Bioactive Compounds from the Marine Sponge Geodia Barretti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Equivalence and Evolutionary Convergence In
Functional equivalence and evolutionary convergence PNAS PLUS in complex communities of microbial sponge symbionts Lu Fana,b, David Reynoldsa,b, Michael Liua,b, Manuel Starkc,d, Staffan Kjelleberga,b,e, Nicole S. Websterf, and Torsten Thomasa,b,1 aSchool of Biotechnology and Biomolecular Sciences and bCentre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia; cInstitute of Molecular Life Sciences and dSwiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland; eSingapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Republic of Singapore; and fAustralian Institute of Marine Science, Townsville, Queensland 4810, Australia Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 21, 2012 (received for review February 24, 2012) Microorganisms often form symbiotic relationships with eukar- ties (11, 12). Symbionts also can be transmitted vertically through yotes, and the complexity of these relationships can range from reproductive cells and larvae, as has been demonstrated in those with one single dominant symbiont to associations with sponges (13, 14), insects (15), ascidians (16), bivalves (17), and hundreds of symbiont species. Microbial symbionts occupying various other animals (18). Vertical transmission generally leads equivalent niches in different eukaryotic hosts may share func- to microbial communities with limited variation in taxonomy and tional aspects, and convergent genome evolution has been function among host individuals. reported for simple symbiont systems in insects. However, for Niches with similar selections may exist in phylogenetically complex symbiont communities, it is largely unknown how prev- divergent hosts that lead comparable lifestyles or have similar alent functional equivalence is and whether equivalent functions physiological properties. -
De Novo Assembly and Genome Analyses of the Marine-Derived
De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, J. Philipp Benz, Jens Laurids Sorensen, Eric Record, Stefanie Poeggeler, Frank Kempken To cite this version: Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, et al.. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster. PLoS ONE, Public Library of Science, 2015, 10 (10), 10.1371/journal.pone.0140398. hal-01439026 HAL Id: hal-01439026 https://hal.archives-ouvertes.fr/hal-01439026 Submitted on 17 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain -
Comparing Deep-Sea Sponges of the Species Geodia Barretti from Different Locations in the North Atlantic
Comparing deep-sea sponges of the species Geodia barretti from different locations in the North Atlantic Isabel Ordaz Németh The study of genetic and geographic structures of populations for poorly studied species is not exactly straightforward. It is difficult to accurately compare populations of a species from which no genetic data is available. So, is there a way of comparing populations of such as species? There is one possibility, which is by using genetic markers called “Exon-Primed Intron- Crossing” (EPIC) markers. These markers, which are first designed for well-studied species, find a specific piece of DNA that all individuals of a species have. So, by using the markers we can, for example, take the same DNA fragment from several individuals that come from different locations. Then we translate the DNA fragments of these individuals and look at how different they are. This can give us a lot of information about the relationships within and between the populations of a species, as well as its history. Since a lot of genetic information is conserved across different species, we can test these markers on a species that we barely know, and the probability of finding a corresponding DNA fragment can still be quite high. EPIC markers could be very useful for different studies but they haven’t been extensively used since they are relatively new. In this project, the markers were tested on samples of the deep-sea sponge Geodia barretti. The sponges that were used came from different locations; from the Mediterranean Sea, to the coast of Norway, and all the way to the other side of the Atlantic, by the Eastern coast of Canada. -
Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria Lessoni
Mar. Drugs 2014, 12, 4439-4473; doi:10.3390/md12084439 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Structure Elucidation of Five Novel Isomeric Saponins from the Viscera of the Sea Cucumber Holothuria lessoni Yadollah Bahrami 1,2,3,4,*, Wei Zhang 1,2,3, Tim Chataway 5 and Chris Franco 1,2,3,* 1 Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] 2 Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042, Australia 3 Australian Seafood Cooperative Research Centre, Mark Oliphant Building, Science Park, Adelaide SA 5042, Australia 4 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran 5 Flinders Proteomics Facility, School of Medicine, Flinders University, Adelaide, SA 5042, Australia; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.B.); [email protected] (C.F.); Tel.: +61-872-218-563 (Y.B.); Fax: +61-872-218-555 (Y.B. & C.F.); Tel.: +61-872-218-554 (C.F.). Received: 5 June 2014; in revised form: 25 July 2014 / Accepted: 25 July 2014 / Published: 8 August 2014 Abstract: Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(9), 610-614
ISSN: 2320-5407 Int. J. Adv. Res. 5(9), 610-614 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/5367 DOI URL: http://dx.doi.org/10.21474/IJAR01/5367 RESEARCH ARTICLE MARINE BACTERIA AND FUNGI AS SOURCES FOR BIOACTIVE COMPOUNDS: PRESENT STATUS AND FUTURE TRENDS. Varuni K Gunathilake. Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Marine organisms undergo a vast range of chemical and physical conditions in the marine environment, thus a high diversity is reported Received: 09 July 2017 in the bioactive compounds they produce. With the development of Final Accepted: 11 August 2017 marine biotechnology, a considerable number of researches are focused Published: September 2017 on marine bacteria and fungi-derived bioactive compounds. As a result, Key words:- marine bacteria and fungi are ranked on the top of the hierarchy of all marine bacteria, marine fungi, bioactive organisms, as they are responsible for producing a wide range of compounds, marine pharmacognosy. bioactive secondary metabolites with potential pharmaceutical applications. Thus, they have the potential to provide future drugs against important diseases, such as cancer, a range of viral diseases, malaria, and inflammations. This review aims at describing some of the most highly cited reviews of the last decade on marine bacteria and fungi -derived bioactive compounds and the most promising substances extracted and isolated from these for pharmaceutical applications. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Bacteria and fungi have a major impact on the development of medical science since the discovery that they not only are the cause of infection but also produce organic compounds that can both cure infections and help treat a variety of non infectious diseases. -
Immunomodulatory Activity of the Marine Sponge, Haliclona (Soestella) Sp
Hindawi Journal of Immunology Research Volume 2020, Article ID 7281295, 11 pages https://doi.org/10.1155/2020/7281295 Research Article Immunomodulatory Activity of the Marine Sponge, Haliclona (Soestella) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar Albino Rats: Immunosuppression and Th1-Skewed Cytokine Response Varuni Gunathilake,1 Marco Bertolino,2 Giorgio Bavestrello,2 and Preethi Udagama 1 1Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka 2Dipartimento di Scienze della Terra, Dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy Correspondence should be addressed to Preethi Udagama; [email protected] Received 10 April 2020; Revised 10 July 2020; Accepted 16 July 2020; Published 16 November 2020 Guest Editor: Tomasz Baczek Copyright © 2020 Varuni Gunathilake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Natural secondary metabolites of sponges of the genus Haliclona are associated with an array of biological activity with therapeutic usage. We investigated the immunopharmacological properties of a presumably novel marine sponge species from Sri Lanka, Haliclona (Soestella) sp. Sponge material was collected from southern Sri Lanka by scuba diving. Sponge identification was based on spicule and skeleton morphology using light microscopy. -
Background Document for Deep-Sea Sponge Aggregations 2010
Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research. -
Sponge Grounds As Key Marine Habitats: a Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/300316780 Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns Chapter · April 2016 DOI: 10.1007/978-3-319-17001-5_24-1 CITATIONS READS 10 1,765 17 authors, including: Manuel Maldonado Ricardo Aguilar Spanish National Research Council Oceana 125 PUBLICATIONS 3,487 CITATIONS 57 PUBLICATIONS 354 CITATIONS SEE PROFILE SEE PROFILE Raymond John Bannister James Bell Institute of Marine Research in Norway Victoria University of Wellington 32 PUBLICATIONS 418 CITATIONS 202 PUBLICATIONS 3,091 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Atlantic sponges View project Transgenerational acclimation of sponges in a changing environment View project All content following this page was uploaded by Ellen L. Kenchington on 24 April 2018. The user has requested enhancement of the downloaded file. Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns Manuel Maldonado, Ricardo Aguilar, Raymond J. Bannister, James J. Bell, Kim W. Conway, Paul K. Dayton, Cristina Díaz, Julian Gutt, Michelle Kelly, Ellen L. R. Kenchington, Sally P. Leys, Shirley A. Pomponi, Hans Tore Rapp, Klaus Rutzler,€ Ole S. Tendal, Jean Vacelet, and Craig M. Young Contents 1 Introduction .................................................................................. 3 -
Ereskovsky Et 2018 Bulgarie.Pd
Sponge community of the western Black Sea shallow water caves: diversity and spatial distribution Alexander Ereskovsky, Oleg Kovtun, Konstantin Pronin, Apostol Apostolov, Dirk Erpenbeck, Viatcheslav Ivanenko To cite this version: Alexander Ereskovsky, Oleg Kovtun, Konstantin Pronin, Apostol Apostolov, Dirk Erpenbeck, et al.. Sponge community of the western Black Sea shallow water caves: diversity and spatial distribution. PeerJ, PeerJ, 2018, 6, pp.e4596. 10.7717/peerj.4596. hal-01789010 HAL Id: hal-01789010 https://hal.archives-ouvertes.fr/hal-01789010 Submitted on 14 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sponge community of the western Black Sea shallow water caves: diversity and spatial distribution Alexander Ereskovsky1,2, Oleg A. Kovtun3, Konstantin K. Pronin4, Apostol Apostolov5, Dirk Erpenbeck6 and Viatcheslav Ivanenko7 1 Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon Université, Marseille, France 2 Department of Embryology, Faculty of Biology, -
Preliminary Report on the Turtle Awareness and Protection Studies
MINISTRY OF ENVIRONMENT, HONDURAS ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTIVE STUDIES (TAPS) PROGRAM, PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC. (ProTECTOR) IN ROATAN, HONDURAS 2007 – 2008 ANNUAL REPORT JANUARY 15, 2009 ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTION STUDIES (TAPS) PROGRAM UNDER THE PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC (ProTECTOR) IN ROATÁN, HONDURAS ANNUAL REPORT OF THE 2007 – 2008 SEASON Principal Investigator: Stephen G. Dunbar1,2,4 Co-Principal Investigator: Lidia Salinas2,3 Co-Principal Investigator: Melissa D. Berube2,4 1President, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), 2569 Topanga Way, Colton, CA 92324, USA 2 Turtle Awareness and Protection Studies (TAPS) Program, Oak Ridge, Roatán, Honduras 3Country Coordinator, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), Tegucigalpa, Honduras 4Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA PREFACE This report represents the ongoing work of the Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR) in the Bay Islands of Honduras. The report covers activities of ProTECTOR up to and including the 2008 calendar year and is provided in partial fulfillment of the permit agreement provided to ProTECTOR from 2006 to the end of 2008 by the Secretariat for Agriculture and Ranching (SAG). ACKNOWLEDGEMENTS ProTECTOR and TAPS recognize that without the financial and logistical assistance of the “Escuela de Buceo Reef House,” this project would not have been initiated. We thank the owners and staff of that facility for their interest in sea turtle conservation and their invaluable efforts on behalf of the sea turtles of Honduras. -
Shifts in Archaeaplankton Community Structure Along Ecological Gradients of Pearl Estuary Jiwen Liu1, Shaolan Yu1, Meixun Zhao2, Biyan He3,4 & Xiao-Hua Zhang1
RESEARCH ARTICLE Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary Jiwen Liu1, Shaolan Yu1, Meixun Zhao2, Biyan He3,4 & Xiao-Hua Zhang1 1College of Marine Life Sciences, Ocean University of China, Qingdao, China; 2Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China; 3State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; and 4School of Bioengineering, Jimei University, Xiamen, China Downloaded from https://academic.oup.com/femsec/article/90/2/424/2680468 by guest on 01 October 2021 Correspondence: Xiao-Hua Zhang, College Abstract of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, The significance of archaea in regulating biogeochemical processes has led to China. Tel./fax: +86 532 82032767; an interest in their community compositions. Using 454 pyrosequencing, the e-mail: [email protected] present study examined the archaeal communities along a subtropical estuary, Pearl Estuary, China. Marine Group I Thaumarchaeota (MG-I) were predomi- Received 18 April 2014; revised 29 July nant in freshwater sites and one novel subgroup of MG-I, that is MG-Im, was 2014; accepted 31 July 2014. Final version proposed. In addition, the previously defined MG-Ia II was grouped into two published online 28 August 2014. clusters (MG-Ia II-1, II-2). MG-Ia II-1 and MG-Ik II were both freshwater- a k DOI: 10.1111/1574-6941.12404 specific, with MG-I II-1 being prevalent in the oxic water and MG-I II in the hypoxic water. Salinity, dissolved oxygen, nutrients and pH were the most Editor: Gary King important determinants that shaped the differential distribution of MG-I sub- groups along Pearl Estuary. -
Habitat Use and Diet of Juvenile Eastern Pacific Hawksbill Turtles (Eretmochelys Imbricata) in the North Pacific Coast of Costa Rica
Chelonian Conservation and Biology, 2013, 12(2): 235–245 g 2013 Chelonian Research Foundation Habitat Use and Diet of Juvenile Eastern Pacific Hawksbill Turtles (Eretmochelys imbricata) in the North Pacific Coast of Costa Rica 1, 2 3 JAVIER CARRIO´ N-CORTEZ *, CARLOS CANALES-CERRO ,RANDALL ARAUZ , 1 AND RAFAEL RIOSMENA-RODRI´GUEZ 1Programa de Investigacio´n en Bota´nica Marina, Departamento de Biologı´a Marina, Universidad Auto´noma de Baja California Sur, La Paz B.C.S. 23080, Me´xico [[email protected]]; 2Departamento de Biologı´a Marina, Facultad de Ecologı´a y Recursos Naturales, Universidad Andres Bello. Repu´blica 440, Santiago de Chile, Chile [[email protected]]; 3Asociacio´n Programa Restauracio´n de Tortugas Marinas, Tiba´s, San Jose´, Costa Rica [[email protected]] *Present address of corresponding author: Fundacio´n Charles Darwin, Departamento de Biologı´a Marina, Puerto Ayora, Santa Cruz, Gala´pagos [[email protected]] ABSTRACT. – The hawksbill turtle (Eretmochelys imbricata) is critically endangered throughout its global range and is particularly threatened in the eastern Pacific, a region where our knowledge of the ecological traits is very limited. Understanding habitat preferences of hawksbills at different life stages is necessary to create effective local and regional conservation strategies. We studied habitat use and the diet of juvenile hawksbill sea turtles at Punta Coyote, a rocky reef located along the Nicoya Peninsula on the north Pacific coast of Costa Rica, along the northern boundary of the Caletas–Arı´o National Wildlife Refuge. We tracked 12 juvenile hawksbills (36–69-cm curved carapace length) with acoustic transmitters to study their habitat use.