Microbial Sulfate Reduction in the Tissue of the Cold-Water Sponge

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Sulfate Reduction in the Tissue of the Cold-Water Sponge Microbial sulfate reduction in the tissue of the cold-water sponge Geodia barretti (Tetractinellida, Demospongiae) Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Friederike Hoffmann aus Kassel Göttingen 2003 D 7 Referent: Prof. Dr. Joachim Reitner Korreferent: Dr. Ole Larsen Tag der mündlichen Prüfung: Als Dissertation eingereicht am 07.04.2003 bei den Mathematisch-Naturwissenschaftlichen Fachbereichen der Georg-August-Universität Göttingen Abstract I EXTENDED ABSTRACT diffusion with no pumping activity involved. Sulfate reduction rates (SRR) in sponge tissue 2- -3 -1 Metabolic rates, community structure and the ranged from 1-1200 nmol SO4 cm d with chemical micro-environment of sulfate- strong variations within the same sponge. Time reducing bacteria (SRB) within the tissue of the series with tissue slurry showed strong dependence of SRR on incubation time with boreal demosponge Geodia barretti were 35 2- examined, and implications for biological- SO4 . This indicates a rapid sulfide chemical and sponge-bacteria interactions are reoxidation, and thus a direct coupling between discussed. To enable these investigations, sulfate reduction and sulfide oxidation. Even histological, molecular biological and the highest rates measured may still underestimate true SRR, which were estimated biogeochemical methods were combined, new -3 -1 methods were developed and established to be up to 5000 nmol cm d . From these rates, cell specific SRR (csSRR) up to 0.22 methods were modified. -1 -1 Sponges represent the very base of metazoan fmol cell d were calculated, which are in a evolution and can be regarded as the oldest reasonable range for natural environments. animal phylum still alive. Fossil records My results indicate the presence of an indicate that the family Geodiidae has been endosymbiotic sulfur cycle in the tissue of G. existing since the early Cambrian. Geodia barretti, driven by the activity of SRB and by barretti hosts vast amounts of associated oxic/anoxic cycles in the tissue due to varying microorganisms in its intercellular matrix pumping activity of the sponge. Tissue anoxia (“bacteriosponge”). This species is extremely may arise due to the active metabolism of rich in siliceous spicules, with a pronounced sponge cells and aerobic associated bacteria cortex of microscleres at the sponge surface. under low pumping activity. Under these Various methods in sponge histotechnology conditions, sponge cells will switch their were developed and evaluated which allow metabolism to fermentation. Fermentation preparation of tissue sections without removing products serve as substrates for SRB, which the spicules. These sections are applicable for can be consumed by sponge cells (“bacterial examination of the microbial community by farming”). In the presence of oxygen, the sulfur fluorescence in situ hybridization (FISH) as cycle within the sponge tissue is completed by well as for histological investigations. oxidation of sulfide to sulfate. The involvement A cultivation method for fragments of G. of sulfide-oxidizing bacteria in this step is very barretti was also developed. Cultivated likely. fragments served as experimental units for My results indicate the relevance of anaerobic microelectrode studies. Histological metabolic processes in the intercellular matrix investigations over a cultivation period of 8 of G. barretti, with sulfate-reducing bacteria as months showed the ability of this sponge to putative key players in sponge metabolism and grow and regenerate from a random piece of nutrition. The possibility of an ancient origin of tissue. the symbiosis between SRB and sponges or FISH on tissue sections showed that G. barretti sponge precursors remains a matter of contains 2.23 *1010 SRB cm-3 tissue, which discussion. However, this efficient system of represent 7.6 % of the bacterial community. internal nutrient recycling by symbiotic partners The SRB community was found to be different may be the reason for the success of Geodia from that in marine sediments. The and other bacteriosponges through earth predominant genus was Desulfovibrio, which history until today. comprises specialized feeders favoured by high substrate concentrations. SRB were evenly distributed throughout the choanosomal tissue, but were absent in and directly beneath the cortex. Repeated measurements with ERWEITERTE ZUSAMMENFASSUNG oxygen-sensitive microelectrodes showed that in a pumping G. barretti, the cortex and the Umsatzraten, Gemeinschaftsstruktur und das subcortical spaces were well oxygenated. In chemische Mikromilieu sulfatreduzierender the choanosome, oxygen decreased rapidly Bakterien (SRB) im Gewebe des borealen and was always depleted 4-6 mm below the Schwammes Geodia barretti (Demospongiae) sponge surface. When the sponge stopped wurden untersucht, und biologisch-chemische pumping, diffusive oxygen consumption in the sowie Schwamm-Bakterien-Wechselwirkungen overlying water could be observed. Oxygen diskutiert. Dafür wurden histologische, profiles in cultivated fragments showed a molekularbiologische und biogeochemische nearly parabolic shape and anoxic conditions Methoden kombiniert, neue Methoden already 500µm below the surface, indicating entwickelt und bewährte modifiziert. that oxygen supply was solely due to molecular Abstract II 2- -3 -1 Schwämme stehen am Anfang der nmol SO4 cm d , mit starken Variationen Metazoenentwicklung und können als innerhalb eines Individuums. Zeitserien mit ursprünglichster aller jetzt lebender homogenisiertem Schwammgewebe zeigten Tierstämme bezeichnet werden. eine starke Abhängigkeit der SRR von der 35 2- Fossilienfunde zeigen, dass die Familie Inkubationszeit mit SO4 . Dies deutet auf Geodiidae seit dem frühen Kambrium existiert. eine schnelle Reoxidation des Sulfids hin, was Geodia barretti beherbergt eine große Zahl bedeutet, dass Sulfatreduktion direkt mit assoziierter Mikroorganismen in seiner Sulfidoxidation verknüpft ist. Auch die interzellulären Matrix. Solche Schwämme höchsten gemessenen Raten unterschätzen werden auch als „bacteriosponges“ möglicherweise die wahren SRR, welche auf („Bakterienschwämme“) bezeichnet. Diese Art bis zu 5000 nmol cm-3 d-1 geschätzt wurden. besitzt zahlreiche Nadeln aus Silikat, die an Von diesen Raten wurden zellspezifische der Oberfläche eine dichte Cortex aus Sulfatreduktionsraten bis zu 0,22 fmol cell-1 d-1 Mikroskleren bilden. Verschiedene kalkuliert, welche vergleichbar sind mit solchen histotechnologische Methoden wurden erprobt, in marinen Sedimenten. um Gewebeschnitte ohne vorherige Meine Ergebnisse lassen auf einen Herauslösung der Skleren zu erhalten. Solche endosymbiontischen Schwefelkreislauf im Schnitte wurden für die Untersuchung der Gewebe von G. barretti schließen, angetrieben Bakteriengemeinschaft mit Fluoreszenz in situ von der Aktivität der SRB und von Hybridisierung (FISH) benötigt, sowie auch für oxischen/anoxischen Kreisläufen im Gewebe histologische Untersuchungen. aufgrund von variierender Pumpaktivität des Ferner wurde eine neue Methode zur Schwammes. Sind Schwammzellen und Kultivierung von Gewebefragmenten von G. aerobe assoziierte Bakterien metabolisch aktiv barretti entwickelt. Kultivierte in einem schwach pumpenden Schwamm, Schwammfragmente dienten als können Gewebebereiche anoxisch werden. experimentelle Einheiten für Untersuchungen Unter diesen Bedingungen betreiben mit Mikroelektroden. Histologische Schwammzellen Fermentierung. Beobachtungen über einen Fermentationsprodukte sind Substrate für Kultivierungszeitraum von 8 Monaten hinweg SRB, welche von Schwammzellen konsumiert zeigten die Fähigkeit dieses Schwammes, sich werden können. In der Gegenwart von aus einem beliebigen Gewebestück zu Sauerstoff wird der Schwefelkreislauf im regenerieren. Schwammgewebe durch Oxidation von Sulfid Bakterienzählungen mit FISH an zu Sulfat vervollständigt. Die Beteiligung von Gewebeschnitten ergaben 2,23*1010 SRB cm- sulfidoxidierenden Bakterien an diesem Schritt 3. Das sind 7,6% der gesamten ist sehr wahrscheinlich. Schwammbakterien. Die Zusammensetzung Meine Ergebnisse weisen auf die Bedeutung der SRB-Gemeinschaft in G. barretti anaerober Prozesse in der interzellulären unterschied sich von der in marinen Matrix von G. barretti hin, wobei den SRB Sedimenten. Die Gattung Desulfovibrio war am möglicherweise eine Schlüsselrolle für den zahlreichsten vertreten. Diese Gattung Metabolismus und die Ernährung des beinhaltet Sulfatreduzierer, die auf bestimmte Schwammes zukommt. Ob diese Symbiose ein Substrate spezialisiert sind und bevorzugt bei Relikt aus der frühen Entwicklungsgeschichte hohen Substratkonzentrationen wachsen. SRB der Tiere ist, bleibt spekulativ. Allerdings waren gleichmäßig im choanosomalen könnte dieses effiziente System des internen Gewebe verteilt, fehlten jedoch in und direkt Nährstoffrecyclings zwischen unterhalb der Cortex. Wiederholte Messungen Symbiosepartnern der Grund für das lange mit Sauerstoff-Mikroelektroden zeigten eine Überleben der Gattung Geodia und anderer gute Sauerstoffversorgung in Cortex und „Bakterienschwämme“ sein. subcorticalen Kammern eines aktiv pumpenden Schwammes. Im Choanosom nahm der Sauerstoff rapide ab, und war 4-6 mm unter der Oberfläche nicht mehr messbar. In nicht-pumpenden Individuen wurde diffusiver Sauerstoffverbrauch im überliegenden Wasser beobachtet. Sauerstoffprofile an kultivierten Fragmenten zeigten eine nahezu parabolische Form, was darauf hinweist, dass die Sauerstoffversorgung
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Bioactive Compounds from the Marine Sponge Geodia Barretti
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 32 Bioactive Compounds from the Marine Sponge Geodia barretti Characterization, Antifouling Activity and Molecular Targets MARTIN SJÖGREN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6192 UPPSALA ISBN 91-554-6534-X 2006 urn:nbn:se:uu:diva-6797 !" #$ % & " ' & & (" " )* & (" +, !" - .-", ./0' , #$, & " . ' , " 1 2 & ' 2 ! ' , 2 , #, 3 , , 4.5 %676$768, !" ' ' & , !- & " - ' " " & & " , !" ) 69)$6 6:6 6 " +6 ' ;+ <=> :%6" ) 69$6 6 " +6 ' ;+ - ' ' ? ,!" & " " ' & & ' < & ,% @ ) + 3,% @ ):%6" +, !" - & " " & " & ' , !" - & && 6 ', !" & " - , ,A )-=-+ - & & '" -B, !" " && & :%6" & " " ! ) / .-" & +, !" && - .( & -"" " & & - :%A - " ),A+ $A - " :%6" ),A+, * ! " & - :A - " ),A+ 3#A - " :%6" ),A+ - " " .( , * " 7 ' & 1 - " & " " , !- & " ' " && - " 1 && , . & " ' ' & " - " " " ' 1 9'; 1 )< ,7 @ +, !" && & 1 9'; 1 - " - , * ' & " & - & 6C! , & && 6C!#2 6C!# 6C!7 -" :%6" - " 6C!# & " )6C!66C!3+, "# $ Geodia barretti , s y m ' i " Balanus improvius a ' 56C! ! %& ' ! ' ( )*+' ' ,-*)./0 ' # E ./0' #$ 4..5 $6$%# 4.5 %676$768
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Functional Equivalence and Evolutionary Convergence In
    Functional equivalence and evolutionary convergence PNAS PLUS in complex communities of microbial sponge symbionts Lu Fana,b, David Reynoldsa,b, Michael Liua,b, Manuel Starkc,d, Staffan Kjelleberga,b,e, Nicole S. Websterf, and Torsten Thomasa,b,1 aSchool of Biotechnology and Biomolecular Sciences and bCentre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia; cInstitute of Molecular Life Sciences and dSwiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland; eSingapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Republic of Singapore; and fAustralian Institute of Marine Science, Townsville, Queensland 4810, Australia Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 21, 2012 (received for review February 24, 2012) Microorganisms often form symbiotic relationships with eukar- ties (11, 12). Symbionts also can be transmitted vertically through yotes, and the complexity of these relationships can range from reproductive cells and larvae, as has been demonstrated in those with one single dominant symbiont to associations with sponges (13, 14), insects (15), ascidians (16), bivalves (17), and hundreds of symbiont species. Microbial symbionts occupying various other animals (18). Vertical transmission generally leads equivalent niches in different eukaryotic hosts may share func- to microbial communities with limited variation in taxonomy and tional aspects, and convergent genome evolution has been function among host individuals. reported for simple symbiont systems in insects. However, for Niches with similar selections may exist in phylogenetically complex symbiont communities, it is largely unknown how prev- divergent hosts that lead comparable lifestyles or have similar alent functional equivalence is and whether equivalent functions physiological properties.
    [Show full text]
  • Diversity and Activity of Sulfate-Reducing Bacteria In
    Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors If we knew what we are doing, it would not be called research would it? Albert Einstien ii Diversity and Activity of Sulfate- reducing bacteria in Sulfidogenic Wastewater Treatment Reactors Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof. dr. ir. J. T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 19 oktober 2007 om 10.00 uur door Shabir Ahmad DAR Master in Science of Bioprocess Technology, Asian Institute of Technology (AIT), Thailand geboren te Srinagar, J&K, India iii Dit proefschrift is goedgekeurd door de promotor: Prof. dr. J. G. Kuenen Toegevoegd promotor Dr. G. Muyzer Samenstelling promotie commissie: Rector Magnificus Voorzitter Prof. dr. J.G. Kuenen Delft University of Technology, Promotor Dr. G. Muyzer Delft University of Technology, Toegevoegd promotor Prof. dr. F. Widdel Max-Planck-Institute for Marine Microbiology, Bremen, Germany Prof. dr. ir. M.C.M. van Loosdrecht Delft University of Technology Prof. dr. H.J. Laanbroek Utrecht University Prof. dr. ir.A.J.M. Stams Wageningen University Prof. dr. ir. P.N.L. Lens Wageningen University This study was carried out in the Environmental Biotechnology group of the Department of Biotechnology at Delft University of Technology, Delft, the Netherlands. This research was financially supported by The Netherlands Organization for Scientific Research – (NWO Earth
    [Show full text]
  • Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella Labyrinthus (Demospongiae: Verongiida)
    International Journal of Molecular Sciences Article Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida) Mario Schubert 1, Björn Binnewerg 1, Alona Voronkina 2 , Lyubov Muzychka 3, Marcin Wysokowski 4,5 , Iaroslav Petrenko 5, Valentine Kovalchuk 6, Mikhail Tsurkan 7 , Rajko Martinovic 8 , Nicole Bechmann 9 , Viatcheslav N. Ivanenko 10 , Andriy Fursov 5, Oleg B. Smolii 3, Jane Fromont 11 , Yvonne Joseph 5 , Stefan R. Bornstein 12,13, Marco Giovine 14, Dirk Erpenbeck 15 , Kaomei Guan 1,* and Hermann Ehrlich 5,* 1 Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany; [email protected] (M.S.); [email protected] (B.B.) 2 Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine; [email protected] 3 V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine; [email protected] (L.M.); [email protected] (O.B.S.) 4 Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; [email protected] 5 Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; [email protected] (I.P.); [email protected] (A.F.); [email protected] (Y.J.) 6 Department of Microbiology,
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • Comparing Deep-Sea Sponges of the Species Geodia Barretti from Different Locations in the North Atlantic
    Comparing deep-sea sponges of the species Geodia barretti from different locations in the North Atlantic Isabel Ordaz Németh The study of genetic and geographic structures of populations for poorly studied species is not exactly straightforward. It is difficult to accurately compare populations of a species from which no genetic data is available. So, is there a way of comparing populations of such as species? There is one possibility, which is by using genetic markers called “Exon-Primed Intron- Crossing” (EPIC) markers. These markers, which are first designed for well-studied species, find a specific piece of DNA that all individuals of a species have. So, by using the markers we can, for example, take the same DNA fragment from several individuals that come from different locations. Then we translate the DNA fragments of these individuals and look at how different they are. This can give us a lot of information about the relationships within and between the populations of a species, as well as its history. Since a lot of genetic information is conserved across different species, we can test these markers on a species that we barely know, and the probability of finding a corresponding DNA fragment can still be quite high. EPIC markers could be very useful for different studies but they haven’t been extensively used since they are relatively new. In this project, the markers were tested on samples of the deep-sea sponge Geodia barretti. The sponges that were used came from different locations; from the Mediterranean Sea, to the coast of Norway, and all the way to the other side of the Atlantic, by the Eastern coast of Canada.
    [Show full text]
  • 2020 Annual Report
    EMBRC: 2020 annual report Marine biodiversity is becoming an increasing concern with climate change and marine pollution, and, as a result, is of high relevance in the forthcoming UN Decade of the Ocean and Europe’s Green Deal. One of EMBRC’s principal activities is the provision of access to marine biodiversity, in all its forms. EMBRC Operators include some of the oldest marine institutes in the world and operate long-term observations, host biodiversity monitoring activities, and conduct research. In order to provide holistic information on biodiversity composition at these sites, EMBRC will establish EMO BON, a coordinated European Marine Omics Biodiversity Observation Network across its partners. This will constitute a new approach for EMBRC, and a step in a new direction, toward data generation and long-term observation. EMO BON presents an important need for the EMBRC user community and the opportunity to start filling the void in biological observation that we currently face in regard to physical and chemical observation. This is also an exciting opportunity to generate data for the marine microbiome studies currently in progress, and support Atlantic strategies, such as the Atlantic Ocean Research Alliance (AORA). Knowledge-based management of our blue planet is only possible by unified global monitoring using comparable data, which, in the case of biodiversity, cannot currently be assessed by remote sensing. In this context, EMBRC wishes to contribute to the global coordination of marine biodiversity by –omics approaches, integrating forthcoming technologies as appropriate. We aim to reach and interact with other relevant initiatives, offering the advantages of a sustainable RI that can support active research and underpin the development and optimisation of new methods.
    [Show full text]
  • Background Document for Deep-Sea Sponge Aggregations 2010
    Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research.
    [Show full text]
  • Exploring the Microbiome of the Mediterranean Sponge Aplysina Aerophoba by Single-Cell and Metagenomics
    Exploring the microbiome of the Mediterranean sponge Aplysina aerophoba by single-cell and metagenomics Untersuchungen am Mikrobiom des Mittelmeerschwamms Aplysina aerophoba mittels Einzelzell- und Metagenomik Doctoral thesis for a doctoral degree at the Graduate School of Life Sciences Julius-Maximilians-Universität Würzburg Section: Integrative Biology Submitted by Beate Magdalena Slaby from München Würzburg, March 2017 Submitted on: ……………………………………………………… Members of the Promotionskomitee Chairperson: Prof. Dr. Thomas Müller Primary Supervisor: Prof. Dr. Ute Hentschel Humeida Supervisor (Second): Prof. Dr. Thomas Dandekar Supervisor (Third): Prof. Dr. Frédéric Partensky Date of public defense: ……………………………………………………… Date of receipt of certificates: ……………………………………………………… ii Affidavit I hereby confirm that my thesis entitled ‘Exploring the microbiome of the Mediterranean sponge Aplysina aerophoba by single-cell and metagenomics’ is the result of my own work. I did not receive any help or support from commercial consultants. All sources and / or materials applied are listed and specified in the thesis. Furthermore, I confirm that this thesis has not yet been submitted as part of another examination process neither in identical nor in similar form. Place, Date Signature iii Acknowledgements I received financial support for this thesis project by a grant of the German Excellence Initiative to the Graduate School of Life Sciences of the University of Würzburg through a PhD fellowship, and from the SponGES project that has received funding from the European Union’s Horizon 2020 research and innovation program. I would like to thank: Dr. Ute Hentschel Humeida for her support and encouragement, and for providing so many extraordinary opportunities. Dr. Thomas Dandekar and Dr. Frédéric Partensky for the supervision and a number of very helpful discussions.
    [Show full text]
  • Revision of Rhabdastrella Distincta (Thiele, 1900)
    Revision of Rhabdastrella distincta (Thiele, 1900) A re-description of the holotype and description of two recently re-collected specimens Anne Twaalfhoven (10149996) Biology BSc Thesis, July 2016 University of Amsterdam: dr. P. (Peter) Roessingh, [email protected] Naturalis Biodiversity Center, Leiden: dr. N.J. (Nicole) de Voogd, [email protected] Abstract Sponge taxonomy is largely founded upon outdated descriptions originating from pre-modern times. Luckily, the material that these descriptions are based upon is often still available in Natural History Collections. In this article two sponge samples collected in 2009 from Ternate, Indonesia are compared to the type material of Rhabdastrella distincta. The holotype was described in 1896 by Thiele (1900). This article reviews the material for the first time ever since. The two recently collected samples are the first records of the species since its description. Descriptions of all three samples are based upon external morphology, skeletal structure, spicule measurements and spicule analysis by electron microscopy. It is revealed that, contrary to previous descriptions, the spherasters of R. distincta are stubbed with spines. Consequently, it is argued that the relation of R. distincta to its fellow species should be reconsidered. Euasters of R. distincta POR 5341 Twaalfhoven, July 2016, UvA Introduction When researching environmental change and biodiversity, Natural History Collections (NHC’s) can be of high value. Former taxonomists collected and described large collections of specimens that now serve as the foundation of our current knowledge on marine biodiversity (Jackson, 2001; Hooper & van Soest, 2002; Hoeksema et al, 2011). For reef systems, systematic ecological observations and methodological sampling started no earlier than the 1930’s (Jackson, 2001), and most recent surveys only encompass relatively short timespans (Jackson, 2001; van der Meij et al., 2010; Lister, 2011; Hoeksema et al., 2011).
    [Show full text]