INFLUENCE of LYSOZYME on EGG WHITE QUALITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doct

Total Page:16

File Type:pdf, Size:1020Kb

INFLUENCE of LYSOZYME on EGG WHITE QUALITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doct INFLUENCE OF LYSOZYME ON EGG WHITE QUALITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by OWEN JAY COTTERILL, B. S., M. S. The Ohio State University 19SU Approved by* Adviser i TABLE OF CONTENTS INTRODUCTION ................................................ 1 REVIEW OF LITERATURE........................................ h .Composition of Egg W h i t e ............. 5 Gross structure ............... 5 Chemical composition ............ 6 W a t e r ................................... • . • 6 Proteins • .................... ....... 7 Minerals ....... .......... ...... 10 Carbohydrates •••..•• • 10 L i p i d ........................................ 10 Vitamins . ........ 11 froperties of Egg White Proteins •••••••••••* 12 Physical ••••.«••• 12 Biological ............... lii Conalbumin ............. Ill Ovomucoid lU Avidin . .................................. 1$ Ovomucin .................................. 15 Lysozyme ............. 16 Factors Affecting Egg Whits Quality • • 19 Temperature .................................. 19 Humidity.......................................... 19 ii pH .... ...................................... 20 Disease 25 Breeding 26 Nutrition •••••... .............. ••••• 26 Season of year and age of b i r d ................... .. 27 Thermostabilization . .............. 27 Mechanism of Egg White Thinning...................... .. 30 Tiyptic digestion ..................... 30 Fibrous structure 32 Sulfhydryl groups . • ............................ 36 I^rsozyme-ovomucin interaction ••••••••••« 36 EXPERIMENTAL................................................ 1*2 Lysozyme Standard 1*2 Lysozyme Determination ............ Li* Measurement of Egg White Quality •••••*.••••* 52 Solids, Total Nitrogen, and Protein Determination • • « • 52 E g g s .................................................. 52 PART I RELATIVE LYSOZYME ACTIVITY IN FRESH EGGS HAVING LOW AND HIGH INTERIOR QUALITY............................................ 53 Review of L i t e r a t u r e ............................ .. 53 Experimental and Results .......... .. • 56 Lysozyme activity of eggs from individual birds • • 56 iii lysozyme activity of eggs from different strains of b i r d s .............................................. 57 Relationship of lysozyme activity to initial interior quality 57 Discussion 59 S u m m a r y ................................................ 60 PART II THE EFFECT OF THERMOSTABILIZATION OK LYSOZYME ACTIVITY .... 61 Review of Literature................................. • 61 Experimental and Results•.•••••••••••.••• 66 Lysozyme activity of thermostabilized eggs • • • • • 67 Thermostabilization temperatures higher than 130° for 15 minutes • 68 Age of eggs and lysozyme destruction........... 69 Shorter treatment times and higher temperatures • • • 70 Discussion............................. 71 Summary ........ .........................» • 73 PART III LYSOZYME-OVOMUCIN INTERACTION ................................ 75 R e v i e w ............................................... 75 Materials and Methods • • .................... ••••• 79 Thick wh i t e ..................................... 79 iv Crude ovomucin ............... 79 Buffer............................................ 80 lysozyme........................................ .. 80 Setting up each trial ...... 80 Thermostabilization .............................. 8l Experimental and R e s u l t s ............................ .. 82 Preliminary observations on this interaction .... 82 Effect of pH and thermostabilization on lysozyme- thick white interaction........................ .. 83 pH ....... .......................... 83 pH and thermostabilizati o n ................ .. 6U Effect of pH and thermostabilization on lysozyme- crude ovomucin interaction.......... ............. 85 p H .......................................... 85 pH and thermostabilization.................. 86 Effect of pH and dilution on thick white, crude ovomucin and l y s o z y m e ............................ 86 Effect of different thermostabilization temperatures at different pH levels............................ 87 Thick white ................ ........... .. 87 Crude ovomucin .......................... 88 Effect of sulfhydryl g r o u p s ...................... 88 Thick wh i t e .................................. 88 Crude o v o m u c i n ............................ .. 89 V Discussion................................................ 91 The influence of pH . .......................... 91 The influence of heat .......... 93 The influence of sulfhydryl g r o u p s ................ 9k S u m m a r y .................................................. 96 PART IV INFLUENCE OF AMMONIA ON EGG WHITE QUALITY...................... 97 Introduction and R e v i e w ............. 97 Experimental and Results.................................. 98 Quality and pH of whole e g g s ........................ 98 Extinction coefficient and pH of white and pH of yolk 99 Discussion.............................................. 100 S u m m a r y ................................................. 101 GENERAL D I S C U S S I O N ...................... ................... 102 GENERAL SUMMARY...................................... 108 TABLES . ................................................... Ill FIGURES....................................................... 122 REFERENCES ................................................... 132 ACKNOWLEDGEMENTS............................................. tkS AUTOBIOGRAPHY................................................. li*6 1 INTRODUCTION The importance of shell egg quality may be stressed by the fact that about 85 percent of all eggs produced reach the point of consumption in the shell. The factors used to determine quality in shell eggs may be divided into two general groups; (1 ) those affecting the condition of the shell, and (2 ) those affecting the nature and composition of the interior contents* The latter group is often referred to as Interior Quality or more simply abbreviated as I* Q. In deter­ mining I. Q., the physical consistency of egg white warrants special consideration* The determination of quality in a foodstuff is often linked with some physical change in the appearance of the product* One such example is that of egg white thinning* The nature of the thick white gel in the shell egg is one of the more important factors used to determine the apparent I* Q. and the ultimate economic value of this food product in market channels* The physical condition of the white is used as a "built-in*' indicator which generally designates the functional and eating qualities of the product. The importance of egg white thinning in determining the commercial grade of shell eggs is manifested by observing the position and definition of the yolk shadow when the egg is candled* If the white is thick and cloudy, then the yolk shadow will be centered and diffuse. Any thinning or clearing of the white will tend to make the yolk shadow more defined and off center. The environmental factors which affect the thinning of egg white have been the subject of many investigations. The influences of storage temperatures and loss of carbon dioxide have been demonstrated many times, A part of this thesis will deal with a discussion of the environmental and other factors that affect egg white quality. Various means have been employed to retard the loss of quality resulting from egg white thinning. Correct application of these materials and methods are very affective in minimizing the loss of quality* In one instance the I, Q., as measured by the condition of the white, can actually be improved. However, the most effective of these methods is not accepted in ccnuaercial practice at the present time. The development of new methods for shell egg preservation or the improvement in existing practices is hampered by the lack of knowledge concerning the mechanism or nature of the changes taking place during the thinning of the white. The current theories which have a bearing on this subject will be reviewed. One of these theories is based on the interaction of two egg white proteins, namely, ovomucin and lysozyme. The main objective of this study was to determine the possible role of lysozyme in egg white thinning and some of the conditions which affect its interaction with ovomucin. This study was divided into four parts t (1) Relative lysozyme activity in fresh egF;a having low and high interior quality; (2 ) 3 Effect of thermostabilization on lysozyme activity; (3) Lysozyme- ovcmucin interaction, and (U) Effect of ammonia on egg white thinning* A general review of the literature and discussion of materials and methods will be presented independent of the above parts. The more specific review and discussion of procedures will accompany each part. The discussion of results and summary will be included with each part. A general discussion and summary will be presented at the end of the text. h RE VIE* OF LITERATURE Seme general characteristics of egg white will be considered before attempting to discuss the more fundamental aspects of this material* First consideration will be devoted to the composition and some of the properties of many of the constituents of egg white# Next, the factors which affect the physical nature of the white will be presented* Finally, major emphasis will be given some of the theories which have been presented to explain the mechanism of egg white thinning* Many excellent reviews have summarized various
Recommended publications
  • A Preliminary Note on the Embryology of <Emphasis Type="Italic">Casuarina Equisetifolia </Emphasis>, Forst
    A PRELIMINARY NOTE ON THE EMBRYOLOGY OF CASUARINA EQUISETIFOLIA, FORST BY B. G. L. SWAMs (Bangalore) Received June 27, 1944 (Communicated by Prof. L. S. S. Kumar, r.A.SC.) THE remarkable discovery of Chalazogamy in Casuarina by Treub in 1891 evoked very keen interest and initiated further studies of Casuarinaceae and Amentifera~ fi'om both morphological and anatomical points of view. Certain aspects of the megasporogenesis of Casuarhza stricta was subsequently studied by Frye in 1903 and Juel (1903) recorded his observations on the origin and development of the female archesporium in Casuarina quadrivalvis. In spite of these contributions our present knowledge regarding the develop- mental stages in the life-history are far from being satisfactory. An inves- tigation of several species of the genus has been taken up by the author and a few salient features in the life-history of Casuarina equiset~folia Forst have been embodied in this preliminary note. The archesporiurn of the microsporangium is subepidermal in origin and can be differentiated by rich cell contents and conspicuous nuclei. After the formation of the endothecium, wall layers and tapetum, the microspore mother cells undergo the usual stages of the reduction divisions and form quartets of microspores arranged tetrahedrally. The quartets round off and their nuclei undergo division into tube and generative cells The pollen grains at the shedding stage are binucleate. Each ovary contains two erect ovules which arise laterally from a basal placenta (Fig. 1). The ovules are bitegnmentary, the inner integument differentiating slightly earlier than the outer; these grow upwards and organise a micropyle.
    [Show full text]
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • Protection of Washed and Pasteurized Shell Eggs Against Fungal Growth by Application of Natamycin-Containing Shellac Coating
    Protection of Washed and Pasteurized Shell Eggs against Fungal Growth by Application of Natamycin-Containing Shellac Coating THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Yang Song Graduate Program in Food Science and Technology The Ohio State University 2016 Master's Examination Committee: Dr. Ahmed Yousef, Advisor Dr. Dennis R. Heldman Dr. Luis Rodriguez-Saona Copyrighted by Yang Song 2016 Abstract Mold contamination of commercial shell eggs can potentially cause significant economic loss to the egg industry during storage. Studies indicated that molds from varies sources can propagate on commercial eggs when storage condition is less ideal. The current egg processing procedures such as commercial washing and pasteurization can weaken the egg shell, which is the primary defense of egg content, and expose processed eggs to contaminations. Generally, processed eggs are coated with mineral oil to overcome this problem. However, oil application is not very effective when used to protect eggs against mold contamination during storage. The food grade anti-fungal agent natamycin can be used to improve egg defense against mold contamination; however, direct application on egg surface will cause it to lose activity rapidly. Therefore, incorporation of natamycin and a food-grade coating is necessary to extend its anti-fungal effectiveness. As a food-grade coating, shellac can retain egg quality better compare to other coating materials; moreover, it can also serve as a matrix for natamycin to treat egg surface. Research is needed to investigate whether natamycin can remain effective in shellac coating; determine the minimum inhibitory concentration (MIC) of natamycin in shellac coating against typical mold contaminants, and whether the natamycin-shellac coating is effective when used on commercial washed eggs and pasteurized eggs.
    [Show full text]
  • Mind Your Eggs & Veggies
    MIND YOUR EGGS & VEGGIES Nutrition for Cognitive Health Presented by Taylor C. Wallace, PhD, CFS, FACN And Chef Abbie Gellman, MS, RD, CDN Spread the Fruit and Veggie Love #haveaplant @fruits_veggies @fruitsandveggies @fruitsandveggies © 2020 Produce for Better Health Foundation 2 Our Purpose The Produce for Better Health Foundation (PBH), a 501(c)3, is the only national non-profit organization committed to helping people live happier, healthier lives by eating more fruits and vegetables in all their glorious forms every day. © 20202019 Produce for Better Health Foundation 3 Our Movement Research shows, rather than a prescriptive recommendation to eat a certain amount of fruits and vegetables each day, consumers (particularly Gen Z and Millennials) want actionable, realistic and FUN approaches that make eating fruits and vegetables easy, helping them feel confident, happy and healthy. That’s where PBH’s Have A Plant® movement comes in. It’s a way to tap into the emotional connection consumers have to the fruit and vegetable eating experience while inspiring long-term, sustainable behavior change. And it does so with a no-nonsense approach that’s simple, understandable, and, importantly for this audience, non-prescriptive. © 2020 Produce for Better Health Foundation 4 Moderator Wendy Reinhardt Kapsak, MS, RDN © 2020 Produce for Better Health Foundation 5 Content Series: Eggs: Veggies’ Reliable BFF © 2020 Produce for Better Health Foundation 6 Adding Eggs to Enhance the Benefits of Produce Taylor C. Wallace, PhD, CFS, FACN Think Healthy Group, Inc. George Mason University © 2020 Produce for Better Health Foundation 7 Disclosures • Think Healthy Group, Inc. • George Mason University • The Dr.
    [Show full text]
  • 2020 Front Cover
    INDIANA STATE POULTRY ASSOCIATION PRESENTS: 2020 POULTRY INFOMATION BOOKLET THIS BOOKLET CONTAINS: Test Your Knowledge - Poultry Quiz (Inside Front Cover) Poultry Terms Quick Reference Guide (Pg. 1) Getting Started with a Home Poultry Flock (Pg. 2) Common Egg Shell Quality Problems (Pg. 5) Choosing a Chicken Breed: Eggs, Meat or Exhibition (Pg. 6) Stay Healthy When Working with Farm Animals (Pg. 9) Exhibition Poultry (Pg. 10) Proper Handling of Eggs: From Hen to Consumption (Pg. 12) Don’t Get Caught Without These Forms (Pg. 17) Avian Influenza Findings Emphasize the Need for Good Biosecurity (Pg. 18) Backyard Biosecurity Self Evaluation (Pg. 20) Indiana Test Twelve Flock Evaluation (Inside Back Cover) This Booklet is designed to be a quick resource for raising poultry. For additional information go to www.INpoultry.com INDIANA STATE POULTRY ASSOCIATION PURDUE UNIVERSITY, ANIMAL SCIENCES 270 SOUTH RUSSELL STREET • WEST LAFAYETTE, IN 47907 765-494-8517 • [email protected] • WWW.INPOULTRY.COM TEST YOUR KNOWLEDGE - POULTRY QUIZ THINK YOU KNOW POULTRY? ANSWER THESE TEN QUESTIONS FOR A CHANCE TO WIN A PRIZE. ALL ANSWERS CAN BE FOUND THROUGHOUT THIS BOOKLET. 1. If chicks move away from the heat source in their brooding area and appear to be drowsy, then the temperature is most likely too ________ . 2. What might be the cause of a misshapen egg? a. Immature shell gland b. Disease c. Stress d. Overcrowding e. All of the above 3. Chicken breeds with _______ ear lobes lay white eggs while chicken breeds with ______ ear lobes lay brown eggs. 4. Anyone can get sick from farm animals, but what groups of people are more likely to have a serious illness? a.
    [Show full text]
  • An Introduction to Morphology of the Reproductive System and Anatomy of Hen's
    J. Life Earth Sci., Vol. 8: 1-10, 2013 ISSN 1990-4827 http://banglajol.info.index.php/JLES © 2013, JLES, RU AN INTRODUCTION TO MORPHOLOGY OF THE REPRODUCTIVE SYSTEM AND ANATOMY OF HEN’S EGG Md. Anisur Rahman Department of Zoology, University of Rajshahi, Rajshahi-6205, Bangladesh e-mail: [email protected] Abstract: The present study was designed to investigate the morphology of reproductive system and egg anatomy of the domestic hen (Gallus domesticus L.). The system consists of oviduct and ovary. The oviduct consists of infundibulum, magnum, isthmus, uterus and vagina which are sole distributor for making nutrition enriched egg. The anatomy of egg revealed that there are calcareous eggshell, shell membranes, egg white, vitelline membrane, egg yolk, and germinal disc. The fertilized egg showed a concentric circle around the nucleus known as blastoderm that contained area pellucida and area opaca whereas an unfertilized egg showed nucleus as white spot (blastodisc). Primordial germ cells (PGCs) are progenitor cells of ova and spermatozoa and they originate from the epiblast of the central part of the area pellucida. The microscopic structure of eggshell rendered leathery cuticle, fibrous matrix and shell membranes. The egg protects itself by its own mechanism from being injured and provides a complete diet for the developing embryo. Key words: Ovary, oviduct, egg, blastodisc, eggshell mvivsk: eZ©gvb Aa¨qbwU gyiwMi (Gallus domesticus L.) cÖRbbZ‡š¿i A½ms¯’vb Ges wW‡gi A½e¨e‡”Q` AbymÜvb Kivi Rb¨ Av‡jLb Kiv n‡q‡Q| cÖRbbZš¿wU‡Z wW¤^bvjx
    [Show full text]
  • Recurrent Angioedema Due to Lysozyme Allergy R Pérez-Calderón, MA Gonzalo-Garijo, a Lamilla-Yerga, R Mangas-Santos, I Moreno-Gastón
    R Pérez-Calderón, et al CASE REPORT Recurrent Angioedema Due to Lysozyme Allergy R Pérez-Calderón, MA Gonzalo-Garijo, A Lamilla-Yerga, R Mangas-Santos, I Moreno-Gastón Department of Allergology, Infanta Cristina University Hospital, Badajoz, Spain ■ Abstract A 54-year-old woman suffered an episode of dyspnea and edema affecting her eyelids, tongue, and lips a few minutes after intake of Lizipaina (bacitracin, papain, and lysozyme). She was treated with intravenous drugs and her symptoms improved within 2 hours. She had experienced 3 to 4 bouts of similar symptoms related to the ingestion of cured cheeses or raw egg. Specifi c serum immunoglobulin (Ig) E against lysozyme was present at a concentration of 0.45 kU/L, and no specifi c IgE was found against egg white and yolk, ovalbumin, or ovomucoid. Skin prick tests were positive with commercial extracts of egg white and lysozyme but doubtful with yolk, ovalbumin, and ovomucoid. Prick-to-prick tests with raw egg white and yolk gave positive results, but negative results were obtained with cooked egg white and yolk and 5 brands of cheese (3 of them containing lysozyme and the other 2 without lysozyme). Controlled oral administration of papain, bacitracin, and cheeses without lysozyme was well tolerated. We suggest that the presence of lysozyme in a pharmaceutical preparation, cured cheese, and raw egg was responsible for the symptoms suffered by our patient, probably through an IgE-mediated mechanism. Key words: Additives. Drug allergy. Food allergy. Hypersensitivity. Lysozyme. ■ Resumen Mujer de 54 años de edad, que presentó un cuadro de disnea y edema de párpados, lengua y labios a los pocos minutos de tomar un comprimido de Lizipaina (bacitracina, papaína y lisozima).
    [Show full text]
  • Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common Food Allergens May Be Listed Many Different Ways on Food Labels and Can Be Hidden in Common Foods
    Food Allergen Graph: Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common food allergens may be listed many different ways on food labels and can be hidden in common foods. Below you will find different labels for common allergens. Avoiding Peanuts: Avoiding Tree Nuts: Avoiding Egg: Avoiding Corn: Avoiding Wheat: Artificial nuts Almond Albumin / albumen Corn - meal, flakes, Bread Crumbs Beer nuts Artificial nuts Egg (dried, powdered, syrup, solids, flour, Bulgur Cold pressed, expeller Brazil nut solids, white, yolk) niblets, kernel, Cereal extract Flour: pressed or extruded peanut Beechnut Eggnog alcohol, on the cob, Club Wheat all-purpose Butternut oil Globulin / Ovoglobulin starch, bread,muffins Conscous bread Goobers Cashew Fat subtitutes sugar/sweetener, oil, Cracker meal cake Durum Ground nuts Chestnut Livetin Caramel corn / flavoring durum Einkorn Mandelonas (peanuts soaked Chinquapin nut Lysozyme Citric acid (may be corn enriched Emmer in almond flavoring) Coconut (really is a fruit not a based) graham Mayonnaise Farina Mixed nuts tree nut, but classified as a Grits high gluten Meringue (meringue Hydrolyzed Monkey nuts nut on some charts) high protein powder) Hominy wheat protein Nut meat Filbert / hazelnut instant Ovalbumin Maize Kamut Gianduja -a chocolate-nut mix pastry Nut pieces Ovomucin / Ovomucoid / Malto / Dextrose / Dextrate Matzoh Peanut butter Ginkgo nut Modified cornstarch self-rising Ovotransferrin Matzoh meal steel ground Peanut flour Hickory nut Polenta Simplesse Pasta stone ground Peanut protein hydrolysate
    [Show full text]
  • The Chicken Egg Lab 1
    The Chicken Egg Lab1 Question: How does the amniotic egg help a ​ ​ ​ reptile or bird reproduce? Lab Materials: ❏ chicken egg (or 2, if you want a backup) ​ ❏ small glass bowl (if you don’t have this, you can ​ ​ use any clear plastic container, such as a food storage container or plastic bag) ❏ another bowl (this one does not have to be clear; ​ ideally it’s dark, no decorations inside) ❏ 2 toothpicks (or a fork… any sharp point will work) ​ ❏ paper towels ❏ table protection ❏ plastic wrap (to cover keyboard & trackpad of your Chromebook) ​ ❏ gloves (optional, if you don’t want to or can’t touch raw egg) ​ ❏ pencil & lab sheet (if you can print, print; if not, follow along with this tab open online) ​ ❏ sanitizing wipes or cleaning spray, for cleanup at the end! Chicken Egg Information: The Yolk: The chicken egg starts as an egg yolk inside a hen. A yolk is ​ ​ produced by the hen's ovary in a process called ovulation. Fertilization: The yolk is released into the oviduct (a long, spiraling tube ​ ​ in the hen's reproductive system), where it can be ​ fertilized internally (inside ​ ​ the hen) by a sperm (from a ​ rooster). Chicks only develop from eggs that have been fertilized. Not all eggs are! 1 Sources: Adapted by D. McBeath from http://ljhs.sandi.net/faculty/AQuesnell/Biology%20Notes/Chapter%206/6_3-6_5/ChickenEggLab.pdf http://www.newpaltz.k12.ny.us/cms/lib/NY01000611/Centricity/Domain/171/EggDissectionLab1.pdf Image 1: www.enchantedlearning.com ​ Image 2: biology-pictures.blogspot.com/amniotic-egg-diagram.html ​ 1 The Egg White (albumin): The yolk continues down the oviduct (whether or not it is fertilized) ​ ​ and is covered with a membrane, structural fibers, and layers of albumin protein (the egg white).
    [Show full text]
  • Review Yoshinori Mine and Jennifer Kovacs-Nolan
    Journal of Poultry Science, .+ : +῎,3, ,**. ῌReview῍ Yoshinori Mine and Jennifer Kovacs-Nolan Department of Food Science, University of Guelph Guelph, Ontario N+G ,W+, Canada It is widely recognized that eggs are more than a source of dietary nutrients, and extensive studies identifying and characterizing the biologically active components of eggs have been carried out. Numerous biological activities have now been associated with egg components, including antibacterial and antiviral activity, immunomodulatory activity, and anti-cancer activity, indicating the importance of eggs and egg components in human health, and disease prevention and treatment. The potential of some of these biologically active components has already been realized, including egg white lysozyme and avidin, and yolk IgY and lecithin, which are currently produced on an industrial scale, and have been applied for the prevention and treatment of various medical conditions. The information presented here serves to demonstrate the significant potential of biologically active egg components, for medical, nutraceutical, and food- fortification applications. Key words : Hen eggs, bio-active components, nutraceuticals, health and disease, functional foods ῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌῌ Yoshinori Mine +321 : M. Sc. (Food Science) Shinshu University, Japan +33- : Ph. D. (Biochemistry) Tokyo University of Agriculture and Technology, Japan Current position Associate Professor and Chair in Egg Material Sciences Department of Food Science University of Guelph. Area of research interests : Egg Material Sciences, Bio-active protein/peptides, Molecular biology of egg allergens. Jennifer Kovacs-Nolan ,**+ : M. Sc. (Food Science) University of Guelph , Ontario, Canada. Current position : Ph. D. student, Department of Food Science, University of Guelph, Ontario, Canada. Area of research interests : Food biochemistry/biotechnology.
    [Show full text]
  • Investigating the Chemical Basis of Functionality Differences Between Beet and Cane Sugar Sources in Model Egg White Foams and Other Products
    INVESTIGATING THE CHEMICAL BASIS OF FUNCTIONALITY DIFFERENCES BETWEEN BEET AND CANE SUGAR SOURCES IN MODEL EGG WHITE FOAMS AND OTHER PRODUCTS BY NICHOLAS REITZ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science and Human Nutrition with a concentration in Food Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Adviser: Professor Shelly J. Schmidt ABSTRACT Though often used interchangeably, researchers have identified differences in functionality between beet and cane sugar sources in some food products. For example, previous research reported sensory differences between meringue cookies made with beet and cane sugar. Beet sugar meringue cookies were more marshmallow-like than cane meringue cookies. However, these sensory differences have not been instrumentally quantified and the underlying cause has not been determined. Thus, the objective of this research was to instrumentally quantify and investigate the chemical basis for the sensory differences between beet and cane meringue cookies. To instrumentally quantify differences between beet and cane meringue cookies, moisture content and water activity was obtained for unbaked meringues and meringue cookies. Additionally, texture profile analysis, three point break analysis, and differential scanning calorimetry was carried out on beet and cane meringue cookies. To gain insight into factors causing differences between beet and cane meringue cookies, heat denatured sugar-egg gel texture, unbaked foam stability, and water loss during simulated baking were obtained. No meaningful difference was found between beet and cane meringues in moisture content, water activity, and foam stability prior to baking. After baking, however, beet meringue cookies where shown to have higher moisture content, water activity, and cohesiveness values, and lower hardness and force to break values.
    [Show full text]
  • Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza
    foods Article Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza Lijuan Wang 1, Jingjing Wang 1 and Anheng Wang 1,2,* 1 College of Grain Engineering and Technology, Shenyang Normal University, Shenyang 110034, China; [email protected] (L.W.); [email protected] (J.W.) 2 Department of Chemistry and Biochemistry, School of Mathematics and Physical Sciences (Chemistry), University of Hull, Cottingham Road, Hull HU67RX, UK * Correspondence: [email protected]; Tel.: +44-7421834574; Fax: +86-02486506860 Abstract: A massive amount of chalaza with nearly 400 metric tons is produced annually as waste in the liquid-egg industry. The present study aimed to look for ways to utilize chalaza as a natural emulsifier for high internal phase emulsions (HIPEs) at the optimal production conditions to expand the utilization of such abundant material. To the author’s knowledge, for the first time, we report the usage of hen egg chalaza particles as particulate emulsifiers for Pickering (HIPEs) development. The chalaza particles with partial wettability were fabricated at different pH or ionic strengths by freeze-drying. The surface electricity of the chalaza particles was neutralized when the pH was adjusted to 4, where the chalaza contained a particle size around 1500 nm and held the best capability to stabilize the emulsions. Similarly, the chalaza reaches proper electrical charging (−6 mv) and size (700 nm) after the ionic strength was modified to 0.6 M. Following the characterization of chalaza particles, we successfully generated stable Pickering HIPEs with up to 86% internal phase at proper particle concentrations (0.5–2%).
    [Show full text]