Selective Methylative Homologation: an Alternate Route to Alkane Upgrading John E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Removal of Alkanes and Polycyclic Aromatic Hydrocarbons by Bacteria from Soil Chronically Exposed to Crude Petroleum Oil
Effective Removal of Alkanes and Polycyclic Aromatic Hydrocarbons by Bacteria from Soil Chronically Exposed to Crude Petroleum Oil Eman Afkar ( [email protected] ) Dept. of Basic Sciences, Preparatory Year Deanship (PYD), King Faisal University, Al-Ahsa, 31982, Saudi Arabia. https://orcid.org/0000-0002-7442-4880 Aly M. Hafez Dept. of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia. Rashid I.H. Ibrahim Dept. of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia. Dept. of Botany, Faculty of Science, University of Khartoum, PO Box 321, PC 11115, Sudan Munirah Aldayel Dept. of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia. Research Keywords: n-alkanes, GC-MS, crude oil degradation, bacteria, contaminants, hydrocarbons Posted Date: February 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207407/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract In this study, two bacterial strains isolated from an oil-contaminated soil, designated as AramcoS2 and AramcoS4 were able to degrade crude oil, long-chain n-alkanes of C10 to C20; (n-decane, n-undecane, n- dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane n- nonadecane, and n-eicosane) and polycyclic aromatic hydrocarbons (PAHs) including biphenyl, naphthalene, and anthracene. Gas chromatography-mass spectrometry (GC-MS) technique was conducted to analyze and identify the crude oil residues after biodegradation. AramcoS2 and AramcoS4 were able to reduce the concentration of long-chain n-alkanes of C10-C20 eciently on average by 77% of the original concentration. -
Methane Hydrocarbon Compounds During Wintertime in Beijing
Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-783, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 16 December 2016 c Author(s) 2016. CC-BY 3.0 License. The levels, variation characteristics and sources of atmospheric non- methane hydrocarbon compounds during wintertime in Beijing, China Chengtang Liu1,3, Yujing Mu1,2 *, Junfeng Liu1,3, Chenglong Zhang1,3, Yuanyuan Zhang1,3, Pengfei 5 Liu1,3, Hongxing Zhang1,4 1Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China 3University of Chinese Academy of Sciences, Beijing 100085, China 10 4Beijing Urban Ecosystem Research Station, Beijing, 100085, China Correspondence to: Yujing Mu ([email protected]) Abstract. Atmospheric non-methane hydrocarbon compounds (NMHCs) were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics and sources. Fifty- 15 three NMHCs were quantified and the proportions of alkanes, alkenes, acetylene and aromatics to the total NMHCs were 49.8% ~ 55.8%, 21.5% ~ 24.7%, 13.5% ~ 15.9% and 9.3% ~ 10.7%, respectively. The variation trends of the NMHCs concentrations were basically identical and exhibited remarkable fluctuation, which were mainly ascribed to the variation of meteorological conditions, especially wind speed. The diurnal variations of NMHCs in clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours’ peaks diminished or even disappeared in the haze days, 20 implying that the relative contribution of the vehicular emission to atmospheric NMHCs depended on the pollution status. -
Isopentane Ipt
ISOPENTANE IPT CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: -70°F C.C. 7.1 Grades of Purity: Research: 99.99%; pure: Common Synonyms Watery liquid Colorless Gasoline-like odor (approx.) 99.4%; technical: 97% 2-Methylbutane 4.2 Flammable Limits in Air: 1.4%-8.3% 7.2 Storage Temperature: Ambient Floats on water. Flammable, irritating vapor is produced. Boiling point 4.3 Fire Extinguishing Agents: Dry 7.3 Inert Atmosphere: No requirement chemical, foam, or carbon dioxide is 82°F. 7.4 Venting: Open (flame arrester) or pressure- 4.4 Fire Extinguishing Agents Not to Be vacuum Evacuate. Used: Water may be ineffective 7.5 IMO Pollution Category: C Keep people away. 4.5 Special Hazards of Combustion Wear goggles and self-contained breathing apparatus. Products: Not pertinent 7.6 Ship Type: 3 Shut off ignition sources and call fire department. 4.6 Behavior in Fire: Highly volatile liquid. 7.7 Barge Hull Type: Currently not available Avoid contact with liquid and vapor. Vapors may explode when mixed with air. Stay upwind and use water spray to ``knock down'' vapor. Notify local health and pollution control agencies. 4.7 Auto Ignition Temperature: 800°F 8. HAZARD CLASSIFICATIONS 4.8 Electrical Hazards: Not pertinent 8.1 49 CFR Category: Flammable liquid FLAMMABLE. Fire 4.9 Burning Rate: 7.4 mm/min. 8.2 49 CFR Class: 3 Flashback along vapor trail may occur. 4.10 Adiabatic Flame Temperature: Currently 8.3 49 CFR Package Group: I Vapor may explode if ignited in an enclosed area. -
Directive Effects in Abstraction Reactions of the Phenyl Radical Robert Frederick Bridger Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Directive effects in abstraction reactions of the phenyl radical Robert Frederick Bridger Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Bridger, Robert Frederick, "Directive effects in abstraction reactions of the phenyl radical " (1963). Retrospective Theses and Dissertations. 2336. https://lib.dr.iastate.edu/rtd/2336 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 63-5170 microfilmed exactly as received BRIDGER, Robert Frederick, 1934- DIRECTIVE EFFECTS IN ABSTRACTION RE ACTIONS OF THE PHENYL RADICAL. Iowa State University of Science and Technology Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan DIRECTIVE EFFECTS IN ABSTRACTION REACTIONS OF THE PHENYL RADICAL by Robert Frederick Bridger A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Depart me6jb Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1963 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 RESULTS 6 DISCUSSION 36 EXPERIMENTAL 100 SUMMARY 149 REFERENCES CITED 151 ACKNOWLEDGEMENTS 158 iii LIST OF FIGURES Page Figure 1. -
Molecular Dynamics Simulation Studies of Physico of Liquid
MD Simulation of Liquid Pentane Isomers Bull. Korean Chem. Soc. 1999, Vol. 20, No. 8 897 Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers Seng Kue Lee and Song Hi Lee* Department of Chemistry, Kyungsung University, Pusan 608-736, Korea Received January 15, 1999 We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic prop erties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liq uid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increas es. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases. -
TCEQ Interoffice Memorandum
TCEQ Interoffice Memorandum To: Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S., D.A.B.T. Toxicology Division, Office of the Executive Director Date: Draft, 2014 Subject: Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of the EagleRidge Energy, LLC - Woodland Estates West Unit (Latitude 32.595248, Longitude -97.160361) in Mansfield, Tarrant County, Texas Sample Collected on November 26, 2013, Request Number 1312003 (Lab Sample 1312003-001) Key Points • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. Background On November 26, 2013, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1312003-001) downwind of the EagleRidge Energy, LLC - Woodland Estates West Unit (Latitude 32.595248, Longitude -97.160361) in Mansfield, Tarrant County, Texas. The sample was collected in response to a citizen complaint of a sore throat. The investigator did not experience an odor or health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 44.3°F with a relative humidity of 63.6%, and winds were from the north (360°) at 7.5 to 9.5 miles per hour. The sampling site was less than 100 feet from the nearest possible emission source (tanks). The nearest location where the public could have access was approximately 301 to 500 feet from the possible emission source. -
Initiator and Process for Cationic Polymerization
Europaisches Patentamt J> European Patent Office © Publication number: 0 406 977 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 90201773.0 © int. Cl.5; C08F 4/42 © Date of filing: 03.07.90 ® Priority: 06.07.89 NL 8901728 © Applicant: STAMICARBON B.V. Mijnweg 1 @ Date of publication of application: NL-6167 AC Geleen(NL) 09.01.91 Bulletin 91/02 @ Inventor: Goethals, Erik Jozef © Designated Contracting States: Huisgaverstraat 52 AT BE CH DE DK ES FR GB GR IT LI NL SE B-9761 Ouwegem-Zingen(BE) Inventor: Haucourt, Nancy Hortense Gustaaf Everparkstraat 47 B-9050 Evergem(BE) Inventor: Van Meirvenne, Drik Nieuwkerkenstraat 151 B-2770 St. Niklaas(BE) © Initiator and process for cationic polymerization. © The invention relates to an initiator for the cationic polymerization of electron-rich a-olefins comprising an a- iodo ether, according to formula (1). Y-O-R1 -O-CR2R3-I (1) where Y = R43Si where R1 = an aliphatic residue, optionally containing an ether group R2 and R3 = independent H or C1-C4 alkyl R* = C1-C4 alkyl. The invention also relates to a process for preparing a polymer with a polydispersity lower than 1 .6 by means of the cationic polymerization of electron-rich a-olefins by adding a monomer to an initiator described above and polymerizing it and recovering. CO o Hi Xerox Copy Centre EP 0 406 977 A1 INITIATOR AND PROCESS FOR CATIONIC POLYMERIZATION The invention relates to an initiator and a process for the cationic polymerization of electron-rich a- olefins, the initiator comprising an a-iodo ether. -
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
SAFETY DATA SHEET Flammable Gas Mixture: Ethane / Isobutane / Isopentane / N-Butane / N-Pentane / Nitrogen / Propane Section 1. Identification GHS product identifier : Flammable Gas Mixture: Ethane / Isobutane / Isopentane / N-Butane / N-Pentane / Nitrogen / Propane Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 008109 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Compressed gas SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 AQUATIC HAZARD (LONG-TERM) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. Contains gas under pressure; may explode if heated. May form explosive mixtures in Air. May displace oxygen and cause rapid suffocation. May cause drowsiness and dizziness. Harmful to aquatic life with long lasting effects. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Approach suspected leak area with caution. -
Measurements of Higher Alkanes Using NO Chemical Ionization in PTR-Tof-MS
Atmos. Chem. Phys., 20, 14123–14138, 2020 https://doi.org/10.5194/acp-20-14123-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Measurements of higher alkanes using NOC chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China Chaomin Wang1,2, Bin Yuan1,2, Caihong Wu1,2, Sihang Wang1,2, Jipeng Qi1,2, Baolin Wang3, Zelong Wang1,2, Weiwei Hu4, Wei Chen4, Chenshuo Ye5, Wenjie Wang5, Yele Sun6, Chen Wang3, Shan Huang1,2, Wei Song4, Xinming Wang4, Suxia Yang1,2, Shenyang Zhang1,2, Wanyun Xu7, Nan Ma1,2, Zhanyi Zhang1,2, Bin Jiang1,2, Hang Su8, Yafang Cheng8, Xuemei Wang1,2, and Min Shao1,2 1Institute for Environmental and Climate Research, Jinan University, 511443 Guangzhou, China 2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443 Guangzhou, China 3School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China 5State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China 6State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese -
BGA244 Binary Gas Analyzer User Manual
BGA244 Binary Gas Analyzer User Manual Revision 1.10 Certification Stanford Research Systems certifies that this product met its published specification at the time of shipment. Warranty This Stanford Research Systems product is warranted against defects in materials and workmanship for a period of one (1) year from the date of shipment. Service For warranty service or repair, this product must be returned to a Stanford Research Systems authorized service facility. Contact Stanford Research Systems or an authorized representative for a RMA (Return Material Authorization) Number before returning this product for repair. These are available at www.thinksrs.com under Support, Repair/Calibration. All users returning a BGA244 back to the factory for repair and/or service must submit a correctly completed “Declaration of Contamination of Equipment” form, available as part of the RMA process. The SRS personnel carrying out repair and service of the BGA244 must be informed of the condition of the components prior to any work being performed. Warning All returns to SRS must be free of harmful, corrosive, radioactive or toxic materials. Dedication In memory of Jim Williams, 1948 - 2011: Legendary Author and Analog Design Guru Information in this document is subject to change without notice. Copyright © Stanford Research Systems, Inc., 2016-2018. All rights reserved. Stanford Research Systems, Inc. 1290-C Reamwood Avenue Sunnyvale, California 94089 Phone: (408) 744-9040 Fax: (408) 744-9049 Email: [email protected] www.thinksrs.com Printed in the