UC Davis UC Davis Previously Published Works

Total Page:16

File Type:pdf, Size:1020Kb

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title Quantification of Water-Soluble Metabolites in Medicinal Mushrooms Using Proton NMR Spectroscopy. Permalink https://escholarship.org/uc/item/29n078nc Journal International journal of medicinal mushrooms, 18(5) ISSN 1521-9437 Authors Lo, Yu-Chang Chien, Shih-Chang Mishchuk, Darya O et al. Publication Date 2016 DOI 10.1615/intjmedmushrooms.v18.i5.50 Peer reviewed eScholarship.org Powered by the California Digital Library University of California International Journal of Medicinal Mushrooms, 18(5): 413–424 (2016) Quantification of Water-Soluble Metabolites in Medicinal Mushrooms Using Proton NMR Spectroscopy Yu-Chang Lo,1,2,3 Shih-Chang Chien,4 Darya O. Mishchuk,5 Carolyn M. Slupsky,5,6,* & Jeng-Leun Mau1,2,3,* 1Department of Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung, Taiwan, R.O.C.; 2NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, Taiwan, R.O.C.; 3Agricultural Biotechnology Center, NCHU, Taichung, Taiwan, R.O.C.; 4The Experimental Forest Management Office, NCHU, Taichung, Taiwan, R.O.C.; 5Department of Food Science and Technology, University of California, Davis, California; 6Department of Nutrition, University of California, Davis, California *Address all correspondence to: Jeng-Leun Mau, Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, R.O.C.; Tel.: +886-4-2285-4313; [email protected]; and Carolyn M. Slupsky, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616; Tel.: +1-530-752-6804, +1-530-219-575; cslupsky@ ucdavis.edu ABSTRACT: The water-soluble metabolites in 5 mushrooms were identified and quantified using proton nuclear magnetic resonance (NMR) spectroscopy and software for targeted metabolite detection and quantification. In total, 35 compounds were found in Agaricus brasiliensis, 25 in Taiwanofungus camphoratus, 23 in Ganoderma lucidum (Taiwan) and Lentinus edodes, and 16 in G. lucidum (China). Total amounts of all identified metabolites inA. brasilien- sis, T. camphoratus, G. lucidum, G. lucidum (China), and L. edodes were 149,950.51, 12,834.18, 9,549.09, 2,788.41, and 111,726.51 mg/kg dry weight, respectively. These metabolites were categorized into 4 groups: free amino acids and derivatives, carbohydrates, carboxylic acids, and nucleosides. Carbohydrates were the most abundant metabolites among all 4 groups, with mannitol having the highest concentration among all analyzed metabolites (848–94,104 mg/ kg dry weight). Principal components analysis (PCA) showed obvious distinction among the metabolites of the 5 dif- ferent kinds of mushrooms analyzed in this study. Thus PCA could provide an optional analytical way of identifying and recognizing the compositions of flavor products. Furthermore, the results of this study demonstrate that NMR- based metabolomics is a powerful tool for differentiating between various medicinal mushrooms. KEY WORDS: medicinal mushrooms, NMR, principal component analysis, water-soluble metabolite ABBREVIATIONS: DW, dry weight; GABA, 4-aminobutyric acid (γ-aminobutyric acid); HPLC, high-performance liquid chromatography; NMR, nuclear magnetic resonance; PCA, principal component analysis I. INTRODUCTION treat disease are species such as Ganoderma lucidum, Agaricus brasiliensis, Taiwanofungus camphoratus, Mushrooms have been consumed as food and food and Lentinus edodes. flavorings because of their unique and subtle flavors. The lingzhi or reishi medicinal mushroom, G. Mushroom flavor derives primarily from nonvolatile lucidum (Curtis: Fr.) P. Karst. (Ganodermataceae, components such as amino acids and nucleotides.1 Agaricomycetes), has long been used in traditional Mushrooms have been reported to be low in calories Chinese medicine as an anti-inflammatory, antitumor, and fat but rich in proteins, polysaccharides, and vita- antiviral, antibacterial, and antiparasitic agent, as well mins, and they exhibit abilities to lower the level of as in blood pressure regulation, cardiovascular dis- cholesterol in humans.2,3 Moreover, some mushroom orders, kidney toxicity, hepatotoxicity, and chronic species have also shown certain medicinal effects and bronchitis. It has also been suggested for use as a are widely used to alleviate the symptoms of cer- protective nerve tonic.5 tain diseases such as diabetes, hypercholesterolemia, A. brasiliensis S. Wasser et al. (=A. blazei and cancer.4 Among the mushrooms typically used to Murrill s. Henem., Agaricaceae, Agaricomycetes) is 1521-9437/16/$35.00 © 2016 Begell House, Inc. www.begellhouse.com 413 414 Lo et al. reportedly used as a healthy food for the prevention accomplished by combining NMR spectroscopy of cancer, diabetes, hyperlipidemia, arteriosclerosis, with metabolite identification and quantification and chronic hepatitis.6 It has also been traditionally in NMR spectra using a technique called “targeted used in food because of its unique flavor. Research profiling.”16 in vitro and in vivo showed that A. brasiliensis has The Chenomx NMR Suite is a commercial the ability to stimulate the body’s immune system metabolomics software package that uses targeted and show positive clinical results in colorectal and profiling and contains standard spectral libraries/ gynecological cancers.7,8 databases that include hundreds of metabolites.16 T. camphoratus (M. Zang & G.H. Su) Sheng Targeted profiling is based on a combination of H. Wu et al. (=Antrodia cinnamomea, Polyporales, mathematical modeling and a database of NMR Basidiomycetes) is a traditional medicinal mushroom spectral signatures of individual metabolites.17 NMR in Taiwan and is found only in the high mountainous spectroscopy is an efficient technology for metabo- regions of Taiwan, with Cinnamomum kanehirai as lomics because it is not destructive, does not rely on its single host. This fungus grows inside the hol- separating mixtures before analysis, and can concur- low trunk of the tree, where it is dark and humid. rently identify hundreds of metabolites in samples.16 The fruiting body is difficult to culture successfully, Once metabolites in biological samples are even in a well-controlled environment. Such unique identified and quantified, the information can be growth conditions not only enable this medicinal analyzed further using different methods of mul- mushroom to generate important compounds that tivariate analysis, including principal component are difficult to replicate in the laboratory, but they analysis (PCA). PCA is an unsupervised statisti- also make it one of the most expensive medicinal cal analysis technique that is used to find sets of fungi in the world. Extracts from this fungus have correlated variables that can describe differences been found to exhibit various anticancer activities, between data sets.17 In this study a combination of and its active components, such as triterpenoids and 1H NMR spectroscopy and PCA was used to iden- polysaccharides, have shown potent cytotoxicity tify the metabolites that differentiate A. brasiliensis, against cancer cells.9 In addition, T. camphoratus L. edodes, T. camphoratus, and G. lucidum from 2 has been used as a remedy for drug intoxication, different locations (one grown in Taiwan and other diarrhea, abdominal pain, hypertension, itchy skin, obtained in China). and liver cancer.10 The shiitake mushroom, L. edodes (Berk.) II. MATERIALS AND METHODS Singer (=Lentinula edodes, Marasmiaceae, Agarico- mycetes), is a traditional delicacy in Asia and can A. Samples and Preparation be ground to powder form and used as a flavoring to enhance the taste of foods and increase a product’s Four different species of mushrooms, includ- appeal.11 ing A. brasiliensis, T. camphoratus, G. lucidum, Nuclear magnetic resonance (NMR)–based and G. lucidum (China), were obtained from the metabolomics is a modern and effective analytical Biotechnology Center, Grape King Inc., Chungli technique used to identify and quantify components City, Taiwan; L. edodes was purchased from Q-Yo in different biological fluids and in extracts from Bio-Technology Farm, Pusin, Chunghua, Taiwan. tissues, including plants and mushrooms. NMR was All 5 mushrooms were obtained in the dried form discovered in 1938 by Isidor Rabi. Since then, NMR and randomly divided into 3 samples (~50 g each), spectroscopy has become a widely used analytical ground to powder, and stored in desiccators before technique.12 One important application of NMR- use. The moisture content of the freeze-dried based metabolomics is in identifying biomarkers samples was measured using an MF-50 Infrared of disease in human body fluids such as urine and Moisture Analyzer (A&D Co., Tokyo, Japan). serum.13–15 This complicated task can be effectively Each sample powder (1 g) was mixed with 10 mL International Journal of Medicinal Mushrooms Quantification of Metabolites in Medicinal Mushrooms Using Proton NMR Spectroscopy 415 ultrapure (type I) water obtained from a Synergy C. Statistical Analysis UV system (Millipore, Billerica, MA); they were preheated to 80°C, vortexed for 15 minutes, The metabolite concentrations were expressed as and centrifuged using a model 5810 centrifuge the mean ± standard error of 3 triplicate extraction/ (Eppendorf, Hauppauge, NY) at 2000 × g for 15 analyses and subjected to an analysis of variance for minutes. The collected supernatant was lyophi- a completely random design using a SAS version lized using a FreeZone 4.5-L Benchtop Freeze Dry 9.4 (SAS
Recommended publications
  • From Taiwanofungus Camphoratus
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 750230, 13 pages doi:10.1155/2011/750230 Research Article Apoptotic Cell Death and Inhibition of Wnt/β-Catenin Signaling Pathway in Human Colon Cancer Cells by an Active Fraction (HS7) from Taiwanofungus camphoratus Chi-Tai Yeh,1, 2, 3 Chih-Jung Yao,2, 4 Jiann-Long Yan,5 Shuang-En Chuang,5 Liang-Ming Lee,4 Chien-Ming Chen,1 Chuan-Feng Yeh,5 Chi-Han Li,5 and Gi-Ming Lai1, 2, 4, 5 1 Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan 2 Center of Excellence for Cancer Research, Taipei Medical University, Taipei 110, Taiwan 3 Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan 4 Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan 5 National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan Correspondence should be addressed to Gi-Ming Lai, [email protected] Received 27 September 2010; Revised 6 January 2011; Accepted 11 January 2011 Copyright © 2011 Chi-Tai Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aberrant activation of Wnt/β-catenin signaling plays an important role in the development of colon cancer. HS7 is an active fraction extracted from Taiwanofungus camphoratus, which had been widely used as complementary medicine for Taiwan cancer patients in the past decades. In this study, we demonstrated the effects of HS7 on the growth inhibition, apoptosis induction, and Wnt/β-catenin signaling suppression in human colon cancer cells.
    [Show full text]
  • Cultural Characterization and Chlamydospore Function of the Ganodermataceae Present in the Eastern United States
    Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: https://www.tandfonline.com/loi/umyc20 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith To cite this article: Andrew L. Loyd, Eric R. Linder, Matthew E. Smith, Robert A. Blanchette & Jason A. Smith (2019): Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States, Mycologia To link to this article: https://doi.org/10.1080/00275514.2018.1543509 View supplementary material Published online: 24 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1543509 Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States Andrew L. Loyd a, Eric R. Lindera, Matthew E. Smith b, Robert A. Blanchettec, and Jason A. Smitha aSchool of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611; bDepartment of Plant Pathology, University of Florida, Gainesville, Florida 32611; cDepartment of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 ABSTRACT ARTICLE HISTORY The cultural characteristics of fungi can provide useful information for studying the biology and Received 7 Feburary 2018 ecology of a group of closely related species, but these features are often overlooked in the order Accepted 30 October 2018 Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of KEYWORDS cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management Chlamydospores; tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Antioxidant Properties of Antrodia Cinnamomea: an Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan
    Antioxidant Properties of Antrodia cinnamomea: An Extremely Rare 6 and Coveted Medicinal Mushroom Endemic to Taiwan K.J. Senthil Kumar and Sheng-Yang Wang Abstract Antrodia cinnamomea is an extremely rare and endemic fungal species native to forested regions of Taiwan. In modern Taiwanese culture, A. cinnamomea is believed to be a valuable gift from the heaven. Thereby, it is claimed as the “National Treasure of Taiwan” and “Ruby” among mushrooms.” Traditionally, A. cinnamomea was used to prepare Chinese medicine for treating various illness including liver diseases, food and drug intoxication, diarrhea, abdominal pain, hypertension, itchy skin, and tumorigenic diseases. Recent scientific studies strongly support that the pharmacological activities of A. cinnamomea go far beyond the original usage, as A. cinnamomea has exhibited various pharmaco- logical properties including anticancer, antioxidant, hepatoprotection, antihyper- tensive, antihyperlipidemic, immunomodulatory, and anti-inflammatory properties. Till date, more than 400 scientific reports have been published on the therapeutic potential of A. cinnamomea, or its closely related species Antrodia salmonea, and their compounds. In the present review, the taxonomic description of A. cinnamomea, ethnomedical value, chemical constituents, and pharmaco- logical effects particularly antioxidant and Nrf2-mediated cytoprotective effects will be discussed. Keywords Antioxidant • Antrodia cinnamomea • Antrodia salmonea • Cytoprotection • Medicinal fungus • Nrf2 K.J.S. Kumar Department of Forestry, National Chung Hsing University, Taichung, Taiwan S-Y. Wang (*) Department of Forestry, National Chung Hsing University, Taichung, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan e-mail: [email protected] © Springer Nature Singapore Pte Ltd. 2017 135 D.C. Agrawal et al. (eds.), Medicinal Plants and Fungi: Recent Advances in Research and Development, Medicinal and Aromatic Plants of the World 4, https://doi.org/10.1007/978-981-10-5978-0_6 136 K.J.S.
    [Show full text]
  • A New Record of Ganoderma Tropicum (Basidiomycota, Polyporales) for Thailand and First Assessment of Optimum Conditions for Mycelia Production
    A peer-reviewed open-access journal MycoKeys 51:A new65–83 record (2019) of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand... 65 doi: 10.3897/mycokeys.51.33513 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production Thatsanee Luangharn1,2,3,4, Samantha C. Karunarathna1,3,4, Peter E. Mortimer1,4, Kevin D. Hyde3,5, Naritsada Thongklang5, Jianchu Xu1,3,4 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2 University of Chinese Academy of Sciences, Bei- jing 100049, China 3 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, Yunnan, China 4 Centre for Mountain Ecosystem Studies (CMES), Kunming Institute of Botany, Kunming 650201, Yunnan, China 5 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Corresponding author: Jianchu Xu ([email protected]); Peter E. Mortimer ([email protected]) Academic editor: María P. Martín | Received 30 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 Citation: Luangharn T, Karunarathna SC, Mortimer PE, Hyde KD, Thongklang N, Xu J (2019) A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 51: 65–83. https://doi.org/10.3897/mycokeys.51.33513 Abstract In this study a new record of Ganoderma tropicum is described as from Chiang Rai Province, Thailand. The fruiting body was collected on the base of a livingDipterocarpus tree.
    [Show full text]
  • Current Bioactive Compounds 2017, 13, 28-40
    Send Orders for Reprints to [email protected] 28 Current Bioactive Compounds 2017, 13, 28-40 RESEARCH ARTICLE ISSN: 1573-4072 eISSN: 1875-6646 Ganoderma lucidum (Ling-zhi): The Impact of Chemistry on Biological Activity in Cancer Temitope O. Lawal1, Sheila M. Wicks2 and Gail B. Mahady3,* 1Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, Chicago, IL 60612, USA and Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria; 2Department of Clinical Anatomy, City Colleges of Chicago and Rush University, Chicago, IL 60612, USA; 3Department of Phar- macy Practice, Clinical Pharmacognosy Laboratories, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA Abstract: Background: Ganoderma (Ganodermataceae), a genus of medicinal mushrooms, has been employed as an herbal medicine in Traditional Chinese medicine (TCM) for over 2000 years. The fruiting bodies have been used historically in TCM, while the mycelia, and spores are now also used as a tonic, to stimulate the immune system and treat many diseases, including cancers. Objective: To review the anti-cancer research on G. lucidum (GL) from 2005 up to May 2016 and corre- late these data with analysis of the active chemical constituents. Methods: Literature searches were performed from 2005 to May 2016 in various databases such as Pub- A R T I C L E H I S T O R Y Med, SciFinder, Napralert, and Google Scholar for peer-reviewed research literature pertaining to Gano- Received: January 23, 2016 Revised: June 2, 2016 derma lucidum and cancer. Accepted: June 9, 2016 Results: Of the >200 known Ganoderma species, only two species, G.
    [Show full text]
  • Antibacterial Activity, Optimal Culture Conditions and Cultivation of the Medicinal Ganoderma Australe, New to Thailand
    1108 Mycosphere 8(8): 1108–1123 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/11 Copyright © Guizhou Academy of Agricultural Sciences Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand Luangharn T1,2, Karunarathna SC1,2, Khan S1,2, Xu JC1,2*, Mortimer PE1,2 and Hyde KD1,2,3,4,5 1 Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China. 2 World Agroforestry Centre, China & East-Asia Office, 132 Lanhei Road, Kunming 650201, China.3 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. 4 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. 5 Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand. Luangharn T, Karunarathna SC, Khan S, Xu JC, Mortimer PE, Hyde KD 2017 – Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand. Mycosphere 8(8), 1108–1123, Doi 10.5943/mycosphere/8/8/11 Abstract Ganoderma is a well-known genus of medicinal mushrooms that belongs to the order Polyporales. Many members of this genus are extensively used in traditional Asian medicines. Herein we report a new strain of Ganoderma australe collected in Thailand and identified using macro- and micro-morphological characteristics as well as phylogenetic analysis. The optimal conditions for mycelia growth were 25–30 ºC at pH 7–8, while sorghum and barley were found to be the best grain media for spawn production.
    [Show full text]
  • Four Species of Polyporoid Fungi Newly Recorded from Taiwan
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2018 January–March 2018—Volume 133, pp. 45–54 https://doi.org/10.5248/133.45 Four species of polyporoid fungi newly recorded from Taiwan Che-Chih Chen1, Sheng-Hua Wu1,2*, Chi-Yu Chen1 1 Department of Plant Pathology, National Chung Hsing University, Taichung 40227 Taiwan 2 Department of Biology, National Museum of Natural Science, Taichung 40419 Taiwan * Correspondence to: [email protected] Abstract —Four wood-rotting polypores are reported from Taiwan for the first time: Ceriporiopsis pseudogilvescens, Megasporia major, Phlebiopsis castanea, and Trametes maxima. ITS (internal transcribed spacer) sequences were obtained from each specimen to confirm the determinations. Key words—aphyllophoroid fungi, fungal biodiversity, DNA barcoding, fungal cultures, ITS rDNA Introduction Polypores are a large group of Basidiomycota with poroid hymenophores on the underside of fruiting bodies, which may be pileate, resupinate, or effused-reflexed, and with textures that are typically corky, leathery, tough, or even woody hard (Härkönen & al. 2015). Formerly, polypores were treated mostly in Polyporaceae Corda s.l. (under Polyporales) and Hymenochaetaceae Imazeki & Toki s.l. (under Hymenochaetales), with some species in Corticiaceae Herter s.l. (Gilbertson & Ryvarden 1986, 1987; Ryvarden & Melo 2014). However, modern DNA-based phylogenetic studies distribute polyporoid genera across at least 12 orders of Agaricomycetes Doweld, e.g., Polyporales Gäum., Hymenochaetales Oberw., Russulales Kreisel ex P.M. Kirk & al., Agaricales Underw. (Hibbett & al. 2007, Zhao & al. 2015). 46 ... Chen & al. Most polypores are wood-rotters that decompose the cellulose, hemicellulose, or lignin of woody biomass in forests; these fungi are either saprobes on trees, stumps, and fallen branches or parasites on living tree trunks or roots and therefore play a crucial role in nutrient recycling for the earth (Härkönen & al.
    [Show full text]
  • Manaus, BRAZIL Macrofungi of the Adolpho Ducke Botanical Garden
    Manaus, BRAZIL Macrofungi of the Adolpho Ducke Botanical Garden 1 Douglas de Moraes Couceiro, Kely da Silva Cruz, Maria Aparecida da Silva & Maria Aparecida de Jesus Instituto Nacional de Pesquisas da Amazônia, Coordenação de Tecnologia e Inovação, Manaus - AM Photos by Douglas de Moraes Couceiro, Kely da Silva Cruz, Maria Aparecida da Silva, and Maria Aparecida de Jesus, except where indicated. Produced by: Douglas de Moraes Couceiro with support from the Laboratory of Wood Pathology. Abbreviations: Ascomycota (A), Basidiomycota (B), Pileus (P), Hymenophore (H) © Douglas Couceiro [[email protected]] [fieldguides.fieldmuseum.org] [929] version 1 9/2017 1 Auricularia delicata 2 Camillea leprieurii 3 Camillea leprieurii 4 Caripia montagnei Auriculariales, Auriculariaceae (B) Xylariales, Xylariaceae (A) Xylariales, Xylariaceae (A) Agaricales, Omphalotaceae (B) 5 Clavaria zollingeri 6 Cookeina tricholoma 7 Crepidotus cf. variabilis 8 Dacryopinax spathularia Agaricales, Clavariaceae (B) Pezizales, Sarcoscyphaceae (A) Agaricales, Inocybaceae (B) Dacrymycetales, Dacrymycetaceae (B) 9 Daldinia concentrica 10 Favolus tenuiculus 11 Favolus tenuiculus 12 Flabellophora obovata Xylariales, Xylariaceae (A) Polyporales, Polyporaceae (B, P) Polyporales, Polyporaceae (B, H) Polyporales, Polyporaceae (B) 13 Flavodon flavus 14 Fomes fasciatus 15 Fomes fasciatus 16 Ganoderma applanatum Polyporales, Meruliaceae (B, H) Polyporales, Polyporaceae (B, P) Polyporales, Polyporaceae (B, H) Polyporales, Ganodermataceae (B, P) 17 Ganoderma applanatum 18 Geastrum
    [Show full text]
  • Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma Lucidum Species Complex Article
    Mycosphere 6 (5): 542–559(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/5/4 Mycosphere Essays 1: Taxonomic Confusion in the Ganoderma lucidum Species Complex Hapuarachchi KK 1, 2, 3, Wen TC1, Deng CY5, Kang JC1 and Hyde KD2, 3, 4 1The Engineering and Research Center of Southwest Bio–Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China 2Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3Center of Excellence in Fungal Research, and 4School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Guizhou Academy of Sciences, Guiyang, 550009, Guizhou Province, China Hapuarachchi KK, Wen TC, Deng CY, Kang JC, Hyde KD – Mycosphere Essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6(5), 542–559, Doi 10.5943/mycosphere/6/5/4 Abstract The genus Ganoderma (Ganodermataceae) has been widely used as traditional medicines for centuries in Asia, especially in China, Korea and Japan. Its species are widely researched, because of their highly prized medicinal value, since they contain many chemical constituents with potential nutritional and therapeutic values. Ganoderma lucidum (Lingzhi) is one of the most sought after species within the genus, since it is believed to have considerable therapeutic properties. In the G. lucidum species complex, there is much taxonomic confusion concerning the status of species, whose identification and circumscriptions are unclear because of their wide spectrum of morphological variability. In this paper we provide a history of the development of the taxonomic status of the G.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Taiwanofungus Camphoratus Un Hongo Medicinal Endémico De Taiwán
    TAIWANOFUNGUS CAMPHORATUS UN HONGO MEDICINAL ENDÉMICO DE TAIWÁN C. ILLANA-ESTEBAN Dpto. Ciencias de la Vida (Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid. [email protected] Summary. ILLANA-ESTEBAN, C. (2014). Taiwanofungus camphoratus a medicinal endemic mushroom of Taiwan. Bol. Soc. Micol. Madrid 38: 215-221. Taiwanofungus camphoratus is a polyporaceous fungus and has been used in Taiwan traditionally due to its medical properties. A review of previously published literature about this fungus is made, dealing with its ethnomycological, nutritional, pharmacological and medical aspects. Key words: niu-chang-chih, medicinal fungi, Polyporaceae. Resumen. ILLANA-ESTEBAN, C. (2014). Taiwanofungus camphoratus un hongo medicinal endémico de Taiwán. Bol. Soc. Micol. Madrid 38: 215-221. Taiwanofungus camphoratus es un hongo poliporáceo usado en Taiwán tradicionalmente por sus propiedades medicinales. Se hace una revisión de lo publicado con anterioridad sobre este hongo en la literatura, en relación a aspectos etnomicológicos, nutricionales, farmacológicos y médicos. Palabras clave: hongos medicinales, niu-chang-chih, Polyporaceae. INTRODUCCIÓN gástricas, tumorales y para controlar la hiperten- sión) y para aliviar las consecuencias del cansan- Taiwanofungus camphoratus es un hongo pa- cio o el consumo de alcohol. Es conocido cómo rásito que crece en la cavidad interna del árbol niu-chang-chih ó niu zhang zhi (niu-chang es Cinnamomum kanehirae Hayata, pertenecien- el nombre chino de Cinnamomum kanehirae y te a la familia Laureaceae. C. kanehirae es un chih hace referencia a su parecido con los basi- árbol endémico de la isla de Taiwán que vive diocarpos del hongo Ganoderma). La población entre los 450-2000 m en las sierras de Taoyuan, taiwanesa también le menciona popularmente Miaoli, Nantou, Kaohsiung, Hualien y Taitung.
    [Show full text]