) 10 centimetres = 1 decimetre (dm) 10 decimetres = 1 meter(AmE)/metre(BrE) = 1,000 millimetres 10 metres = 1 decametre/dekametre (dam) 10 decametres = 1 hectometre (hm) = 100 metres 1,000 metres = 1 kilometre (km) 10,000 metres = 10 kilometres = 1 myriametre Imperial/US to Metric Conversion 0.3937 inches = 1 centimetre (cm) 39.37 inches = 1 metre 3.28084 feet = 1 metre (m) 1.0936 yards = 1 meter(AmE)/metre(BrE) 0.621371 miles = 1 kilometre (km) 2.5400 centimetres = 1 inch 0.3048 metres = 1 foot 0.9144 metres = 1 yard 1.609344 kilometres = 1 mile 2 back to the top http://realestatedefined.com © delta alpha publishing LAND AREA MEASURE Imperial/US measurements 1 square inch (sq.
    [Show full text]