5823 Kober.Indd

Total Page:16

File Type:pdf, Size:1020Kb

5823 Kober.Indd J. Mar. Biol. Ass. U.K. (2007), 87, 1585–1598 doi: 10.1017/S0025315407058237 Printed in the United Kingdom On the phylogenetic relationships of hadromerid and poecilosclerid sponges Kord M. Kober*† and Scott A. Nichols*‡ *Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. †Present address: Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA. ‡Corresponding author, e-mail: [email protected] Recent phylogenetic analyses of demosponges have suggested that the order Poecilosclerida is monophyletic and nested within the paraphyletic ‘order’ Hadromerida. Until now, this result has rested upon very limited taxon sampling of SSU sequences and partial LSU sequences. We collected and analysed additional full- length SSU and LSU sequences to test the validity and position of the poecilosclerid/hadromerid clade within demosponges, and we sampled a short segment of the LSU from diverse hadromerids to explore the internal relationships of Hadromerida. Our data strongly support the existence of a hadromerid/poecilosclerid clade that is sister to a poorly characterized group of halichondrid and agelasid species (‘Clade C’). We find support for the monophyly of the hadromerid families Polymastiidae, Placospongiidae and Timeidae, and conditional support for the family Suberitidae. Furthermore, both LSU and SSU data support a clade that includes a mixture of species assigned to the families Tethyidae and Hemiasterellidae (TETH/HEM) and a mixed clade including members of the families Clionaidae and Spirastrellidae (CLIO/SPIR). The family Placospongiidae is reconstructed as sister to the clade CLIO/SPIR and the family Timeidae is supported as sister to the clade TETH/HEM. The order Poecilosclerida is most closely allied with the Placospongiidae/CLIO/SPIR clade. INTRODUCTION One novel phylogenetic association that has emerged from the study of small and large ribosomal subunit (SSU Sponges are globally distributed, inhabit nearly every and LSU, respectively) data from demosponges is the aquatic environment, and exhibit tremendous biodiversity. close relationship between poecilosclerid and hadromerid As many as 8179 valid species are currently recognized sponges. Specifically, the order Poecilosclerida is supported (van Soest et al., 2005) and this number is certainly a as monophyletic (with the caveat that it has been poorly gross underestimate, as many sponge faunas are poorly sampled), but is reconstructed as being nested within a characterized (even in densely populated coastal regions) paraphyletic assemblage of hadromerid taxa (Borchiellini et and many species are cryptic in habitat and/or morphology al., 2004; Nichols, 2005); the order Hadromerida as a whole or have bathymetric distributions that are not amenable has been reconstructed as polyphyletic when genera such as to study. Sponge systematics is a notoriously challenging Hemiasterella are considered (Nichols, 2005). In general, both endeavour due to the relative simplicity and plasticity of the hadromerids and poecilosclerids are diverse and speciose sponge body-plan and has recently started to rely heavily taxa and it is likely that increased sampling for molecular upon molecular phylogenetic approaches. Two general phylogenetic analyses will continue to reveal hidden diversity patterns that have emerged from these studies are that and novel clades. Currently, 13 hadromerid families and 25 ‘morphospecies’ frequently mask deep phylogenetically poecilosclerid families are recognized as valid (Hooper & diversity on sympatric and allopatric scales (Sole-Cava van Soest, 2002c). & Thorpe, 1986; Boury-Esnault et al., 1992; Sole-Cava et The three main objectives of this study are to: (1) al., 1992; Klautau et al., 1994, 1999; Muricy et al., 1996; corroborate the existence and position of a hadromerid/ Wörheide et al., 2003; Nichols & Barnes, 2005), and that poecilosclerid clade within demosponges; (2) use a broader standard classification schemes based largely upon skeletal sampling of hadromerid taxa to test fine-scale hadromerid and reproductive characteristics are often inaccurate at relationships; and (3) test the position of poecilosclerid every rank; neither subclasses, orders, families, or genera are sponges relative to specific hadromerid lineages. To address monophyletic (Chombard et al., 1998; Alvarez et al., 2000; these aims we collected and analysed full-length SSU and McCormack et al., 2002; Borchiellini et al., 2004; Erpenbeck full-length and partial LSU sequences from a diversity of et al., 2005; Nichols, 2005; Boury-Esnault, 2006; Redmond et sponges representing the order Hadromerida, the order al., 2007). Nevertheless, phylogenetic studies, while still vastly Poecilosclerida, and relevant outgroups. These data incomplete, robustly support new relationships between taxa satisfactorally address our first two aims, but do not fully that promise to provide a framework for re-interpreting resolve the position of the order Poecilosclerida within sponge biology and evolution. ‘Hadromerida’. Journal of the Marine Biological Association of the United Kingdom (2007) 1586 K.M. Kober and S.A. Nichols Hadromerid and poecilosclerid phylogeny MATERIALS AND METHODS 2. Partial LSU (local) Sampling In order to explore the tree-shape within ‘Hadromerida’ as a guide to selecting taxa for further sequencing we analysed Specimens included in this study either were acquired on a short section of the LSU from 69 putative hadromerid, loan from the institutions listed in Table 1 or were collected poecilosclerid and outgroup taxa. This step permitted using SCUBA. Upon collection, samples were immediately the identification of well-supported clades from which we placed in 95–100% EtOH and vouchers were deposited selected exemplars for further sequencing (complete LSU at the University of California Museum of Paleontology sequences were technically challenging to obtain due to (UCMP), Berkeley, CA. Taxonomic identification was their length and sequence variability). performed by one of us (S.A.N.) or by specialists at the museums from which material was borrowed. Order and 3. Complete LSU/SSU (local) family-level assignments follow Systema Porifera (Hooper & In order to test the internal relationships between van Soest, 2002c). the reconstructed hadromerid clades and the order Poecilosclerida we conducted independent and combined analyses of full-length sequences from ingroup taxa and DNA extraction, amplification and sequencing their closest demosponge outgroup. By narrowing the focus Genomic DNA was extracted as described by Nichols of our analyses we were able to optimize our alignments and (2005). The LSU and SSU were amplified using Taq exclude fewer data. polymerase (New England Biosystems) and touchdown PCR (95°C, 30 s/ (95°C, 30 s/ 58°C, 60 s/ 72°C, 2.5 min) ×19 – 1°C per cycle/ (94°C, 30 s/ 52°C for 60 s/ 72°C, 2.5 min) ×9/ Sequence analysis and phylogeny reconstruction 72°C 10 min). The PCR primers that were used are listed Each data group identified in Table 3 was aligned separately in Table 2. Multiple sets of primers were used to amplify using the default settings in CLUSTAL W v.1.83 (Jeanmougin overlapping 700–1100 bp regions of the LSU: 5.8SF/LR6, et al., 1998) or MAFFT (Katoh et al., 2005) and manually SN47F/SN47R, NL2F/NL2R, NL4F/NL4R, LF3/LR3, edited in BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) LF5/R3264. Two sets of primer pairs were used to amplify and SE-AL (v.2.0a11, http://evolve.zoo.ox.ac.uk/software. complete SSU sequences: 18SF/18SR and PRIMER A/ html?name=Se-Al).Ambiguously aligned regions were PRIMER B. identified and excluded using Gblocks v.0.91b (Castresana, The PCR products were either gel-extracted (Bio-Rad 2000) with default settings implemented and gap positions Freeze-N-Squeeze, Zymo Research Zymoclean Gel DNA allowed. The LSU and SSU partitions of concatenated Recovery Kit) or column-purified (Qiagen QIAquick PCR datasets were aligned prior to concatenation. All datafile type Purification Kit, Promega Wizare SV Gel and PCR Clean- conversion was done using Readseq (v.2.1.21, D. Gilbert, Up System) and directly sequenced or cloned. All LSU http://iubio.bio.indiana.edu/soft/molbio/readseq/java/). fragments were cloned into pCR-Blunt II-TOPO vector We implemented both maximum parsimony (MP) and using the Zero Blunt TOPO PCR Cloning Kit (Invitrogen); Bayesian inference (BI) optimality criteria in all phylogenetic colonies were picked, cultured, and screened using standard analyses under the assumption that clades reconstructed methods. Sequencing was performed by the UC Berkeley using these disparate methods must be well supported by DNA Sequencing Facility and the resulting chromatograms the data. Furthermore, we explored the effect of model were trimmed and assembled into contigs using Sequencher selection in our BI analyses by independently implementing v. 4.6 (Gene Codes Corp.) and Vector NTI Advance 10 both single and mixed nucleotide substitution models for (Invitrogen). Sequence identities were confirmed using predicted ‘stem’ and ‘loop’ structural regions (hereafter BLAST against the NCBI nr database. referred to as BI ‘singlet’ and BI ‘mixed’, respectively; see The SSU and LSU sequences of Amphimedon queenslandica below for details). The BI ‘mixed’ analysis incorporated all were compiled from the raw genome reads (Joint Genome aligned nucleotide positions to allow for proper secondary Institute, Walnut Creek) deposited at the GenBank trace structure prediction. archives.
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Novel Dispersal Mechanism of a Coral-Threatening Sponge, Terpios Hoshinota (Suberitidae, Porifera)
    A Novel Dispersal Mechanism of a Coral-Threatening Sponge, Terpios hoshinota (Suberitidae, Porifera) Keryea Soong1,*, Sun-Lin Yang1, and Chaolun Allen Chen2 1Institute of Marine Biology and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan 2Biodiversity Research Center, Academia Sinica, Taipei 115, and Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan (Accepted April 10, 2009) Terpios hoshinota, a blackish encrusting cyanobacteriosponge, is known to overgrow and kill a wide range of stony coral hosts, mostly on Pacific reefs (Bryan 1973, Plucer-Rosario 1987, Rützler and Muzik 1993). An outbreak of the sponge occurred in 2008 at Green I. (22°39'N, 121°29'E), off the southeastern coast of Taiwan, where up to 30% of coral colonies were infected on certain reefs within a couple of years of its first discovery (Liao et al. 2007). In a test of methods to stop the sponge from expanding, we used dark plastic sheets (10 x 10 cm), with transparent ones as controls, to cover the advancing sponge fronts without touching the substrate corals. The idea was to block the sunlight needed by the symbiotic cyanobacteria for growth. The shading caused the coral hosts to bleach and most of the sponges to stop advancing. But, in some cases within 2 wk, the sponges had extended thin tissue threads which crossed the shaded and presumably uninhabitable area under the dark plates. Once reaching light on the other side of the dark plate, the sponge thread quickly expanded in area and resumed normal growth (Fig. 1A). The capability to cross unsuitable habitats with pioneering tissue obviously enables the sponge to overgrow new coral surfaces and infect separate colonies in the neighborhood.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Microbiome Structure of Ecologically Important Bioeroding Sponges (Family Clionaidae)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): 3 The role of host phylogeny and environmental plasticity. 4 Oriol Sacristán-Soriano1,2, †, Xavier Turon2 and Malcolm Hill1,3 5 6 7 1Department of Biology; University of Richmond; Richmond, VA 8 2Centre d’Estudis Avançats de Blanes (CEAB, CSIC), Blanes, Spain 9 3Department of Biology, Bates College, Lewiston, ME 04240 10 †Corresponding author 11 12 13 Keywords: symbiosis, bioerosion, microbiome, Symbiodinium, Cliona, Spheciospongia, 14 Cervicornia 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 Abstract 17 The potential of increased bioerosion by excavating sponges in future environmental scenarios 18 represents a potential threat to coral reef structure and function. If we are to predict changes to 19 coral reef habitats, it is important to understand the biology of these sponges. Little is known 20 about prokaryotic associations in excavating sponges despite the fact that evidence indicates they 21 contribute to the sponge growth through their heterotrophic metabolism and may even act as 22 microborers. Here, we provide the first detailed description of the microbial community of 23 multiple bioeroding sponges from the Clionaidae family (Cliona varians, C.
    [Show full text]
  • Suberitidae (Demospongiae, Hadromerida) From
    Beaufortia INSTITUTE OF TAXONOMIC ZOOLOGY (ZOOLOGICAL MUSEUM) UNIVERSITY OF AMSTERDAM Vol. 43 no. 11 December 31, 1993 Suberitidae (Demospongiae, Hadromerida) from the North Aegean Sea EleniVoultsiadou-Koukoura.*& Rob W. M. van Soest** *Department University ofThessaloniki, 54006 Thessaloniki, Greece **Institute of Taxonomic (Zoological Museum), University ofAmsterdam, P.O.Box 94766, 1090 GTAmsterdam, TheNetherlands Keywords: Sponges, Hadromerida, Suberitidae, North Aegean Sea Abstract Sampling in the North Aegean Sea yielded nine species of the family Suberitidae, four of which, Pseudosuberites sulphureus, P. Suberiles for the fauna ofthe Eastern and three hyalinus, ficus and S. syringella, are new Mediterranean, more, S. carnosus, S. and S. records for the fauna of the Sea. For each of the nine the domuncula, massa, are new Aegean species comments on systematics, as well as geographical and ecological informationis given. A redescription is given of the littleknown species Suberites massa Nardo. A review ofthe distributionof all Mediterranean Suberitidae is also presented, in which it is con- in materialhave been from the Eastern cluded that a further three species not represented our reported Mediterranean, and P. the viz. Laxosuberites ectyoninus, Prosuberites longispina, epiphytum. Six suberitids reported from other parts of Mediterra- nean so far have not been found in the Eastern Mediterranean. INTRODUCTION siadou-Koukoura, et al. 1991; Voultsiadou- Koukoura & Van Soest 1991a,b; Voultsiadou- of Eastern Mediterranean is Koukoura & the results of the Knowledge sponges Koukouras, 1993), that of other of the Med- have been and are poor compared to parts sponge collecting being re- iterranean Van 1994: Recent several science and (cf. Soest, Fig. 2). ported; species new to appar- collecting activities in the North Aegean Sea ently endemic to the Eastern Mediterranean been of have been described.
    [Show full text]
  • Fossil and Modern Sponge Fauna of Southern Australia and Adjacent Regions Compared
    Contributions to Zoology, 85 (1) 13-35 (2016) Fossil and modern sponge fauna of southern Australia and adjacent regions compared: inter- pretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges Magdalena Łukowiak1, 2 1Institute of Paleobiology PAN, Twarda 51/55, 00-818 Warszawa, Poland 2E-mail: [email protected] Key words: Demospongiae, Homoscleromorpha, Porifera Abstract Discussion ........................................................................................ 27 Paleoecology and biogeography .......................................... 27 Comparison with Oamaru Diatomite sponge fauna The late Eocene ‘soft’ sponge fauna of southern Australia is ....... 28 Differences and similarities between Recent and fossil reconstructed based on disassociated spicules and is used to in- sponge faunas of Australia terpret the paleoecology and environmental context of shallow .................................................... 29 marine communities in this region. The reconstructed sponge Conclusions ...................................................................................... 30 association was compared with coeval sponge assemblages Acknowledgements ........................................................................ 30 from the Oamaru Diatomite, New Zealand, and with the mod- References ......................................................................................... 31 ern ‘soft’ sponge fauna of southern coastal of Australia. Based on the predominance of shallow- and moderately shallow-water
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Benthic Habitats and Biodiversity of Dampier and Montebello Marine
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]
  • Canada's Arctic Marine Atlas
    Lincoln Sea Hall Basin MARINE ATLAS ARCTIC CANADA’S GREENLAND Ellesmere Island Kane Basin Nares Strait N nd ansen Sou s d Axel n Sve Heiberg rdr a up Island l Ch ann North CANADA’S s el I Pea Water ry Ch a h nnel Massey t Sou Baffin e Amund nd ISR Boundary b Ringnes Bay Ellef Norwegian Coburg Island Grise Fiord a Ringnes Bay Island ARCTIC MARINE z Island EEZ Boundary Prince i Borden ARCTIC l Island Gustaf E Adolf Sea Maclea Jones n Str OCEAN n ait Sound ATLANTIC e Mackenzie Pe Ball nn antyn King Island y S e trait e S u trait it Devon Wel ATLAS Stra OCEAN Q Prince l Island Clyde River Queens in Bylot Patrick Hazen Byam gt Channel o Island Martin n Island Ch tr. Channel an Pond Inlet S Bathurst nel Qikiqtarjuaq liam A Island Eclipse ust Lancaster Sound in Cornwallis Sound Hecla Ch Fitzwil Island and an Griper nel ait Bay r Resolute t Melville Barrow Strait Arctic Bay S et P l Island r i Kel l n e c n e n Somerset Pangnirtung EEZ Boundary a R M'Clure Strait h Island e C g Baffin Island Brodeur y e r r n Peninsula t a P I Cumberland n Peel Sound l e Sound Viscount Stefansson t Melville Island Sound Prince Labrador of Wales Igloolik Prince Sea it Island Charles ra Hadley Bay Banks St s Island le a Island W Hall Beach f Beaufort o M'Clintock Gulf of Iqaluit e c n Frobisher Bay i Channel Resolution r Boothia Boothia Sea P Island Sachs Franklin Peninsula Committee Foxe Harbour Strait Bay Melville Peninsula Basin Kimmirut Taloyoak N UNAT Minto Inlet Victoria SIA VUT Makkovik Ulukhaktok Kugaaruk Foxe Island Hopedale Liverpool Amundsen Victoria King
    [Show full text]