Vaccines-Milestone November 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Values, Justifications, and Perspectives Connected to the Anti-Vaccination Movement Gigi Garzio [email protected]
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sound Ideas University of Puget Sound Sound Ideas Summer Research Summer 2018 Values, Justifications, and Perspectives Connected to the Anti-Vaccination Movement Gigi Garzio [email protected] Follow this and additional works at: https://soundideas.pugetsound.edu/summer_research Part of the Anthropology Commons, and the Medicine and Health Commons Recommended Citation Garzio, Gigi, "Values, Justifications, and Perspectives Connected to the Anti-Vaccination Movement" (2018). Summer Research. 309. https://soundideas.pugetsound.edu/summer_research/309 This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. Introduction Throughout the 18th and 19th centuries, when the first smallpox outbreak began and the first vaccine was introduced, there has been vaccine skepticism (Offit, 2015). Smallpox outbreaks, and the fatalities that come with it, continued to spread around the world despite the development of the vaccine. However, between the 1940s and the early 1970s, anti-vaccine sentiment declined due to “three trends: a boom in vaccine science, discovery, and manufacture; public awareness of widespread outbreaks of infectious diseases (measles, mumps, rubella, pertussis, polio, and others) and the desire to protect children from these highly prevalent ills; and a baby boom, accompanied by increasing levels of education and wealth” (Poland et al, 2011). These factors led to general public acceptance of vaccines, which resulted in significant decreases in disease outbreaks. However, with less visible outbreaks of disease and more vaccines being added to the childhood vaccination schedule, the presence of the anti-vaccination movement returned in the 1970s (Wolfe, 2002). -
Vaccines and Autism: What You Should Know | Vaccine Education
Q A Vaccines and Autism: What you should know Volume& 1 Summer 2008 Some parents of children with autism are concerned that vaccines are the cause. Their concerns center on three areas: the combination measles-mumps-rubella (MMR) vaccine; thimerosal, a mercury-containing preservative previously contained in several vaccines; and the notion that babies receive too many vaccines too soon. Q. What are the symptoms of autism? Q. Does the MMR vaccine cause autism? A. Symptoms of autism, which typically appear during the A. No. In 1998, a British researcher named Andrew Wakefi eld fi rst few years of life, include diffi culties with behavior, social raised the notion that the MMR vaccine might cause autism. skills and communication. Specifi cally, children with autism In the medical journal The Lancet, he reported the stories of may have diffi culty interacting socially with parents, siblings eight children who developed autism and intestinal problems and other people; have diffi culty with transitions and need soon after receiving the MMR vaccine. To determine whether routine; engage in repetitive behaviors such as hand fl apping Wakefi eld’s suspicion was correct, researchers performed or rocking; display a preoccupation with activities or toys; a series of studies comparing hundreds of thousands of and suffer a heightened sensitivity to noise and sounds. children who had received the MMR vaccine with hundreds Autism spectrum disorders vary in the type and severity of of thousands who had never received the vaccine. They found the symptoms they cause, so two children with autism may that the risk of autism was the same in both groups. -
Science Reporting Syllabus: Covering the Environment, Technology and Medicine
1 Science reporting syllabus: Covering the environment, technology and medicine Science reporting is in a moment of extreme transition: Popular science writing is experiencing a renaissance at precisely the moment that traditional media outlets are jettisoning specialized reporters. This creates tremendous opportunity and tremendous challenges. This course makes sure students are prepared to meet those challenges. Course objective This course is designed to acquaint reporters with all aspects of science reporting and writing. It will train participants to view new breakthroughs and discoveries with skepticism and will give students a working knowledge of many of the main areas of science coverage, including the environment, artificial intelligence, and human interaction with technology. There will be lessons on social media, online writing, news and feature writing, and writing long-form narratives. Learning objectives The syllabus is designed to strengthen students’ core competencies in several areas: Determining what sources and outlets can be trusted to discuss controversial or unproven claims. Learning which questions will elicit meaningful responses. Understanding that choosing not to cover a story can be just as important an editorial decision as deciding how to cover it. Evaluating what type of form a journalist is most comfortable with and seeking out ways to work in that form. Course design This course will focus on developing toolkits for evaluating science stories in addition to learning about some specific issues or controversies. It is designed as a workshop course for between 10 and 15 students. An integral part of the course is analyzing and critiquing other students’ work. Readings Required books Deborah Blum, Mary Knudson and Robin Marantz Henig, editors, A Field Guide for Science Writers, 2005. -
Information and Communication Guide on Vaccines
Module 2 EUROPEAN NURSE Information and Communication Guide ON VACCINES The European Specialist Nurses Organisation (ESNO) is a non-profit organisation with the goal to facilitate and provide an effective framework for communication and co-operation between the European Specialist Nurses Organisations and its constituent members. ESNO represents the mutual interests and benefits of these organisations to the wider European community in the interest of the public health. Members of ESNO consist of individual European specialist nurses member organizations and associates, both institutional and individual. The organisation focusses on enhancing the capacity and capability of specialists nurses to deliver hight quality healthcare by raising and harmonise specialist nursing education standards and actively contribute to health themes and threats, providing the best possible expertise, both national and in European cross border context. A publication from the European Specialist Nurses Organisation April 2021 - www.esno.org Copyright: ©2021 European Specialist Nurses Organisation. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. CONTENTS Vaccination 1 Introduction 5 2 Principles of vaccination 6 2.1 Principle -
NIH FOIA Log - FY 2017
NIH FOIA Log - FY 2017 Date Request Id Organization Name City State Records Requested Received 45612 LSU Health - Shreveport Shreveport Louisiana Copies of 3 NIDDK grants. 10/3/2016 Records relating to the use of the investigational drug Fostriecin in a human clinical trial sponsored by the NCI's Cancer Therapy Evaluation 45614 Individual Lakeway Texas Program. 10/3/2016 Site visit reports for UTMB (3/1/15- present); Battelle-Ohio (10/1/15- present); and Alpha Genesis-SC 45615 SAEN Milford Ohio (4/1/14-present). 10/3/2016 A copy of NCI grant 1R43CA135915- 45616 UCLA School of Engineering Los Angeles California 01. 10/4/2016 Washington University School of A copy of NIAID grant 45617 Medicine St. Louis Missouri K22AI052407. 10/4/2016 Washington University School of A copy of NHLBI grant 45618 Medicine St. Louis Missouri R01HL081398. 10/4/2016 Grant application and summary Washington University School of statement for NIDDK grant 45619 Medicine St. Louis Missouri K01DK077878. 10/4/2016 Data pertaining to all NIH purchases of the Victor model plate reader (model Victor 1, 2, 3 and Victor X) 45620 IMGEN Technologies Alexandria Virginia from Perkin Elmer from 1999-2012. 10/3/2016 Copy of NEI grant R21EY026438- 45621 Tufts Medical Center Brookline Massachusetts 01. 10/5/2016 A copy of all emails to and from two NIH employees from May 25, 2016 to June 25, 2016 regarding the NTP 45622 Individual Greenbelt Maryland radiofrequency study. 10/5/2016 Date Request Id Organization Name City State Records Requested Received Copies of the RCDC Thesaurus from 45623 Catenion Berlin Other 2010-2014. -
Vaccines 101 the Very Last Day That I Was a Pediatric Resident. Um, Many
Vaccines 101 The very last day that I was a pediatric resident. Um, many years ago, a toddler walked into the emergency room and uh, and progressively got sicker and sicker. That's Dr. Katherine Edwards, a world expert in pediatric infectious disease in vaccinology. She's also a professor of pediatrics at Vanderbilt university and she's been working on vaccines for 40 years. I did a spinal tap on her and realized that she had Haemophilus influenza, typ e B meningitis, Haemophilus influenza, type B or HIB is it bacteria normally found in our nose and throat that can lead to very serious life threatening infections and no matter what I did in that day and into the night in terms of prompt antibiotics and she'd just been sick a few hours and, and fluids and all the, you know, ventilators and all the best things that modern medicine, she died, the vaccine for hip was not available until the 1990s. And until it did become available, hip disease affected approximately 25,000 children each year with things like meningitis, pneumonia, and bloodstream infections. And at that time in the hospital that I was practicing at any one time, there were generally five or six patients that had Haemophilus meningitis or invasive disease or some complication of this particular infection. And we knew that from the basic science that if you had antibody to the capsule or to the coat of the organism, that you were protected from disease. But we really didn't know how to make little kids make antibody. -
Bcch 2019-20 Flu Vaccine – Oncology Clinic
BCCH 2019-20 FLU VACCINE – ONCOLOGY CLINIC We are providing influenza vaccines for patients who are on therapy and have platelets > 50,000 and ANC over 0.5 (and expected to stay above 0.5 for the next 48 hours, in order to minimize risk of admission in case of fever). Please do not schedule appointments for flu shots only. Please advise the family that immunization of all family members is recommended. The Oncology Outpatient Clinic is not providing immunizations for family members or for those patients who are OFF therapy. Flu shots can be given by family doctors to patients and their families, or they can get a flu shot at the BCCH drop-in Family Immunization clinic in the Ambulatory Care Building, across from the Ambulatory Care Pharmacy on week days in the fall months. Pediatric oncology patients can also get a flu shot at almost any community pharmacy at no cost as they are considered “at risk.” Age Dose** Doses required 6 months – 9 years 0.5 mL IM 1 or 2* > 9 years 0.5 mL IM 1 Less than 6 months Not recommended *Two doses administered at least 4 weeks apart are recommended for children under 9 years of age who are receiving influenza vaccine for the first time. **The recommended site of vaccination is the deltoid muscle for adults and older children. The preferred site for infants and young children is the anterolateral aspect of the thigh. Contraindications: • Febrile illness • Thimerosal sensitivity Special considerations: • Egg allergic individuals (including those who have experienced anaphylaxis following egg ingestion) can be immunized with inactivated influenza vaccine (such as Flulaval tetra) • Thimerosal allergic patients should be vaccinated using Agriflu which can be obtained from local public health units, (but not in the oncology clinic). -
Systematic Scoping Review on Social Media Monitoring Methods and Interventions Relating to Vaccine Hesitancy
TECHNICAL REPORT Systematic scoping review on social media monitoring methods and interventions relating to vaccine hesitancy www.ecdc.europa.eu ECDC TECHNICAL REPORT Systematic scoping review on social media monitoring methods and interventions relating to vaccine hesitancy This report was commissioned by the European Centre for Disease Prevention and Control (ECDC) and coordinated by Kate Olsson with the support of Judit Takács. The scoping review was performed by researchers from the Vaccine Confidence Project, at the London School of Hygiene & Tropical Medicine (contract number ECD8894). Authors: Emilie Karafillakis, Clarissa Simas, Sam Martin, Sara Dada, Heidi Larson. Acknowledgements ECDC would like to acknowledge contributions to the project from the expert reviewers: Dan Arthus, University College London; Maged N Kamel Boulos, University of the Highlands and Islands, Sandra Alexiu, GP Association Bucharest and Franklin Apfel and Sabrina Cecconi, World Health Communication Associates. ECDC would also like to acknowledge ECDC colleagues who reviewed and contributed to the document: John Kinsman, Andrea Würz and Marybelle Stryk. Suggested citation: European Centre for Disease Prevention and Control. Systematic scoping review on social media monitoring methods and interventions relating to vaccine hesitancy. Stockholm: ECDC; 2020. Stockholm, February 2020 ISBN 978-92-9498-452-4 doi: 10.2900/260624 Catalogue number TQ-04-20-076-EN-N © European Centre for Disease Prevention and Control, 2020 Reproduction is authorised, provided the -
HIV Vaccine Development Dr. Patricia Fast 1
HIV Vaccine Development Dr. Patricia Fast HIV Vaccine Development Dr. Patricia Fast (MD, PhD) Senior Technical Advisor, International AIDS Vaccine Initiative Adjunct Clinical Associate Professor, Infectious Disease, Pediatrics Stanford University School of Medicine How It Began 1984 • Human Immunodeficiency Virus (HIV-1) discovered as the cause of AIDS • Prediction: a vaccine will soon be developed! Non-Human Primate Models Focusing on this dominant model • Simian Immunodeficiency Virus (SIV) lead to a bias – SIV Mac 239 causes AIDS-like disease in Macaques almost impossible to neutralize • SHIV hybrid (with HIV Envelope) allows research into neutralizing antibodies in macaques • Chimpanzees can be infected by HIV, but seldom get AIDS False starts • Traditional vaccine approaches fail in NHP model . Killed SIV does not really protect against SIV o Initial positive result was an artifact . Live attenuated SIV protects, but is not safe o Attenuated vaccine was shown to regain virulence The screen versions of these slides have full details of copyright and acknowledgements 1 HIV Vaccine Development Dr. Patricia Fast How would an AIDS vaccine work? A note about virus biology • HIV has many mechanisms to escape immune recognition e.g. : . Rapid formation of variation . Structural aspects How would an AIDS vaccine work? Immune Mechanisms • T cells . Kill virus-infected cells . Slow down or stop replication of viruses within cells . Can directly kill virus infected cells . Secrete substances that block viral replication Can neutralize virus when they prevent entry; by binding viral envelope protein or the cellular receptors HIV is extremely variable Europe and North America East Africa Southern Africa, India and China Part of an HIV phylogenetic tree The screen versions of these slides have full details of copyright and acknowledgements 2 HIV Vaccine Development Dr. -
Vaccine Hesitancy
WHY CHILDREN WORKSHOP ON IMMUNIZATIONS ARE NOT VACCINATED? VACCINE HESITANCY José Esparza MD, PhD - Adjunct Professor, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA - Robert Koch Fellow, Robert Koch Institute, Berlin, Germany - Senior Advisor, Global Virus Network, Baltimore, MD, USA. Formerly: - Bill & Melinda Gates Foundation, Seattle, WA, USA - World Health Organization, Geneva, Switzerland The value of vaccination “The impact of vaccination on the health of the world’s people is hard to exaggerate. With the exception of safe water, no other modality has had such a major effect on mortality reduction and population growth” Stanley Plotkin (2013) VACCINES VAILABLE TO PROTECT AGAINST MORE DISEASES (US) BASIC VACCINES RECOMMENDED BY WHO For all: BCG, hepatitis B, polio, DTP, Hib, Pneumococcal (conjugated), rotavirus, measles, rubella, HPV. For certain regions: Japanese encephalitis, yellow fever, tick-borne encephalitis. For some high-risk populations: typhoid, cholera, meningococcal, hepatitis A, rabies. For certain immunization programs: mumps, influenza Vaccines save millions of lives annually, worldwide WHAT THE WORLD HAS ACHIEVED: 40 YEARS OF INCREASING REACH OF BASIC VACCINES “Bill Gates Chart” 17 M GAVI 5.6 M 4.2 M Today (ca 2015): <5% of children in GAVI countries fully immunised with the 11 WHO- recommended vaccines Seth Berkley (GAVI) The goal: 50% of children in GAVI countries fully immunised by 2020 Seth Berkley (GAVI) The current world immunization efforts are achieving: • Equity between high and low-income countries • Bringing the power of vaccines to even the world’s poorest countries • Reducing morbidity and mortality in developing countries • Eliminating and eradicating disease WHY CHILDREN ARE NOT VACCINATED? •Vaccines are not available •Deficient health care systems •Poverty •Vaccine hesitancy (reticencia a la vacunacion) VACCINE HESITANCE: WHO DEFINITION “Vaccine hesitancy refers to delay in acceptance or refusal of vaccines despite availability of vaccination services. -
Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines
Review Plant-Based COVID-19 Vaccines: Current Status, Design, and Development Strategies of Candidate Vaccines Puna Maya Maharjan 1 and Sunghwa Choe 2,3,* 1 G+FLAS Life Sciences, 123 Uiryodanji-gil, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea; punamaya.maharjan@gflas.com 2 G+FLAS Life Sciences, 38 Nakseongdae-ro, Gwanak-gu, Seoul 08790, Korea 3 School of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Korea * Correspondence: [email protected] Abstract: The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco- produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical Citation: Maharjan, P.M.; Choe, S. trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more Plant-Based COVID-19 Vaccines: neutralizing antibody responses compared to those present in a convalescent patient’s plasma. -
BANCOVID, the First D614G Variant Mrna-Based Vaccine Candidate Against SARS
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.319061; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 BANCOVID, the first D614G variant mRNA-based vaccine candidate against SARS- 2 CoV-2 elicits neutralizing antibody and balanced cellular immune response 3 Juwel Chandra Baray, Md. Maksudur Rahman Khan, Asif Mahmud, Md. Jikrul Islam, Sanat 4 Myti, Md. Rostum Ali, Md. Enamul Haq Sarker, Samir Kumar, Md. Mobarak Hossain 5 Chowdhury, Rony Roy, Faqrul Islam, Uttam Barman, Habiba Khan, Sourav Chakraborty, Md. 6 Manik Hossain, Md. Mashfiqur Rahman Chowdhury, Polash Ghosh, Mohammad Mohiuddin, 7 Naznin Sultana*, Kakon Nag* 8 Globe Biotech Ltd., 3/Ka, Tejgaon I/A, Dhaka – 1208, Bangladesh, 9 *, to whom correspondence should be made. 10 E-mail: [email protected], [email protected] 11 12 13 Key words: COVID, Coronavirus, Lipid nanoparticle, LNP, Vaccination, Immunization, 14 15 16 Abstract 17 Effective vaccine against SARS-CoV-2 is the utmost importance in the current world. More 18 than 1 million deaths are accounted for relevant pandemic disease COVID-19. Recent data 19 showed that D614G genotype of the virus is highly infectious and responsible for almost all 20 infection for 2nd wave. Despite of multiple vaccine development initiatives, there are currently 21 no report that has addressed this critical variant D614G as vaccine candidate. Here we report 22 the development of an mRNA-LNP vaccine considering the D614G variant and 23 characterization of the vaccine in preclinical trial.