United States Patent (19) 11) 4,166,189 Wald Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,166,189 Wald Et Al United States Patent (19) 11) 4,166,189 Wald et al. (45) Aug. 28, 1979 54 PRODUCTION OF METHYL ESTERS BY (56) References Cited CONTACTING METHANOL OR DIMETHYL. U.S. PATENT DOCUMENTS ETHER WITH CARBON MONOXDE AND ZANCODOE 1,562,480 1 1/1925 Wietzel et al. ....................... 560/232 FOREIGN PATENT DOCUMENTS 75) Inventors: Milton M. Wald; Leo Kim, both of Houston, Tex. 11671.16 10/1969 United Kingdom ................ 260/533A Primary Examiner-Vivian Garner (73) Assignee: Shell Oil Company, Houston, Tex. Attorney, Agent, or Firm-Howard W. Haworth; Ronald L. Clendenen 21 Appl. No.: 899,056 57 ABSTRACT Method for the production of branched chain esters (22) Filed: Apr. 24, 1978 comprising contacting methanol and/or dimethyl ether and carbon monoxide with zinc iodide at a temperature (51) Int. C.’....................... CO7C 67/36; CO7C 67/37 of from about 180° C. to 450° C. Improved selectivity to (52) U.S. C. ................................ 560/232; 260/652 R; methyl pivalate is obtained by incorporating ethylene, 560/233; 585/409; 585/733; 585/943 propylene and/or isobutylene into the reaction mixture. (58 Field of Search ................ 560/232, 233; 260/.532, 260/533 A; 562/517,519, 521 6 Claims, No Drawings 4,166,189 1. 2 invention. The purity of the methanol is not critical, PRODUCTION OF METHYLESTERs BY provided the impurities do not interfere with the reac CONTACTING METHANOL OR DIMETHYL tion. Thus, small amounts of water and ethanol, com ETHER WITH CARBON MONOXDE AND ZINC mon impurities in methanol, do not interfere. In general, ODDE dilute streams of methanol may be used, provided, as noted, the diluents do not interfere with the activity of BACKGROUND OF THE INVENTION the zinc iodide. The term "methanol', as used in the 1. Field of the Invention specification and claims, is intended to include the use This invention relates to a method of producing of such dilute streams containing methyl alcohol. More branched chain esters as for example methyl-2,2,3,3-tet 10 over, any material which will react to provide methanol ramethylbutyrate, from methanol and carbon monox in situ under the reaction conditions specified herein, ide. and which does not interfere with the reaction, and 2. Description of the Prior Art whose other reaction product or products, if any, do Previous efforts to convert methanol to higher car not interfere with the reaction, is within the scope of the bon number molecules have led to hydrocarbons rather 15 invention. For example, dimethyl ether may be used as than esters. Even this prior experimental work with a source of methanol, either as the total feed, or a por methanol conversion to hydrocarbons may be charac tion thereof. Under some conditions, disclosed herein, terized as largely academic or substantially uneconomic significant quantities of dimethyl ether may be formed. in present terms. For example, as early as 1878, LeBel This dimethyl ether may be separated and recycled, and Green (Compt. Rend. Vol. 87, p. 260) produced 20 thereby providing a highly efficient use of source mate alkyl hydrocarbons by contacting methanol with zinc rials. chloride at elevated temperatures. More recently, Grosse and Snyder describe and claim a process in U.S. The carbon monoxide utilized in this invention may Pat. No. 2,492,984 wherein a mixture consisting essen be pure or mixed with gases that are inert to the reaction tially of a specified metal halide and at least one com 25 conditions. Synthesis gas can provide an excellent pound selected from the group consisting of methanol source of carbon monoxide. Significant amounts of and dimethyl ether is subjected to conversion condi hydrogen do not interfere with the reaction. The car tions, including a temperature of 250 C. to 650 C., to bon monoxide partial pressure in the reaction mixture is form substantial amounts of recoverable hydrocarbons maintained at partial pressure greater than 100 psia, having at least four carbon atoms. The examples of the 30 preferably greater than 1000 psia. The molar ratio of patent employ a zinc chloride catalyst, and the specifi carbon monoxide to methanol or dimethyl ether must cation mentions that higher atomic weight halides of be kept relatively high to favor the formation of metals such as zinc, cadmium, thorium, and the like, branched chain esters. The ratio of carbon monoxide to may be used. methanol should be greater than 0.25 and preferably Normally, methanol conversion in zinc halides results 35 greater than 10. in alkanes and alkenes, even when conducted in the Lower carbon number olefins may be introduced into presence of olefins, e.g. see U.S. applications Ser. No. the reaction mixture to provide an increase in methyl 850,872 and 850,874 both filed on Nov. 14, 1977, as well pivalate production. Preferred olefins are ethylene, as U.S. Pat. No. 4,059,647 issued Nov. 22, 1977. The propylene and isobutylene, with isobutylene being par particular advantage of this invention is that carboxylic ticularly preferred. acid esters are also produced. The highly branched The zinc iodide need not be pure, but may contain ester products of the invention find use as solvents and impurities which do not interfere with the reaction. chemical intermediates. Commercial grade zinc iodide is acceptable in the pro cess of the invention. SUMMARY OF THE INVENTION 45 Temperatures employed in the reaction range from Accordingly, the invention provides a method for the about 180° C. to about 450 C., preferably from about production of branched chain esters by reacting metha 190° C. to about 350° C. and most preferably from about nol, dimethyl ether or mixtures thereof with carbon 200' C. to about 280 C. monoxide at a ratio of carbon monoxide to methanol of The ratio of olefin when utilized to methanol is greater than 0.25 in the presence of zinc iodide, at a 50 widely variable, and those skilled in the art may vary temperature of from about 180° C. to about 450° C. The the proportions as desired. Thus, a ratio of 0.1 mols to use of zinc bromide does not give the same beneficial 25 mols of methanol permol of olefin may be employed, results. The invention produces methyl esters of with a ratio of from 0.3 mols to 10 mols of methanol per branched acids having carbon numbers from about five mol of olefin being preferred. At the same time, how to about eight. The invention particularly produces 55 ever, the appropriate ratio of methanol to Zn2, i.e., in methyl pivalate ((CH3)3CCOOCH3) and methyl an amount sufficient to initiate and sustain the reaction, 2,2,3,3-tetramethylbutyrate must be employed. Those skilled in the art may readily ((CH3)3CC(CH3)2COOCH3) in major amounts. Addi determine appropriate amounts, keeping in mind that tion of ethylene, propylene, isobutylene and mixtures excessively high ratios of reactants, especially methanol thereof to the reaction mixture results in an increase in 60 to Zn2, or mixtures thereof, may not be used. For ex methyl pivalate production. ample, ratios of from about 0.01 mol of methanol per mol of Zn2 to about 24 mols of methanol per mol of DESCRIPTION OF THE PREFERRED Zn2 may be used, while ratios of from about 0.1 mol of EMBODIMENT methanol per mol of Zn2 to about 10 mols of methanol The source of the methanol employed is a matter of 65 per mol of Zn2 are preferred. Where dimethyl ether is choice. For example, methanol derived from synthesis used as a feed, the ratio offeed to Zn2 would be similar, gas produced from coal, and methanol produced from and where dimethyl ether is used as a portion of the natural gas are eminently suited to the practice of the feed, adjustment of the feed ratio may be made readily. 4,166,189 3 4. The process may be conducted batch-wise or in a Analysis (GLC and mass spectrographic) of the gaseous continuous fashion. Whichever procedure is employed, and liquid products indicated the following product good mixing or contact of the Zn2 and the reactants is yields, stated as grams of products per 100 grams of important for good results. Any reaction system which methanol feed: provides a high degree of mixing or contact of reactants CH4: 0.2 may be employed. For example, fixed bed systems, i-C4H10: 5.3 slurry reactors, and trickle bed reactors may be used. i-C5H12; 1.2 Contact times are not critical, and those skilled in the art may vary the contact times to provide sufficient contact 2,2,3-trimethylbutane: 18.7 time to produce optimum results, depending on, e.g., 10 Other C7 & C3 hydrocarbons: 2.0 - volume of reactants, reactor design, temperature, etc. C9-C13 hydrocarbons: 8.4 For example, utilizing a fixed bed reactor design, and Hexamethylbenzene: 4.7 continuous flow of reactants, contact times on the order CHI: 25.0 of from about 0.5 minute (245 C.) to about 120 minutes, CO2: 2.9 or 180 minutes (200' C), or even longer, may be used. 15 Methyl pivalate: 7.7 Where batch procedures are employed, contact times Methyl ester of C5H11COOH: 3.9 may be considerably longer. In both batch and continu Methyl ester of C6H13COOH: 2.8 ous procedures, it is not necessary that 100 percent Methyl 2,2,3,3-tetramethylbutyrate: 24.0 conversion of the methanol be obtained before recover ing the product, the methanol being easily separable and 20 EXAMPLE 2 recyclable. Example 1 was repeated using 200g of ZnBr2 instead The process of this invention is described by the of the Zn2. The temperature of the reactor was lined following illustrative embodiments which are provided out at 235 C.
Recommended publications
  • Initiator and Process for Cationic Polymerization
    Europaisches Patentamt J> European Patent Office © Publication number: 0 406 977 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 90201773.0 © int. Cl.5; C08F 4/42 © Date of filing: 03.07.90 ® Priority: 06.07.89 NL 8901728 © Applicant: STAMICARBON B.V. Mijnweg 1 @ Date of publication of application: NL-6167 AC Geleen(NL) 09.01.91 Bulletin 91/02 @ Inventor: Goethals, Erik Jozef © Designated Contracting States: Huisgaverstraat 52 AT BE CH DE DK ES FR GB GR IT LI NL SE B-9761 Ouwegem-Zingen(BE) Inventor: Haucourt, Nancy Hortense Gustaaf Everparkstraat 47 B-9050 Evergem(BE) Inventor: Van Meirvenne, Drik Nieuwkerkenstraat 151 B-2770 St. Niklaas(BE) © Initiator and process for cationic polymerization. © The invention relates to an initiator for the cationic polymerization of electron-rich a-olefins comprising an a- iodo ether, according to formula (1). Y-O-R1 -O-CR2R3-I (1) where Y = R43Si where R1 = an aliphatic residue, optionally containing an ether group R2 and R3 = independent H or C1-C4 alkyl R* = C1-C4 alkyl. The invention also relates to a process for preparing a polymer with a polydispersity lower than 1 .6 by means of the cationic polymerization of electron-rich a-olefins by adding a monomer to an initiator described above and polymerizing it and recovering. CO o Hi Xerox Copy Centre EP 0 406 977 A1 INITIATOR AND PROCESS FOR CATIONIC POLYMERIZATION The invention relates to an initiator and a process for the cationic polymerization of electron-rich a- olefins, the initiator comprising an a-iodo ether.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • United States Patent 0 "3 Cc Patented Apr
    2,882,298 _, United States Patent 0 "3 cc Patented Apr. 14, 1959 1 2 a mixture of equimolar quantities of nickel iodide (Nilz) and either sodium iodide (NaI) or zinc iodide (Znlz) 2,882,298 will provide the required increased ratio of iodide ion to nickel ion concentration. Alternatively, a catalyst PREPARATION OF ACRYLIC ACID ESTERS mixture of one mol of nickel chloride and three mols of Benjamin J. Luberolf, Stamford, Conn., assignor to sodium iodide may be used. American 'Cyanamid Company, New York, N.Y., Although the reason for the synergistic e?ect is not a corporation of Maine entirely understood, the activity of such a catalyst mix No Drawing. Application March 26, 1956 ture in the aforedescribed process is materially increased Serial No. 573,658 ‘over that of either nickel iodide as catalyst or the relative 1y inert supplemental iodide alone. In general, how 2 Claims. (Cl. 260-486) ever, the ratio of iodide 'ion to nickel ion is greater than two but less than about ?ve. It is therefore a good practice to use about equal amounts of nickel iodide This invention relates to a novel and improved method 15 and the supplemental iodide. for‘. preparing acrylic acid and esters thereof. More par Typically illustrative soluble metal iodide compounds ticnlarly, it relates 'to a liquid phase reaction whereby other than nickel iodide will include a variety of broad acetylene, carbon monoxide and .either ‘water or an alco classes. However, the prime requirement is that the hol all being present in equivalent amounts are reacted alkali metal be soluble in the reaction medium.
    [Show full text]
  • Selective Methylative Homologation: an Alternate Route to Alkane Upgrading John E
    Published on Web 08/13/2008 Selective Methylative Homologation: An Alternate Route to Alkane Upgrading John E. Bercaw,‡ Nilay Hazari,‡ Jay A. Labinger,*,‡ Valerie J. Scott,‡ and Glenn J. Sunley*,# Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, and BP Chemicals Limited, Hull Research and Technology Centre, Kingston Upon Hull, North Humberside HU12 8DS, England Received April 24, 2008; E-mail: [email protected]; [email protected] Abstract: InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 °C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of adamantane the selectivity of this transformation can be increased up to 60%. The lighter branched alkanes isobutane and isopentane also react with methanol to generate triptane, while 2-methylpentane is converted into 2,3-dimethylpentane and other more highly branched species. Observations implicate a chain mechanism in which InI3 activates branched alkanes to produce tertiary carbocations which are in equilibrium with olefins. The latter react with a methylating species generated from methanol and InI3 to give the next-higher carbocation, which accepts a hydride from the starting alkane to form the homologated alkane and regenerate the original carbocation. Adamantane functions as a hydride transfer agent and thus helps to minimize competing side reactions, such as isomerization and cracking, that are detrimental to selectivity. Introduction upgrading light hydrocarbons such as n-hexane to diesel- range linear alkanes.5,6 The catalytic conversion of abundant but relatively inert alkanes into higher value chemicals has been a longstanding The dehydrative condensation of methanol to hydrocarbons challenge for chemists and the petrochemical industry.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • This Table Gives the Standard State Chemical Thermodynamic Properties of About 2500 Individual Substances in the Crystalline, Liquid, and Gaseous States
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are: DfH° Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol DfG° Standard molar Gibbs energy of formation at 298.15 K in kJ/mol S° Standard molar entropy at 298.15 K in J/mol K Cp Molar heat capacity at constant pressure at 298.15 K in J/mol K The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by: • The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure. • The standard state of a pure liquid substance is that of the liquid under the standard state pressure. • The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure. An entry of 0.0 for DfH° for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available. The data are derived from the sources listed in the references, from other papers appearing in the Journal of Physical and Chemical Reference Data, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,897,800 B2 Ramirez Et Al
    US007897800B2 (12) United States Patent (10) Patent No.: US 7,897,800 B2 Ramirez et al. (45) Date of Patent: *Mar. 1, 2011 (54) CHEMICAL COMPOSITIONS AND 432,611 A 7, 1890 Hall METHODS OF MAKING THEMI 627,296 A 6, 1899 Camnitzer 928,539 A 7, 1909 Pucciarelli (75) Inventors: José E. Ramirez, Trumbull, CT (US); 944,738 A 12/1909 Loose Joseph Faryniarz, Middlebury, CT (US) 992,937 A 5/1911 Brodbeck et al. 1,059,841 A 4, 1913 Crookes (73) Assignee: JR Chem, LLC, Key West, FL (US) 1,086,900 A 2f1914 David (*) Notice: Subject to any disclaimer, the term of this 1,332,190 A 2/1920 way Hull patent is extended or adjusted under 35 1411,577 A 4, 1922 Mullins et al. U.S.C. 154(b) by O days. 1488,097 A 3/1924 Creger 1.584, 173 A 5/1926 Holzapfel This patent is Subject to a terminal dis- 1,593,485 A 7, 1926 Crosnier claimer. 1,627,963 A 5, 1927 Fuller 1,809,082 A 6, 1931 Urkov et al. (21) Appl. No.: 11/668,020 1908,176 A 5/1933 Osterberg 1947,568 A 2f1934 Noonan (22) Filed: Jan. 29, 2007 1949,797 A 3/1934 Kaufmann O O 1982,148 A 1 1/1934 Zimbron, Jr. (65) Prior Publication Data 2,002,829 A 5/1935 Osterberg US 2007/O2O3354 A1 Aug. 30, 2007 2,054,989 A 9, 1936 Moore 2,087,162 A 7, 1937 Moore Related U.S. Application Data 2,095,092 A 10, 1937 Barton (60) Provisional application No.
    [Show full text]
  • United States Patent [191 [11] Patent Number: 5,055,536 Dubois [45] Date of Patent: Oct
    United States Patent [191 [11] Patent Number: 5,055,536 Dubois [45] Date of Patent: Oct. 8, 1991 [54] PROCESS TO PREPARE VINYL ETHER tem for Living Cationic . ”, Sawamoto et al., Macro POLYMERS molecules, 1987, 20, 2693-2697. [75] Inventor: Donn A. Dubois, Houston, Tex. “Mechanism of Living Polymerization of Vinyl Ethers by the Hydrogen Iodide . ", I'Iigashimura et al., Mac [73] Assignee: Shell Oil Company, Houston, Tex; romolecules, 1985, 18, 611-616. [21] Appl. No.: 564,523 “Synthesis of Monodisperse Living Poly(vinyl ethers) and Block Copolymers . ", Miyamoto et al., Macro [22] Filed: ' Aug. 9, 1990 molecules, 1984, 17, 2228-2230. [51] Int. Cl.5 ....................... .. C08F 4/16; CO8F 12/24; “Synthesis of P-Mcthoxystyrene-Isobutyl Vinyl Ether C08F 16/16 Block Copolymers by Living Cationic . ", I-Iiga [52] US. Cl. ................................. .. 526/194; 526/313; shimura et al., Macromolecules, 1979. 526/332; 526/292.9; 526/273; 526/312; Hawley’s Condensed Chemical Dictionary, 11th Ed., 526/ 279 VanNostrand, New York, 1987, pp. 697-698, 792-793, [58] Field of Search ....................................... .. 526/ 194 1248-1249. [56] References Cited R. Szostak, “Molecular Sieves”, Van Nostrand, New York, 1989, pp. 2-3, 26-27. U.S. PATENT DOCUMENTS Kirk Othmer Encyclopedia of Chemical Technology, 2,104,000 12/1937 Reppe ................................. .. 526/90 3rd Ed. (1981), pp. 638-669, “Molecular Sieves". 2,882,244 4/1959 Milton . .. 252/455 O. W. Webster et al., (1983) J. Am. Chem. Soc. 105, 3,228,923 1/1966 Scott et a1. 260/9l.1 5706-5708. 3,365,433 1/1968 Manson et al. 260/9l.l 3,394,116 7/1968 Sorkin ..........
    [Show full text]
  • Influence of Type of Zinc Salts on Photoinitiated Living Cationic
    Polymer 54 (2013) 4798e4801 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Polymer communication Influence of type of zinc salts on photoinitiated living cationic polymerization of vinyl ethers Muhammet U. Kahveci a,b,*, Faruk Oytun a, Yusuf Yagci a,c,* a Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak TR-34469, Istanbul, Turkey b Yildiz Technical University, Davutpasa Campus, Faculty of Chem. and Metallurgical Eng., Dept. of Bioengineering, 34220 Esenler, Istanbul, Turkey c Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia article info abstract Article history: Activities of a series of zinc salts in Lewis-acid-mediated cationic photopolymerization of vinyl ethers Received 26 April 2013 have been studied. Readily soluble zinc salts including zinc stearate, zinc acetate and zinc oxide; zinc Received in revised form iodide; and metallic zinc were employed as a Lewis acid in propagation stage of the cationic polymer- 11 July 2013 ization initiated by photolysis of a substituted vinyl halide, 1-bromo-1,2,2-tris(p-methoxyphenyl)ethene Accepted 15 July 2013 (AAAVB). As a model monomer isobutyl vinyl ether (IBVE) was polymerized by the described system in Available online 23 July 2013 the presence of the zinc salts or metallic zinc for investigation of efficiencies of the Lewis acids. Novel system containing organo-zinc compounds yielded polymers in more controlled manner. For further Keywords: Photopolymerization evaluation of potential living character of the system, polymerization of IBVE catalyzed by zinc stearate Cationic polymerization was monitored, and as a result, the polymerization showed quasi-living nature.
    [Show full text]
  • Final Offer Price List Half C2C Corel 14
    000004.KF ALF-000004-KF 7429-90-5 Aluminum foil, 0.13mm (0.005in) thick, 50x125mm (2.0x4.9in), 1PC 6,286 4,479 99.9995% (metals basis) 000065.30 ALF-000065-30 7440-45-1 Cerium ingot, 99.8% min (REO) 250GR 51,346 36,584 000081.DH ALF-000081-DH 7440-48-4 Cobalt rod, 12.5mm (0.492in) dia, 99.95% (metals basis) 25MM 20,203 14,395 000098.G6 ALF-000098-G6 7440-50-8 Copper wire, 0.64mm (0.025in) dia, Puratronic|r, 10M 21,044 14,994 99.999% (metals basis), Oxygen free 000100.G4 ALF-000100-G4 7440-50-8 Copper wire, 0.127mm (0.005in) dia, 99.999% (metals basis) 3M 6,174 4,399 000111.03 ALF-000111-03 7440-52-0 Erbium pieces, 99.9% (REO) 1GR 3,481 2,334 000155.0K ALF-000155-0K 7440-74-6 Indium wire, 0.5mm (0.02in) dia, Puratronic|r, 99.999% (metals basis) 0.5M 4,899 4,899 000155.G2 ALF-000155-G2 7440-74-6 Indium wire, 0.5mm (0.02in) dia, Puratronic|r, 99.999% (metals basis) 2M 17,493 17,493 000224.14 ALF-000224-14 7440-02-0 Nickel powder, -100 mesh, 99+% (metals basis excluding Co), Co 0.1% max 25GR 2,638 2,638 000228.FT ALF-000228-FT 7440-02-0 Nickel foil, 0.025mm (0.001in) thick, annealed, 99.5% (metals basis) 25x250MM 7,855 5,597 000262.FI ALF-000262-FI 7440-06-4 Platinum foil, 0.025mm (0.001in) thick, 99.9% (metals basis) 50x50MM 53,451 38,084 000263.G5 ALF-000263-G5 7440-06-4 Platinum wire, 0.127mm (0.005in) dia, hard, 99.9% (metals basis) 5M 39,563 25,057 000267.09 ALF-000267-09 7440-10-0 Praseodymium ingot, 99.9% (REO) 10GR 8,669 6,177 000267.18 ALF-000267-18 7440-10-0 Praseodymium ingot, 99.9% (REO) 50GR 30,864 21,991 000295.22 ALF-000295-22
    [Show full text]
  • Density of Molten Elements and Representative Salts 4-126
    DENSITY OF MOLTEN ELEMENTS AND REPRESENTATIVE SALTS ρ This table lists the liquid density at the melting point, m , for elements that are solid at room temperature, as well as for some representative salts of these elements. Densities at higher temperatures (up to the tmax given in the last column) may be estimated from the equation ρ ρ (t) = m - k(t-tm) where tm is the melting point and k is given in the fifth column of the table. If a value of tmax is not given, the equation should not be used to extrapolate more than about 20°C beyond the melting point. Data for the elements were selected from the primary literature; the assistance of Gernot Lang in compiling these data is gratefully acknowledged. The molten salt data were derived from Reference 1. REFERENCE 1. Janz, G. J., Thermodynamic and Transport Properties of Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data, J. Phys. Chem. Ref. Data, 17, Suppl. 2, 1988. 2. Nasch, P. M., and Steinemann, S. G., Phys. Chem. Liq., 29, 43, 1995. ° ρ –3 –3 ° –1 Formula Name tm/ C m/g cm k/g cm C tmax Ag Silver 961.78 9.320 0.0009 1500 AgBr Silver(I) bromide 432 5.577 0.001035 667 AgCl Silver(I) chloride 455 4.83 0.00094 627 AgI Silver(I) iodide 558 5.58 0.00101 802 AgNO3 Silver(I) nitrate 212 3.970 0.001098 360 Ag2SO4 Silver(I) sulfate 652 4.84 0.001089 770 Al Aluminum 660.32 2.375 0.000233 1340 AlBr3 Aluminum bromide 97.5 2.647 0.002435 267 AlCl3 Aluminum chloride 192.6 1.302 0.002711 296 AlI3 Aluminum iodide 188.32 3.223
    [Show full text]
  • Vapor Pressure 6-60
    VAPOR PRESSURE This table gives vapor pressure data for about 1800 inorganic and organic substances. In order to accommodate elements and compounds ranging from refractory to highly volatile in a single table, the temperature at which the vapor pressure reaches specified pressure values is listed. The pressure values run in decade steps from 1 Pa (about 7.5 µm Hg) to 100 kPa (about 750 mm Hg). All temperatures are given in °C. The data used in preparing the table came from a large number of sources; the main references used for each substance are indicated in the last column. Since the data were refit in most cases, values appearing in this table may not be identical with values in the source cited. The temperature entry in the 100 kPa column is close to, but not identical with, the normal boiling point (which is defined as the temperature at which the vapor pressure reaches 101.325 kPa). Although some temperatures are quoted to 0.1°C, uncertainties of several degrees should generally be assumed. Values followed by an “e” were obtained by extrapolating (usually with an Antoine equation) beyond the region for which experimental measurements were available and are thus subject to even greater uncertainty. Compounds are listed by molecular formula following the Hill convention. Substances not containing carbon are listed first, followed by those that contain carbon. To locate an organic compound by name or CAS Registry Number when the molecular formula is not known, use the table Physical Constants of Organic Compounds in Section 3 and its indexes to determine the molecular formula.
    [Show full text]