HP Xw6400 Workstation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel Lga 775 Ga
INDEX Heat Sink For: UNIVERSAL LGA 2011 LGA 1156/1155 LGA 1366/1155 LGA 775 Cooljag LGA 771 Cooljag is a renowned manufacturer of cooling devices specialized in the “skiving” technology. Since establishment in the year 2001, Cooljag has ventured and advanced in the field of skiving and has became a leader in mastering this technology. P-M However, Cooljag is not self-contented for its achievements in the technology alone, and has evolved to become a thermal total solution provider. Being customer oriented and focused on thermal solutions, Cooljag targets specific thermal problems of our PGA989/BGA989 customers and finds the best overall solution for heat transfer, airflow, noise and cost, with all kinds of technologies. From our very own skiving technology to extrusion and even stacked fins with heat Pipes, we can find and customize the best solution suited Socket 754/939/940/ to our customers needs. 1207eATX/C32 Company Profile • 1986 Company founded • 1995 Development of own brand-Jagwire 1207(long size) • 1996 Received ISO 9002 certificate 5th National award for small to medium enterprises AMD G34/AM2/AM3 • 1997 Honored with Excellence award • 1998 Honored with Rising Star award Retails • 2001 development of the other own brand-Cooljag(as thermal total solution provider) Received ISO 9001 certificate • 2002 Monthly capacity of heatsink : 1,000,000pcs Acessory • 2006 All products are RoHS compliant • 2007 Received TS16949 certificate • 2008 Received OASAS-18001 & ISO-14001 certificate • 2009 TPM activties Water Cooling • 2010 Received ISO13485 certificate Heatsink Cooljag in Skiving Cooljag has advanced in the skiving technology as not only we have achieved the thinnest of fins and thinnest of pitches, but also achieved in the highest of fin heights, widest of fin width, and the largest effective single block heat sink in the world. -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
Replace Nine Older Servers with One Dell Emc Poweredge Vrtx
COMPARING PERFORMANCE AND COST: DELL EMC POWEREDGE VRTX WITH ONE DELL EMC POWEREDGE M830 SERVER VS. A LEGACY SOLUTION Businesses using multiple outdated server0 sSERVER for email, database, NODES and fileVS. and A LEGACY SOLUTION print workloads stand to benefit greatly by consolidating these workloads onto a single new server and running them in virtual machines. In tests in the Principled Technologies datacenter, the Dell EMC PowerEdge VRTX with a Dell EMC PowerEdge M830 blade server, powered by the Intel Xeon processor E5-4650 v3, was able to simultaneously run email, database, and simulated file and print workloads in a VMware® vSphere® virtual environment. The VRTX performed the work of nine older servers—four database servers, four file and print servers, and one Exchange server. It achieved similar or even better performance while requiring less space and power than a legacy disparate hardware solution,1 which translates to a lower five-year TCO. Combining servers, networking, and shared storage into an all-in-one solution, the PowerEdge VRTX can deliver big performance and savings. 1 In June 2013, Principled Technologies conducted testing comparing the performance of (1) the Dell PowerEdge VRTX with a Dell PowerEdge M620 server and (2) a legacy hardware solution. The results for the legacy solution that we cite in this report are from that earlier study. For more details, see the report for that study, available at www.principledtechnologies.com/Dell/VRTX_performance_TCO_0713.pdf. JULY 2015 (Revised January 2017) A PRINCIPLED -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
HP Xw6600 Workstation Overview
QuickSpecs HP xw6600 Workstation Overview HP recommends Windows Vista® Business 1. Monitor (sold separately) 8. 2 PCI, 2 PCI Express x8 mechanical/x4 electrical 2. Mouse (USB or PS/2) 9. 2 PCI Express x16 Gen2 Graphics Bus 3. Standard Keyboard (USB or PS/2) 10. 5 USB 2.0 (rear), 1 USB 2.0 (internal), 1 standard serial port 4. Front IO: 2 USB 2.0, IEEE-1394 (optional), headphone out (only available via internal header with optional module), 2 and microphone in PS/2, 1 RJ-45, audio line in, audio line out, and microphone in. 5. 3.5" external bay for optional floppy drive 6. 2 external 5.25" bays 11. Dual-Core or Quad-Core Intel® Xeon® Processors 7. 2 internal 3.5" bays (convertible to 3 internal 2.5" bays) 12. 650 watt 80 PLUS high efficiency power supply Form Factor Minitower Compatible Operating Genuine Windows Vista® Business 64-bit* Systems Genuine Windows Vista® Business 32-bit* Genuine Windows Vista® 64-bit downgrade to Genuine Microsoft® Windows® XP Professional 64-bit** Genuine Windows Vista® 32-bit downgrade to Genuine Microsoft® Windows® XP Professional 32-bit** Red Hat Enterprise Linux® WS 5 64-bit HP Linux Installer Kit for Linux (includes drivers for both 32-bit & 64-bit OS versions of Red Hat Enterprise Linux WS4 and WS5 see: http://www.hp.com/workstations/software/linux) For detailed OS/hardware support information for Linux, see: http://www.hp.com/support/linux_hardware_matrix * Certain Windows Vista product features require advanced or additional hardware. See http://www.microsoft.com/windowsvista/getready/hardwarereqs.mspx and http://www.microsoft.com/windowsvista/getready/capable.mspx for details. -
“LCD TV Matters” Volume 2, Issue 2
“LCD TV Matters” Volume 2, Issue 2 "A Great TV in Every Room" LCD TV Association LCD TV Matters Pre-CES 2009 Contents Chairman’s Corner: A crazy few months... by Bruce Berkoff 3 LCD-TV News compiled by Veritas et Visus 6 Sharp unveils AQUOS Experience for holiday season 6 Samsung introduces a 2000-nit 70-inch LCD panel 6 Panasonic Viera TH-PZR900 HDTV sports terabyte drive 6 LG Display shows off 480Hz LCD TV panel 7 Viewsonic launches 24-inch 1080p LCD TV 7 Samsung introduces 52-inch “Touch of Color” LCD TV 7 HDMI adopted by 700+ manufacturers as new CE and PC products hit market 7 Sharp releases world’s first LCD TV with built-in Blu-ray Disc recorder 8 Sony unveils world's thinnest LCD TV 8 LifeSize introduces the next-generation telepresence and high definition video communications 8 Sharp adds enhanced inputs and network connectivity to HD LCD line-up 9 Panasonic launches PZ850 Web-enabled TVs – features H.264 and four HDMI ports 9 Schaub Lorenz introduces $130,000 40-inch LCD TV 10 Philips Research reveals ultra-thin backlight technology for TVs 10 LG and Samsung join forces to develop mobile digital TV standard via ATSC 10 eyevis introduces 56-inch LCD TV at 3840x2160 pixels 11 AUO and Qisda form JV to manufacture LCD TVs 11 ATSC approves AVC within DTV transmissions 11 NEC introduces 82-inch professional-grade LCD for digital signage 11 Fairchild Semiconductor’s LCD TV design achieves 90% efficiency 12 ZeeVee now shipping ZvBox for PC content streaming 12 GAO reports DTV transition making progress 12 Broadcom to acquire digital -
Embedded Linux Primer: a Practical Real-World Approach
Embedded Linux Primer: A Practical, Real-World Approach By Christopher Hallinan ............................................... Publisher: Prentice Hall Pub Date: September 18, 2006 Print ISBN-10: 0-13-167984-8 Print ISBN-13: 978-0-13-167984-9 Pages: 576 Table of Contents | Index Comprehensive Real-World Guidance for Every Embedded Developer and Engineer This book brings together indispensable knowledge for building efficient, high-value, Linux-based embedded products: information that has never been assembled in one place before. Drawing on years of experience as an embedded Linux consultant and field application engineer, Christopher Hallinan offers solutions for the specific technical issues you're most likely to face, demonstrates how to build an effective embedded Linux environment, and shows how to use it as productively as possible. Hallinan begins by touring a typical Linux-based embedded system, introducing key concepts and components, and calling attention to differences between Linux and traditional embedded environments. Writing from the embedded developer's viewpoint, he thoroughly addresses issues ranging from kernel building and initialization to bootloaders, device drivers to file systems. Hallinan thoroughly covers the increasingly popular BusyBox utilities; presents a step-by-step walkthrough of porting Linux to custom boards; and introduces real-time configuration via CONFIG_RT--one of today's most exciting developments in embedded Linux. You'll find especially detailed coverage of using development tools to analyze -
Evolution of the Pentium
Chapter 7B – The Evolution of the Intel Pentium This chapter attempts to trace the evolution of the modern Intel Pentium from the earliest CPU chip, the Intel 4004. The real evolution begins with the Intel 8080, which is an 8–bit design having features that permeate the entire line. Our discussion focuses on three organizations. IA–16 The 16–bit architecture found in the Intel 8086 and Intel 80286. IA–32 The 32–bit architecture found in the Intel 80386, Intel 80486, and most variants of the Pentium design. IA–64 The 64–bit architecture found in some high–end later model Pentiums. The IA–32 has evolved from an early 4–bit design (the Intel 4004) that was first announced in November 1971. At that time, memory came in chips no larger than 64 kilobits (8 KB) and cost about $1,600 per megabyte. Before moving on with the timeline, it is worth recalling the early history of Intel. Here, we quote extensively from Tanenbaum [R002]. “In 1968, Robert Noyce, inventor of the silicon integrated circuit, Gordon Moore, of Moore’s law fame, and Arthur Rock, a San Francisco venture capitalist, formed the Intel Corporation to make memory chips. In the first year of operation, Intel sold only $3,000 worth of chips, but business has picked up since then.” “In September 1969, a Japanese company, Busicom, approached Intel with a request for it to manufacture twelve custom chips for a proposed electronic calculator. The Intel engineer assigned to this project, Ted Hoff, looked at the plan and realized that he could put a 4–bit general–purpose CPU on a single chip that would do the same thing and be simpler and cheaper as well. -
Radeon® X1550 Graphics Technology - GPU Specifications
Radeon® X1550 Graphics Technology - GPU Specifications Advanced Image Quality Features • 64-bit floating point HDR rendering supported throughout the pipeline Features • Includes support for blending and multi-sample anti-aliasing • 105 million transistors on 90nm fabrication process • 32-bit integer HDR (10:10:10:2) format supported throughout the pipeline • Ultra-threaded architecture with fast dynamic branching • Includes support for blending and multi-sample anti-aliasing • 4 pixel shader processors • 2x/4x/6x Anti-Aliasing modes • 2 vertex shader processors • Multi-sample algorithm with gamma correction, programmable sparse sample • 128-bit 4-channel DDR2 memory interface, 64-bit/2-channel patterns, and centroid sampling configurations • New Adaptive Anti-Aliasing feature with Performance and Quality modes • Native PCI Express x16 bus interface, AGP 8x/4x, 3.3v PCI • Temporal Anti-Aliasing mode Note: AGP and PCI supported through bridge ASIC • Lossless Color Compression (up to 6:1) at all resolutions, including widescreen HDTV resolutions High Performance Memory Controller • 2x/4x/8x/16x Anisotropic Filtering modes • Fully associative texture, color, and Z/stencil cache designs • Up to 128-tap texture filtering • Hierarchical Z-buffer with Early Z test • Adaptive algorithm with Performance and Quality options • Lossless Z Compression (up to 48:1) • High resolution texture support (up to 4k x 4k) • Fast Z-Buffer Clear • Z/stencil xache optimized for real-time shadow rendering Avivo™ Video and Display Platform • High performance programmable -
Video Streaming
Video streaming a research on free video streaming technologies Jaromil dyne.org / rastasoft.org Table of Contents Introduction................................................................................................................................................1 We need CPU for compression .................................................................................................................2 We need bandwidth for distribution ........................................................................................................2 We need harddisk space for storage.........................................................................................................3 Distribution of video archives...................................................................................................................4 Embedded solutions...................................................................................................................................6 Streaming video software..........................................................................................................................8 About the author of this document ........................................................................................................10 Video streaming terms glossary..............................................................................................................11 Introduction Given the vast panorama of video technologies available nowadays, this research could fill up way too much paper in the -
Dual-Core Intel® Xeon® Processor 5100 Series
Product Brief Dual-Core Intel® Xeon® Processor 5100 Series Dual-Core Intel® Xeon® Processor 5100 Series Driving Energy-efficient Performance in New Dual-Processor Platforms Intel’s newest dual-core processor for dual processor (DP) servers and workstations delivers a new level of energy-efficient performance from the innovative Intel® Core™ microarchitecture, optimized for low-power, dual-core, 64-bit computing. The 64-bit Dual-Core Intel® Xeon® processor 51001 series enables next-generation platforms that can drive energy-efficient infrastructures to optimize data center density, reduce total cost of ownership (TCO), and improve business continuity, redefining what DP servers and workstations should deliver to help businesses be more efficient, dependable, and agile. The Dual-Core Intel Xeon processor 5100 series is ideal for intense computing environments, 32-bit and 64-bit business-critical applications and high-end workstations. Combined with the Intel® 5000 chipset family and Fully Buffered DIMM (FBDIMM) technology, the new Dual-Core Intel Xeon processor 5100 series-based platforms are expected to deliver up to 3 times the performance and over 3 times the performance/watt of previous- generation single-core Intel® Xeon® processors. The new Dual-Core Intel Xeon processor 5100 series-based platforms are expected to deliver up to 2 times the performance and over 2 times the performance/watt of previous-generation dual-core Intel Xeon processors.2 Confidently deliver more services with hardware-assisted virtualization and enhanced reliability in a 64-bit, dual-core platform The Dual-Core Intel Xeon processor 5100 Intel® Core™ microarchitecture series matched with Intel advanced server delivers industry-leading performance and helps build energy-efficient technologies help IT operations deliver more infrastructures with Dual-Core services in the same power envelope and work Intel® Xeon® Processor 5100 series more efficiently. -
Download X100 Graphics Overview In
x100 - graphics overview Bringing a unique way of seeing things. The Shuttle X100 features ATI’s Mobility™ Radeon® X1400 - providing best-in-class graph- ics performance, delivering enhanced 3D gaming, high quality video playback, and high energy efficency. Boost graphics performance with the dedicated 90-nanometer process Graphics Processing Unit (GPU) with an ultra-threaded 3D architecture, ring-bus memory controller, and a native 16x PCI Express® bus interface. Render lifelike 3D characters and scenes with any OpenGL® and DirectX® 9 game and enjoy astonishing effects with full DirectX® 9 Shader Model 3.0 support. With ATI’s Avivo™ High-Definition video and display enhancements and PowerPlay™ 6.0 advanced power management, Mobility Radeon X1400 creates a new performance threshold for mobile productivity and entertainment. Best-in-class mobile graphics performance. Go for the industry’s best-in-class graphics performance for your small-form-factor—ATI’s Mobile on desktop. Mobility™ Radeon® X1400. A discrete 90-nanometer process GPU with a new ultra-threaded The X100 breaks the rules of the 3D architecture delivers visual power far beyond integrated UMA graphics, performance- computing world, by bring mobile enhanced with a new ring-bus memory controller and high-speed 128-bit 4-channel technology in a desktop form-fac- tor. The Intel Core Duo, Core Solo, DDR/DDR2/GDDR3 RAM support. Accelerate through tasks and entertainment with a native and Celeron M bring powerful and x16-lane PCI Express® bus interface, pumping data through 4 pixel shader pipelines and 2 energy efficent processors to time vertex processors. Mobility Radeon X1400 packs all the mobile graphics power and visual when environmental consideration velocity you need with your X100.