A Quantitative Proteomics Study of the Additive Effect of Inflammatory Cytokines and Injurious Compression on Cartilage Damage

Total Page:16

File Type:pdf, Size:1020Kb

A Quantitative Proteomics Study of the Additive Effect of Inflammatory Cytokines and Injurious Compression on Cartilage Damage A QUANTITATIVE PROTEOMICS STUDY OF THE ADDITIVE EFFECT OF INFLAMMATORY CYTOKINES AND INJURIOUS COMPRESSION ON CARTILAGE DAMAGE JMASSACHUSniTS INSTITUTE OF TEcr-, Krishnakumar Swaminathan JUL 142011 B.Tech Biotechnology Indian Institute of Technology Madras, 2006 ARCHIVES Submitted to the Department of Biological Engineering in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Biological Engineering at the Massachusetts Institute of Technology February 2011 © 2011 Massachusetts Institute of Technology All rights reserved V( Signature of Author Krishnakumar Swaminathan Department of Biological Engineering - // - .* Certified by -r - 1 4r Alan J. qrdznsky, th7TAdvs r Professor of Biological, Electrical and Mechanical Engi ~g /I I Accepted by Forest M. White, Graduate Program Committee Department of Biological Engineering ABSTRACT Objectives: 1) To perform a quantitative comparison of proteins released to media on combination with cytokine (IL-1p or TNF-a) and Injury as compared to either treatment alone, and to thus identify proteins which may be responsible for the synergism seen between cytokine and injury in causing catabolism of cartilage in vitro. 2) To identify proteins which contribute most to some commonly observed phenotypes on treatment of cartilage with cytokine or injury or both. Methods : Cartilage explants from calves were treated with (i)IL-1 (10 ng/ml), (ii)TNF- a (100 ng/ml), (iii)Injurious compression (50% strain at 100%/sec) and IL-1p (10 ng/ml) or (iv)Injurious compression (50% strain at 100%/sec) and TNF-a(10 ng/ml), cultured for 5 days post treatment, and the pooled media collected, labeled with one of four iTRAQ labels and subjected to nano-2D-LC/MS/MS on a quadrupole time of flight instrument. Peptides were identified and quantified using Protein PilotTM, and MATLAB scripts used to obtain protein ratios. These results were analyzed using different statistical techniques. Data from two iTRAQ experiments were combined to generate data for all possible injury and cytokine treatment conditions, and proteins on which injury and cytokines acted synergistically identified. PLSR analysis was performed using Unscrambler@X software with the combined data set to determine which proteins are most relevant to some observed phenotypes. The phenotypes chosen were sGAG released to media in 5 days post treatment, proline and sulfate incorporation rates on day 6 post treatment, and nitrite accumulation in media in 5 days post treatment Results and Discussion: TNF-a+injury and IL-1p +injury treatment conditions show a very high correlation with each other. Most cytosolic, ER lumen and nuclear protein levels are highly elevated with both cytokine+injury conditions, while ECM proteins are either highly down regulated or marginally elevated. Many collagen telopeptides are down regulated, possibly indicating reduced anabolism. However, attempts at repair exist, as shown by increased levels of TGF- and activin A, and reduced levels of LTBP1. Also, biglycan and lumican, SLRPs known to be involved in early development are significantly increased, possibly indicating repair attempts. Other SLRPs such as PRELP and chondroadherin are also highly elevated, with one or both injury+cytokine treatments. While MMPs are mildly down regulated or remain the same, ADAMTS1 increases with TNF-a+injury, indicating increased catabolism. Among ECM structural proteins, COMP shows high down regulation with TNF-a+injury, possibly due to reduced synthesis. Proenkephalin, a signaling molecule possibly involved in tissue/repair and apoptosis, AIMPI, a multifunctional proapoptotic, inflammatory and pro-repair cytokine and Annexin A5, a protein indicating mineralization and apoptosis are all highly elevated with cytokine+injury indicating heightened apoptosis and/or repair. When results of two 4-plex iTRAQ experiments are combined to obtain data for all possible combinations of injury and cytokine, we again find a very high correlation between TNF-a+injury and IL-1 +injury (-95%), slightly higher than the correlation between TNF-c alone and IL-1$ alone (-90%), and much higher than the correlation of either cytokine+injury condition with cytokine alone (-70%) or injury alone (-75%). This shows that IL-1P and TNF-a in combination with injury act through very similar pathways in chondrocytes to produce their effect on cartilage tissue. TNF-a and injury were seen to act synergistically in a positive fashion on aggrecan, CILP-2, COL6A3 and histone H4, and in a negative fashion on SPARC and IGFBP7, suggesting that these proteins may be involved in causing synergism between injury and cytokine in releasing sGAG to the media. A PLSR analysis shows that SPARC and IGFBP7 project close to proline and sulfate incorporation, and far away from sGAG, indicating that SPARC and IGFBP7 may be proteins involved in anabolism. The highest phenotype-protein positive correlations obtained using PLSR are sGAG with Perlecan, SAA3, Complement factor B, CILP-2 and pleiotropin, indicating that all these 5 proteins are associated strongly with catabolism and can serve as markers of catabolism. The correlation of inflammatory proteins SAA3 and complement factor B with sGAG indicates the role of inflammation with catabolism. Conclusion: The combination of injury and cytokine affects tissue differently at a molecular level as compared to either chemical or mechanical stresses alone. Increased catabolism and increased attempts at tissue repair are observed due to a combination of injury and cytokine, and a combination of injury and cytokine may thus serve as a useful model to study OA in vitro. ACKNOWLEDGEMENTS I am grateful to the Biological Engineering Department and MIT for giving me the best of education, and teaching me what true scientific research and thinking is all about. My sincere thanks to Linda Bragman and Han-Hwa Hung for help in many small ways and to Dalia Fares for taking care of administrative issues. Dr. Anna Stevens performed the cartilage explantation experiments, and Dr.Ramesh Indrakanti ran the Mass Spec, my grateful thanks to them. My heartfelt thanks to Anna, who guided me into this work, and was always there for any questions I had (and there were many!). And most important of all, I am indebted to Prof. Alan Grodzinsky who stood by me through thick and thin, and was a constant source of motivation and inspiration. TABLE OF CONTENTS A bstract........................................................................... .. 2 Acknowledgements................................................................4 L ist of Figures.........................................................................7 L ist of T ables........................................................................ 8 Chapter 1: Introduction .............................................................. 9 1.1 Arthritis - An Overview......................................9 1.2 Osteoarthritis : Pathology, Symptoms and Treatment........9 1.3 A rticular Cartilage...............................................10 1.4 Cartilage Components........................................10 1.5 Post-traumatic GA.............................................18 1.6 Cytokines in GA ................................................. 20 1.7 In vitro models combining injury and cytokine..............23 1.8 Thesis Objectives.............................................23 Chapter 2: M ethods.............................................................. 25 2.1 O verview ....................................................... 25 2.2 Cartilage explantation, Mechanical Injury and Cytokine T reatm ent..............................................................25 2.3 sGAG removal, trypsin digestion and iTRAQ labeling.....26 2.4 SCX chromatography and LC/MS/MS.....................28 2.5 Data Analysis..................................................29 2.6 Comparison of biological duplicates and final protein list com pilation......................................................... 31 2.7 Global proteomic analysis and clustering..................31 2.8 Merging data between two iTRAQ experiments............32 2.9 Finding proteins on which injury and cytokines act synergistically.........................................................33 2.10 Partial Least Square Regression (PLSR).................33 Chapter 3: R esults............................................................. .. 35 3.1 Reproducibility between biological replicates...............35 3.2 Global proteomic analysis...................................36 3.3 Effect of combination of cytokine and injury on specific p rotein s................................................................37 3.4 Effect of combination of injury and cytokine as opposed to either treatment alone.............................................40 3.5 Partial Least Square Regression (PLSR) between protein ratios and phenotypes................................................43 Chapter 4: Discussion 4.1 Methodology for correcting for multiple comparisons - The Benjamini Hochberg Procedure.................................63 4.2 Variation between biological replicates....................63 4.3 A global proteomic analysis of the effect of cytokine+injury.......................................................64 4.4 Effect of cytokine+injury on specific protein classes.......66 4.5 Effect of combination of cytokine and injury as opposed to either treatment alone.............................................86 4.6 Partial Least Square Regression (PLSR) Analysis..........92
Recommended publications
  • Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101
    United States of America FEDERAL TRADE COMMISSION Southwest Region 1999 Bryan St., Ste. 2150 Dallas, Texas 75201 June 3, 2020 WARNING LETTER VIA EMAIL TO [email protected] Joy Wellness Partners 838 W G Street Suite 201 San Diego, California 92101 Re: Unsubstantiated Claims for Coronavirus Prevention or Treatment To Whom It May Concern, This is to advise you that FTC staff reviewed your website at https://joywellnesspartners.com/ on May 24, 2020. We have determined that you are unlawfully advertising that certain products treat or prevent Coronavirus Disease 2019 (COVID-19). Some examples of Coronavirus treatment or prevention claims on your website include: In marketing materials accessible on your website by selecting “BLOG” from the navigation menu and clicking on “CORONAVIRUS (COVID-19),” you claim: o Under the heading “Hormones, Peptides, & Immunity”: . You state that “Keeping your immune system running optimally with balanced hormones and peptides helps your body prevent and fight illness, including viruses like COVID-19. Book now [https://intakeq.com/booking/8hkwjk]” . You post a video titled “IMMUNITY, BIOTE, & CORONAVIRUS” featuring Carol Joy Bender, NP. In the video at approximately 31:55, Bender states, “More specifically, I wanted to touch on the things that we’re all concerned about the coronavirus times: what can I do to boost my immune system to keep me healthy? BioTE has already been doing this for us… We have a lot of patients that are already taking their iodine with selenium and zinc. The zinc is one of the mainstay treatments that many of you have read about… zinc helps to reduce the RNA replication inside the cells, when the coronavirus gets in.
    [Show full text]
  • Comparative Gene Expression Profiling of Stromal Cell Matrices
    ell Res C ea m rc te h S & f o T h l Journal of Tiwari et al., J Stem Cell Res Ther 2013, 3:4 e a r n a r p u DOI: 10.4172/2157-7633.1000152 y o J ISSN: 2157-7633 Stem Cell Research & Therapy Research Article Open Access Comparative Gene Expression Profiling of Stromal Cell Matrices that Support Expansion of Hematopoietic Stem/Progenitor Cells Abhilasha Tiwari1,2, Christophe Lefevre2, Mark A Kirkland2*, Kevin Nicholas2 and Gopal Pande1* 1CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India 2Deakin University, Waurn Ponds, Geelong, VIC, Australia Abstract The bone marrow microenvironment maintains a stable balance between self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs). This microenvironment, also termed the “hematopoietic niche”, is primarily composed of stromal cells and their extracellular matrices (ECM) that jointly regulate HSPC functions. Previously, we have demonstrated that umbilical cord blood derived HSPCs can be maintained and expanded on stromal cell derived acellular matrices that mimic the complexity of the hematopoietic niche. The results indicated that matrices prepared at 20% O2 with osteogenic medium (OGM) were best suited for expanding committed HSPCs, whereas, matrices prepared at 5% O2 without OGM were better for primitive progenitors. Based upon these results we proposed that individual constituents of these matrices could be responsible for regulation of specific HSPC functions. To explore this hypothesis, we have performed comparative transcriptome profiling of these matrix producing cells, which identified differential expression of both known niche regulators, such as Wnt4, Angpt2, Vcam and Cxcl12, as well as genes not previously associated with HSPC regulation, such as Depp.
    [Show full text]
  • New Concepts in Basement Membrane Biology Willi Halfter1, Philipp Oertle2, Christophe A
    REVIEW ARTICLE New concepts in basement membrane biology Willi Halfter1, Philipp Oertle2, Christophe A. Monnier2,*, Leon Camenzind2, Magaly Reyes-Lua1, Huaiyu Hu3, Joseph Candiello4, Anatalia Labilloy5,†, Manimalha Balasubramani6, Paul Bernhard Henrich1 and Marija Plodinec2,7 1 Department of Ophthalmology, University Hospital Basel, Switzerland 2 Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland 3 Department of Neurobiology and Physiology, Upstate University Hospital, SUNY University, Syracuse, NY, USA 4 Department of Bioengeneering, University of Pittsburgh, PA, USA 5 Department of Renal Physiology, University of Pittsburgh, PA, USA 6 Proteomics Core Facility of the University of Pittsburgh, PA, USA 7 Department of Pathology, University Hospital Basel, Switzerland Keywords Basement membranes (BMs) are thin sheets of extracellular matrix that basal lamina; basement membrane; outline epithelia, muscle fibers, blood vessels and peripheral nerves. The biomechanical properties; collagen IV; current view of BM structure and functions is based mainly on transmis- laminin; membrane asymmetry; nidogen; sion electron microscopy imaging, in vitro protein binding assays, and phe- perlecan notype analysis of human patients, mutant mice and invertebrata. Correspondence Recently, MS-based protein analysis, biomechanical testing and cell adhe- W. Halfter, Department of Ophthalmology, sion assays with in vivo derived BMs have led to new and unexpected University Hospital Basel, Mittlere insights. Proteomic analysis combined with ultrastructural studies showed Strasse 91, 4031 Basel, Switzerland that many BMs undergo compositional and structural changes with Fax: +41 61 267 21 09 advancing age. Atomic force microscopy measurements in combination Tel: +49 7624 982528 with phenotype analysis have revealed an altered mechanical stiffness that E-mail: [email protected] M.
    [Show full text]
  • Regulation of Procollagen Amino-Propeptide Processing During Mouse Embryogenesis by Specialization of Homologous ADAMTS Protease
    DEVELOPMENT AND DISEASE RESEARCH ARTICLE 1587 Development 133, 1587-1596 (2006) doi:10.1242/dev.02308 Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis Carine Le Goff1, Robert P. T. Somerville1, Frederic Kesteloot2, Kimerly Powell1, David E. Birk3, Alain C. Colige2 and Suneel S. Apte1,* Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2–/– mice showed widespread defects in procollagen III processing. Adamts2–/– mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis.
    [Show full text]
  • Dickkopf-1 Promotes Hematopoietic Regeneration Via Direct and Niche-Mediated Mechanisms
    ARTICLES Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms Heather A Himburg1,7, Phuong L Doan2,7, Mamle Quarmyne1,3, Xiao Yan1,3, Joshua Sasine1, Liman Zhao1, Grace V Hancock4, Jenny Kan1, Katherine A Pohl1, Evelyn Tran1, Nelson J Chao2, Jeffrey R Harris2 & John P Chute1,5,6 The role of osteolineage cells in regulating hematopoietic stem cell (HSC) regeneration following myelosuppression is not well understood. Here we show that deletion of the pro-apoptotic genes Bak and Bax in osterix (Osx, also known as Sp7 transcription factor 7)-expressing cells in mice promotes HSC regeneration and hematopoietic radioprotection following total body irradiation. These mice showed increased bone marrow (BM) levels of the protein dickkopf-1 (Dkk1), which was produced in Osx-expressing BM cells. Treatment of irradiated HSCs with Dkk1 in vitro increased the recovery of both long-term repopulating HSCs and progenitor cells, and systemic administration of Dkk1 to irradiated mice increased hematopoietic recovery and improved survival. Conversely, inducible deletion of one allele of Dkk1 in Osx-expressing cells in adult mice inhibited the recovery of BM stem and progenitor cells and of complete blood counts following irradiation. Dkk1 promoted hematopoietic regeneration via both direct effects on HSCs, in which treatment with Dkk1 decreased the levels of mitochondrial reactive oxygen species and suppressed senescence, and indirect effects on BM endothelial cells, in which treatment with Dkk1 induced epidermal growth factor (EGF) secretion. Accordingly, blockade of the EGF receptor partially abrogated Dkk1-mediated hematopoietic recovery. These data identify Dkk1 as a regulator of hematopoietic regeneration and demonstrate paracrine cross-talk between BM osteolineage cells and endothelial cells in regulating hematopoietic reconstitution following injury.
    [Show full text]
  • Ophthalmological Features Associated with COL4A1 Mutations
    OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: JANEY L. WIGGS, MD, PhD Ophthalmological Features Associated With COL4A1 Mutations Isabelle Coupry, PhD; Igor Sibon, MD, PhD; Bruno Mortemousque, MD; Franc¸ois Rouanet, MD; Manuele Mine, PharmD, PhD; Cyril Goizet, MD, PhD Objective: To investigate the wide variability of ocular Conclusions: The COL4A1 mutations may be associ- manifestations associated with mutations in the COL4A1 ated with various ophthalmologic developmental anoma- gene that encodes collagen IV␣1. lies of anterior segment dysgenesis type, which are reminiscent of Axenfeld-Rieger anomalies (ARA). Cere- Methods: We clinically evaluated 7 patients from 2 un- brovascular disorders should be added to the list of signs related families in whom ocular features segregated with potentially associated with ARA. COL4A1 mutations that were identified by direct se- quencing. Clinical Relevance: These data suggest that cerebral magnetic resonance imaging may be recommended in Results: The G2159A transition (c.2159GϾA) that leads the clinical treatment of patients with apparently iso- tothemissensemutationp.Gly720Aspwasidentifiedinfam- lated ARA, even when neurological symptoms or signs ily A. An ocular phenotype of variable severity was observed are lacking. in all affected relatives. The missense mutation c.2263GϾA, p.Gly755Arg was identified in family B. One patient from family B also displayed notable ocular features. Arch Ophthalmol. 2010;128(4):483-489 NEW FORM OF HEREDITARY constellation of ocular findings that in- cerebrovascular disorder clude anomalies of the anterior chamber was recently associated angle and aqueous drainage structures (iri- with mutations in the dogoniodysgenesis), iris hypoplasia, ec- COL4A1 gene that en- centric pupil (corectopia), iris tears (poly- Acodes collagen IV␣1.1,2 Mutations in coria), and iridocorneal adhesions COL4A1 were initially associated with ce- traversing the anterior chamber.
    [Show full text]
  • Supporting Online Material
    1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text.
    [Show full text]
  • Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426
    Aydogan Türkoğlu & Gültekin Tosun (2020) Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions, ADYU J SCI, 10(2), 413-426 Cloning of ADAMTS2 Gene and Colony Formation Effect of ADAMTS2 in Saos-2 Cell Line Under Normal and Hypoxic Conditions Sümeyye AYDOGAN TÜRKOĞLU1,*, Sinem GÜLTEKİN TOSUN2 1Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey [email protected], ORCID: 0000-0003-1754-0700 2Erciyes University, Institute of Health Sciences, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey [email protected], ORCID: 0000-0002-3927-0089 Received: 03.05.2020 Accepted: 25.09.2020 Published: 30.12.2020 Abstract ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs 2), an N- propeptidase isoenzyme, is an enzyme involved in collagen biosynthesis by providing the amino ends of procollagen to be cut away. ADAMTS2 has anti-angiogenic activity as well as provides the processing of collagen. With this activity, it has become a target in cancer studies. Hypoxic regulation is a process that affects the expression of a large number of genes at the cellular level. Within the scope of our study, the cloning of the ADAMTS2 gene and its expression in Saos-2 (human bone carcinoma) cell line were performed ectopically. For this purpose, the transient transfection of the expression vector containing ADAMTS2 coding sequence was transfected by the calcium-phosphate precipitation method. Recombinant ADAMTS2 mRNA expression was checked by Real-Time PCR in Saos-2 cells. It was observed that there was a 50-fold increase in ADAMTS2 mRNA expression in the transfected Saos-2 cells compared to the control group.
    [Show full text]
  • A Collagen Glucosyltransferase Drives Lung Adenocarcinoma Progression in Mice
    ARTICLE https://doi.org/10.1038/s42003-021-01982-w OPEN A collagen glucosyltransferase drives lung adenocarcinoma progression in mice Hou-Fu Guo 1, Neus Bota-Rabassedas 1, Masahiko Terajima 2, B. Leticia Rodriguez1, Don L. Gibbons 1, Yulong Chen1, Priyam Banerjee1, Chi-Lin Tsai 3, Xiaochao Tan1, Xin Liu1, Jiang Yu1, Michal Tokmina-Roszyk4, Roma Stawikowska4, Gregg B. Fields4, Mitchell D. Miller 5, Xiaoyan Wang3, Juhoon Lee6,7, Kevin N. Dalby6,7, Chad J. Creighton 8,9, George N. Phillips Jr 5,10, John A. Tainer 3, Mitsuo Yamauchi2 & ✉ Jonathan M. Kurie 1 Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and 1234567890():,; is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen’s amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interac- tions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH- independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyl- transferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers–Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers–Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene Alain Colige,à Lieve Nuytinck,w Ingrid Hausser,z Anthonie J. van Essen,y Marc Thiry,z Christian Herens,# Lesley C. Ade` s,Ãà Fransiska Malfait,w Anne De Paepe,w Peter Franck,ww Gerhard Wolff,zz JanC.Oosterwijk,y J. H. Sillevis Smitt,yy Charles M. Lapie` re,à and Betty V. Nusgensà ÃLaboratory of Connective Tissues Biology, GIGA Research Center, University of Lie` ge, Lie` ge, Belgium; wCentrum voor Medische Genetica, Universitair Ziekenhuis, University of Gent, Gent, Belgium; zElectron Microscopic Laboratory, Department of Dermatology, University Heidelberg, Heidelberg, Germany; yDepartment of Clinical Genetics, University Medical Center, Groningen, The Netherlands; zLaboratoire de Biologie cellulaire et tissulaire, University of Lie` ge, Lie` ge, Belgium; #Center for Human Genetics, University of Lie` ge, Lie` ge, Belgium; ÃÃDepartment of Clinical Genetics, The Children’s Hospital at Westmead, and Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia; wwDepartment of Pediatrics, University Freiburg, Freiburg, Germany; zzInstitute of Human Genetics and Anthropology, University Freiburg, Freiburg, Germany; yyDepartment of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Ehlers–Danlos syndrome (EDS) type VIIC, or dermatosparactic type, is a recessively inherited connective tissue disorder characterized, among other symptoms, by an extreme skin fragility resulting from mutations inactivating ADAMTS-2, an enzyme excising the aminopropeptide of procollagens type I, II, and III.
    [Show full text]
  • Differential Regulation of Proteoglycan 4 Metabolism in Cartilage by IL-1A, IGF-I, and TGF-B1 T
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Osteoarthritis and Cartilage (2008) 16, 90e97 ª 2007 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2007.05.009 International Cartilage Repair Society Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1a, IGF-I, and TGF-b1 T. A. Schmidt Ph.D., N. S. Gastelum B.S., E. H. Han M.S., G. E. Nugent-Derfus Ph.D., B. L. Schumacher B.S. and R. L. Sah M.D., Sc.D.* Department of Bioengineering and Whitaker Institute of Biomedical Engineering, University of California-San Diego, La Jolla, CA 92093-0412, United States Summary Objectives: To determine (1) if interleukin-1 alpha (IL-1a), insulin like growth factor I (IGF-I), and transforming growth factor-beta 1 (TGF-b1) regulate proteoglycan 4 (PRG4) metabolism in articular cartilage, in terms of chondrocytes expressing PRG4 and PRG4 bound at the articular surface, and (2) if these features of cartilage PRG4 metabolism correlate with its secretion. Methods: Articular cartilage explants were harvested and cultured for 6 days with or without 10% fetal bovine serum (FBS), alone, or with the addition of 10 ng/ml IL-1a, 300 ng/ml IGF-I, or 10 ng/ml TGF-b1. PRG4 expression by chondrocytes in the cartilage disks was assessed by immunohistochemistry (IHC). PRG4 bound to the articular surface of disks was quantified by extraction and enzyme-linked immunosorbent assay (ELISA). PRG4 secreted into culture medium was quantified by ELISA and characterized by Western Blot.
    [Show full text]