New Concepts in Basement Membrane Biology Willi Halfter1, Philipp Oertle2, Christophe A

Total Page:16

File Type:pdf, Size:1020Kb

New Concepts in Basement Membrane Biology Willi Halfter1, Philipp Oertle2, Christophe A REVIEW ARTICLE New concepts in basement membrane biology Willi Halfter1, Philipp Oertle2, Christophe A. Monnier2,*, Leon Camenzind2, Magaly Reyes-Lua1, Huaiyu Hu3, Joseph Candiello4, Anatalia Labilloy5,†, Manimalha Balasubramani6, Paul Bernhard Henrich1 and Marija Plodinec2,7 1 Department of Ophthalmology, University Hospital Basel, Switzerland 2 Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland 3 Department of Neurobiology and Physiology, Upstate University Hospital, SUNY University, Syracuse, NY, USA 4 Department of Bioengeneering, University of Pittsburgh, PA, USA 5 Department of Renal Physiology, University of Pittsburgh, PA, USA 6 Proteomics Core Facility of the University of Pittsburgh, PA, USA 7 Department of Pathology, University Hospital Basel, Switzerland Keywords Basement membranes (BMs) are thin sheets of extracellular matrix that basal lamina; basement membrane; outline epithelia, muscle fibers, blood vessels and peripheral nerves. The biomechanical properties; collagen IV; current view of BM structure and functions is based mainly on transmis- laminin; membrane asymmetry; nidogen; sion electron microscopy imaging, in vitro protein binding assays, and phe- perlecan notype analysis of human patients, mutant mice and invertebrata. Correspondence Recently, MS-based protein analysis, biomechanical testing and cell adhe- W. Halfter, Department of Ophthalmology, sion assays with in vivo derived BMs have led to new and unexpected University Hospital Basel, Mittlere insights. Proteomic analysis combined with ultrastructural studies showed Strasse 91, 4031 Basel, Switzerland that many BMs undergo compositional and structural changes with Fax: +41 61 267 21 09 advancing age. Atomic force microscopy measurements in combination Tel: +49 7624 982528 with phenotype analysis have revealed an altered mechanical stiffness that E-mail: [email protected] M. Plodinec, Department of Pathology, correlates with specific BM pathologies in mutant mice and human University Hospital Basel, patients. Atomic force microscopy-based height measurements strongly Schonbeinstrasse€ 40, CH-4031 Basel, suggest that BMs are more than two-fold thicker than previously esti- Switzerland mated, providing greater freedom for modelling the large protein polymers Fax: +41 61 267 21 09 within BMs. In addition, data gathered using BMs extracted from mutant Tel: +41 267 22 60 mice showed that laminin has a crucial role in BM stability. Finally, recent E-mail: [email protected] evidence demonstrate that BMs are bi-functionally organized, leading to Present addresses: the proposition that BM-sidedness contributes to the alternating epithelial *Adolphe Merkle Institute, University of and stromal tissue arrangements that are found in all metazoan species. Fribourg, Fribourg, Switzerland We propose that BMs are ancient structures with tissue-organizing func- †Cincinnati Children’s Hospital Medical tions and were essential in the evolution of metazoan species. Center, Cincinnati, OH, USA (Received 22 April 2015, revised 13 July 2015, accepted 18 August 2015) doi:10.1111/febs.13495 Abbreviations AFM, atomic force microscopy; BM, basement membrane; DN, Descemet’s membrane; ECM, extracellular matrix; HSPG, heparan sulfate proteoglycan; ILM, inner limiting membrane; LC, lens capsule; TEM, transmission electron microscopy. 4466 FEBS Journal 282 (2015) 4466–4479 ª 2015 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. W. Halfter et al. New concepts in basement membrane biology The current view of basement Mutations of proteins that are irreplaceable for BM membranes assembly cause embryonic death prior to gastrulation [28]; hence, vertebrates cannot develop and survive Basement membranes (BMs) are extracellular matrix without BMs. Nonlethal mutations in mice and (ECM) sheets that are located at the basal side of humans lead to a collection of BM-typical phenotypes. every epithelium; they ensheath smooth, cardiac and These include vascular defects that are particularly skeletal muscle fibers and outline Schwann cells and prominent in brain and eyes [29–33]. Common are reti- – vascular endothelial cells [1 5]. BMs usually require nal or cortical ectopias, in which retinal or cortical immunostaining (Fig. 1A) or transmission electron cells migrate through breaks in the pial or retinal BMs microscopy (TEM) for their detection. According to [29–31,34–37]. The cortical/retinal BM defects are < TEM, the standard BM has a thickness of 100 nm. associated with a major loss of Cajal–Retzius cells in Exceptions are the several micrometer-thick lens the cortex and at least 50% loss of ganglion cells in capsule (LC), the tracheal BM and Descemet’s mem- the retina [30,31]. Common phenotypes also include brane. defects in kidney [38,39] and ear development, whereas Key for the identification of BM proteins was the skin blisters are restricted to mutations of a subset of discovery that mouse yolk sac tumors produce a BM- the epidermal BM proteins [40]. A common phenotype – typical ECM in gram quantities [6 8]. Analysis of also includes several forms of congenital muscular these tumor matrices showed that laminin [9,10], nido- dystrophy [36,41–44]. Many of these pathologies often gen/entactin [11,12], perlecan [13] and collagen IV [14] co-exist as syndromes and are particulary damaging are large multidomain glycoproteins with a molecular during embryonic development when tissues and organs mass of between 150 and 1000 kDa. Their multiple are expanding and BMs are under stress. In particular, peptide domains promote polymerization and binding these phenotypes suggest an essential role of mechani- to other BM proteins [15,16]. The laminins comprise a cal stability for BM functions and that the integrity of family of cross-shaped, heterotrimeric glycoproteins BMs is particulalry vulnerable in embryonic and neona- with over 10 trimer combinations [17]. Collagen IV is tal development. Recent data using mutant mice have a composed of six genetically different chains that emerged demonstrating a key role for integrins and assemble into three linear collagen IV heterotrimers dystroglycan, including the carbohydrate side chain of ~ [18]. With molecular masses of 150 kDa, Nidogens I dystroglycan, in the assembly of many BMs. In particu- – and II are the smallest BM glycoproteins [19 21]. Per- lar, mice with defective or no receptors have patholo- lecan was considered the only BM heparan sulfate pro- gies that are similar to defects in humans and mice with teoglycan (HSPG) [13] until two more BM-associated BM protein mutations [45–50]. HSPGs, agrin and collagen XVIII, were identified [22–25]. The current model, prominently based on protein Limitations of the current BM model binding studies and imaging of isolated BM proteins The commonly accepted thickness of BMs of from the mouse tumors, proposes that BMs are com- < 100 nm poses major limitations to model the large posed of two inter-connected networks: a laminin BM proteins within the confines of BMs. For collagen polymer, which is considered to provide the main cell- IVs with a trimer length of 400 nm, a horizontal posi- binding activity of BMs, and a collagen IV network, tioning is conceivable and, in most diagrams of BMs, which is considered as the main stabilizing structure the collagen IV network is depicted with a flat, [26,27]. ABC Fig. 1. BMs of the human eye. Section of a fetal human eye (A) stained for collagen IV (green) to highlight the the corneal BMs (Co), the ILM, the lens capsule (LC), the vascular BMs (BV) and the BM of Bruch’s membrane (star). L, lens; R, retina; VB, vitreous body. Counter stain: Pax 6 (red). DM, LC, vascular BMs and ILM can be isolated. Scanning electron microscopy showed that the ILM (B) and vascular BMs (C) of an adult human eye are free of cellular debris and non-BM ECM. Scale bar: (A) 200 lm; (B, C) 10 lm. FEBS Journal 282 (2015) 4466–4479 ª 2015 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of 4467 Federation of European Biochemical Societies. New concepts in basement membrane biology W. Halfter et al. chicken-wire configuration. A high-angle shadowing biomechanical properties, their protein composition analysis of the amnion BM has demonstrated a more and their capacity to promote cell adhesion [64]. complex arrangement of collagen IV [51], Nevertheless, The main proposed functions for BM-typical in almost all current reviews on BMs, the dominant HSPGs are to bind growth factors and to connect the model of the collagen IV network is still that of a flat, laminin polymer with the collagen IV network. How- interconnected network [52,53]. A major issue is that ever, recent studies showed that HSPGs also regulate collagens are known to have high tensile strength; the hydration status of BMs, and thereby determine thus, a flat positioning would make it difficult for their biomechanical properties, including thickness and BMs to expand, which might cause functional defects stiffness [55,57]. during embryogenesis when tissues and organs are growing. The lacking abbility for BM to expand would New data on BM biology also be a major issue for highly flexible adult tissues and organs, such as skin, lens,
Recommended publications
  • Ophthalmological Features Associated with COL4A1 Mutations
    OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: JANEY L. WIGGS, MD, PhD Ophthalmological Features Associated With COL4A1 Mutations Isabelle Coupry, PhD; Igor Sibon, MD, PhD; Bruno Mortemousque, MD; Franc¸ois Rouanet, MD; Manuele Mine, PharmD, PhD; Cyril Goizet, MD, PhD Objective: To investigate the wide variability of ocular Conclusions: The COL4A1 mutations may be associ- manifestations associated with mutations in the COL4A1 ated with various ophthalmologic developmental anoma- gene that encodes collagen IV␣1. lies of anterior segment dysgenesis type, which are reminiscent of Axenfeld-Rieger anomalies (ARA). Cere- Methods: We clinically evaluated 7 patients from 2 un- brovascular disorders should be added to the list of signs related families in whom ocular features segregated with potentially associated with ARA. COL4A1 mutations that were identified by direct se- quencing. Clinical Relevance: These data suggest that cerebral magnetic resonance imaging may be recommended in Results: The G2159A transition (c.2159GϾA) that leads the clinical treatment of patients with apparently iso- tothemissensemutationp.Gly720Aspwasidentifiedinfam- lated ARA, even when neurological symptoms or signs ily A. An ocular phenotype of variable severity was observed are lacking. in all affected relatives. The missense mutation c.2263GϾA, p.Gly755Arg was identified in family B. One patient from family B also displayed notable ocular features. Arch Ophthalmol. 2010;128(4):483-489 NEW FORM OF HEREDITARY constellation of ocular findings that in- cerebrovascular disorder clude anomalies of the anterior chamber was recently associated angle and aqueous drainage structures (iri- with mutations in the dogoniodysgenesis), iris hypoplasia, ec- COL4A1 gene that en- centric pupil (corectopia), iris tears (poly- Acodes collagen IV␣1.1,2 Mutations in coria), and iridocorneal adhesions COL4A1 were initially associated with ce- traversing the anterior chamber.
    [Show full text]
  • A Collagen Glucosyltransferase Drives Lung Adenocarcinoma Progression in Mice
    ARTICLE https://doi.org/10.1038/s42003-021-01982-w OPEN A collagen glucosyltransferase drives lung adenocarcinoma progression in mice Hou-Fu Guo 1, Neus Bota-Rabassedas 1, Masahiko Terajima 2, B. Leticia Rodriguez1, Don L. Gibbons 1, Yulong Chen1, Priyam Banerjee1, Chi-Lin Tsai 3, Xiaochao Tan1, Xin Liu1, Jiang Yu1, Michal Tokmina-Roszyk4, Roma Stawikowska4, Gregg B. Fields4, Mitchell D. Miller 5, Xiaoyan Wang3, Juhoon Lee6,7, Kevin N. Dalby6,7, Chad J. Creighton 8,9, George N. Phillips Jr 5,10, John A. Tainer 3, Mitsuo Yamauchi2 & ✉ Jonathan M. Kurie 1 Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and 1234567890():,; is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen’s amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interac- tions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH- independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyl- transferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A.
    [Show full text]
  • Collagen Type XVIII (H-140): Sc-25720
    SANTA CRUZ BIOTECHNOLOGY, INC. Collagen Type XVIII (H-140): sc-25720 The Power to Question BACKGROUND APPLICATIONS Type XV and XVIII collagens form the new subgroup MULTIPLEXIN, within the Collagen Type XVIII (H-140) is recommended for detection of Collagen α1 diverse family of collagens, which contains nineteen distinct types of collagens Type XVIII of mouse, rat and human origin by Western Blotting (starting found in vertebrates. Both type XV and XVIII collagens are characterized by dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1–2 µg extensive interruptions in their collagenous sequences. Members of the MUL- per 100–500 µg of total protein (1 ml of cell lysate)] and immunofluores- TIPLEXIN subgroup contain polypeptides with multiple triple-helical domains cence (starting dilution 1:50, dilution range 1:50-1:500). separated and flanked by non-triple-helical regions. Type XV is predominantly Suitable for use as control antibody for Collagen Type XVIII siRNA (h): expressed in internal organs such as adrenal gland, kidney and pancreas. Type sc-43072 and Collagen Type XVIII siRNA (m): sc-43073. XVIII encodes two different α1 chains, which have different signal peptides and variant N-terminal non-collagenous NC1 domains of 495 and 303 amino Molecular Weight of Collagen Type XVIII: 20-22 kDa. acids. The long variant NC1-434 Type XVIII mRNAs are prominently expressed Positive Controls: rat C6 glioblastoma, human PBL or rat lung extract: sc-2396. in liver, while the variant NC1-303 mRNAs are predominantly expressed in heart, kidney, placenta, prostate, ovaries, skeletal muscle and small intestine. RECOMMENDED SECONDARY REAGENTS Endostatin is a fragment of the C-terminal domain NC1 of collagen XV and XVIII that inhibits angiogenesis and tumor growth.
    [Show full text]
  • List of Publications Taina Pihlajaniemi
    List of publications Taina Pihlajaniemi 1 April, 2016 A Peer-reviewed scientific articles Journal article (refereed), original research; review article, literature review, systematic review; book section, chapters in research books; conference proceedings A.1 Savolainen E-R, Kero M, Pihlajaniemi T, and Kivirikko KI. Deficiency of galactosylhydroxylysyl glucosyltransferase, an enzyme of collagen synthesis, in a family with dominant epidermolysis bullosa simplex. N Engl J Med 304: 197-204, 1981 A.2 Pihlajaniemi T, Myllylä R, Alitalo K, Vaheri A, and Kivirikko KI. Post-translational modifications in the biosynthesis of type IV collagen by a human tumor cell line. Biochemistry 20: 7409-7415, 1981 A.3 Anttinen H, Puistola U, Pihlajaniemi T, and Kivirikko KI. Differences between proline and lysine hydroxylations in their inhibition by zinc or by ascorbate deficiency during collagen synthesis in various cell types. Biochim Biophys Acta 674: 336-344, 1981 A.4 Pihlajaniemi T, Myllylä R, Kivirikko KI, and Tryggvason K. Effects of streptozotocin diabetes, glucose, and insulin on the metabolism of type IV collagen and proteoglycan in murine basement membrane-forming EHS tumor tissue. J Biol Chem 257: 14914-14920, 1982 A.5 de Wet WJ, Pihlajaniemi T, Myers J, Kelly TE, and Prockop DJ. Synthesis of a shortened pro- 2(I) chain and decreased synthesis of pro- 2(I) chains in a proband with osteogenesis imperfecta. J Biol Chem 258: 7721-7728, 1983 A.6 Oikarinen J, Pihlajaniemi T, Hämäläinen L, and Kivirikko KI. Cortisol decreases the cellular concentration of translatable procollagen mRNA species in cultured human skin fibroblasts. Biochim Biophys Acta 741: 297-302, 1983 A.7 Myllylä R, Koivu J, Pihlajaniemi T, and Kivirikko KI.
    [Show full text]
  • Binding and Endothelial Tube Formation
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 7275–7280, June 1998 Biochemistry Defining the domains of type I collagen involved in heparin- binding and endothelial tube formation SHAWN M. SWEENEY†,CYNTHIA A. GUY‡,GREGG B. FIELDS§, AND JAMES D. SAN ANTONIO†¶ †Department of Medicine and the Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107; ‡Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455; and §Department of Chemistry and Biochemistry, and the Center for Molecular Biology and Biotechnology, Florida Atlantic University, Boca Raton, FL 33431 Edited by Darwin J. Prockop, MCP-Hahnemann Medical School, Philadelphia, PA, and approved April 14, 1998 (received for review January 12, 1998) ABSTRACT Cell surface heparan sulfate proteoglycan To localize more precisely the heparin-binding regions on type (HSPG) interactions with type I collagen may be a ubiquitous I collagen, we studied complexes between collagen monomers cell adhesion mechanism. However, the HSPG binding sites on and heparin–albumin–gold particles by electron microscopy type I collagen are unknown. Previously we mapped heparin (6), and we observed heparin binding primarily to a region on binding to the vicinity of the type I collagen N terminus by the triple helix near the procollagen N terminus. In collagen electron microscopy. The present study has identified type I fibrils, heparin–gold bound to the a bands region within each collagen sequences used for heparin binding and endothelial D-period, which is consistent with an N-terminal heparin- cell–collagen interactions. Using affinity coelectrophoresis, binding site on its monomers. The resolution of the mapping we found heparin to bind as follows: to type I collagen with technique was insufficient to assign heparin-binding function high affinity (Kd ' 150 nM); triple-helical peptides (THPs) to any particular protein sequence.
    [Show full text]
  • Premature Aggregation of Type IV Collagen and Early Lethality in Lysyl Hydroxylase 3 Null Mice
    Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice Kati Rautavuoma*†‡, Kati Takaluoma*†‡, Raija Sormunen§, Johanna Myllyharju*†, Kari I. Kivirikko*†, and Raija Soininen†¶ *Collagen Research Unit and Departments of †Medical Biochemistry and Molecular Biology and §Pathology, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland Edited by Erkki Ruoslahti, The Burnham Institute, La Jolla, CA, and approved August 17, 2004 (received for review July 9, 2004) Collagens carry hydroxylysine residues that act as attachment sites LH3 is essential for the synthesis of type IV collagen during early for carbohydrate units and are important for the stability of development and, hence, for the stability of basement mem- crosslinks but have been regarded as nonessential for vertebrate branes (BMs). survival. We generated mice with targeted inactivation of the gene for one of the three lysyl hydroxylase isoenzymes, LH3. The null Materials and Methods embryos developed seemingly normally until embryonic day 8.5, Targeting of the Plod3 Gene and Generation of Mutant Mice. The but development was then retarded, with death around embryonic genomic clone used to clone the targeting construct was isolated day 9.5. Electron microscopy (EM) revealed fragmentation of base- from a 129SV mouse genomic library with human LH3 cDNA ment membranes (BMs), and immuno-EM detected type IV collagen (5) as a probe. The construct contains 1.2- and 5-kb genomic within the dilated endoplasmic reticulum and in extracellular arms and the ␤-gal-PGK-neo cassette inserted in-frame into exon aggregates, but the typical BM staining was absent. Amorphous 1. Embryonic stem cells were targeted, and mice were generated intracellular and extracellular particles were also seen by collagen by standard techniques.
    [Show full text]
  • Collagens, Modifying Enzymes and Their Mutations in Humans, Flies And
    Review TRENDS in Genetics Vol.20 No.1 January 2004 33 Collagens, modifying enzymes and their mutations in humans, flies and worms Johanna Myllyharju and Kari I. Kivirikko Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland Collagens and proteins with collagen-like domains form Collagens are the most abundant proteins in the human large superfamilies in various species, and the numbers body, constituting ,30% of its protein mass. The import- of known family members are increasing constantly. ant roles of these proteins have been clearly demonstrated Vertebrates have at least 27 collagen types with 42 dis- by the wide spectrum of diseases caused by a large number tinct polypeptide chains, >20 additional proteins with of mutations found in collagen genes. This article will collagen-like domains and ,20 isoenzymes of various review the collagen superfamilies and their mutations in collagen-modifying enzymes. Caenorhabditis elegans vertebrates, Drosophila melanogaster and the nematode has ,175 cuticle collagen polypeptides and two base- Caenorhabditis elegans. The genomes of these two model ment membrane collagens. Drosophila melanogaster invertebrate species have been fully sequenced, and it is has far fewer collagens than many other species but therefore possible to identify all of the collagen genes has ,20 polypeptides similar to the catalytic subunits present in these species. Because of the extensive of prolyl 4-hydroxylase, the key enzyme of collagen syn- literature in these fields, this review will focus primarily thesis. More than 1300 mutations have so far been on recent advances. More detailed accounts and more characterized in 23 of the 42 human collagen genes complete references can be found in previous reviews, for in various diseases, and many mouse models and example Refs [1–6].
    [Show full text]
  • Molecular Control of Motor Axon Exit
    Int. J. Mol. Sci. 2011, 12, 8539-8561; doi:10.3390/ijms12128539 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Crossing the Border: Molecular Control of Motor Axon Exit Arlene Bravo-Ambrosio 1 and Zaven Kaprielian 1,2,* 1 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-Mail: [email protected] 2 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-718-430-2162; Fax: +1-718-430-3758. Received: 17 October 2011; in revised form: 5 November 2011 / Accepted: 8 November 2011 / Published: 29 November 2011 Abstract: Living organisms heavily rely on the function of motor circuits for their survival and for adapting to ever-changing environments. Unique among central nervous system (CNS) neurons, motor neurons (MNs) project their axons out of the CNS. Once in the periphery, motor axons navigate along highly stereotyped trajectories, often at considerable distances from their cell bodies, to innervate appropriate muscle targets. A key decision made by pathfinding motor axons is whether to exit the CNS through dorsal or ventral motor exit points (MEPs). In contrast to the major advances made in understanding the mechanisms that regulate the specification of MN subtypes and the innervation of limb muscles, remarkably little is known about how MN axons project out of the CNS. Nevertheless, a limited number of studies, mainly in Drosophila, have identified transcription factors, and in some cases candidate downstream effector molecules, that are required for motor axons to exit the spinal cord.
    [Show full text]
  • Basement Membranes* James M
    Basement membranes* James M. Kramer§, Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611 USA Table of Contents 1. Introduction ............................................................................................................................2 2. Collagen type IV .....................................................................................................................4 3. Laminins ................................................................................................................................5 4. Perlecan .................................................................................................................................6 5. Nidogen .................................................................................................................................9 6. Collagen type XVIII ............................................................................................................... 10 7. SPARC/Osteonectin ............................................................................................................... 11 8. Fibulin ................................................................................................................................. 11 9. Hemicentin ........................................................................................................................... 12 10. Integrins ............................................................................................................................
    [Show full text]
  • Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms
    CHAPTER THREE Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms Mao Mao, Marcel V. Alavi, Cassandre Labelle-Dumais and Douglas B. Gould* Departments of Ophthalmology and Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA, USA *Corresponding author: E-mail: [email protected] Contents 1. Genomic Organization and Protein Structure of Type IV Collagens 62 1.1 Introduction and history 62 1.2 Genomic structure 64 1.3 Protein domain structure 66 1.3.1 7S domain 68 1.3.2 Triple helical domain 69 1.3.3 NC1 domain 70 2. Type IV Collagen Biosynthesis 72 2.1 Heat shock protein 47 72 2.2 Protein disulfide isomerase 73 2.3 Peptidylprolyl isomerases 74 2.4 Prolyl 4-hydroxylases 74 2.5 Prolyl 3-hydroxylases 75 2.6 Lysyl hydroxylases 76 2.7 Transport and Golgi organization 1 78 3. Type IV Collagen-Related Pathology 78 3.1 COL4A3eA6-associated pathology 78 3.1.1 Goodpasture disease 78 3.1.2 Alport syndrome 79 3.2 COL4A1/COL4A2-associated pathology 81 3.2.1 Ocular dysgenesis 81 3.2.2 Porencephaly 82 3.2.3 Small vessel disease 83 3.2.4 Cerebral cortical lamination defects 84 3.2.5 Myopathy 85 3.2.6 HANAC syndrome and nephropathy 85 4. Mechanisms for Type IV Collagen-Related Pathology 86 4.1 Overview 86 Current Topics in Membranes, Volume 76 ISSN 1063-5823 © 2015 Elsevier Inc. http://dx.doi.org/10.1016/bs.ctm.2015.09.002 All rights reserved. 61 j 62 Mao Mao et al.
    [Show full text]
  • Lysyl Hydroxylases. Studies on Recombinant Lysyl Hydroxylases and Mouse Lines Lacking Lysyl Hydroxylase 1 Or Lysyl Hydroxylase 3
    D920etukansi.kesken.fm Page 1 Friday, March 30, 2007 9:33 AM D 920 OULU 2007 D 920 UNIVERSITY OF OULU P.O. Box 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA D SERIES EDITORS Kati Takaluoma MEDICA KatiTakaluoma ASCIENTIAE RERUM NATURALIUM Professor Mikko Siponen LYSYL HYDROXYLASES BHUMANIORA Professor Harri Mantila STUDIES ON RECOMBINANT LYSYL HYDROXYLASES AND MOUSE LINES LACKING CTECHNICA LYSYL HYDROXYLASE 1 OR LYSYL HYDROXYLASE 3 Professor Juha Kostamovaara DMEDICA Professor Olli Vuolteenaho ESCIENTIAE RERUM SOCIALIUM Senior Assistant Timo Latomaa FSCRIPTA ACADEMICA Communications Officer Elna Stjerna GOECONOMICA Senior Lecturer Seppo Eriksson EDITOR IN CHIEF Professor Olli Vuolteenaho EDITORIAL SECRETARY Publications Editor Kirsti Nurkkala FACULTY OF MEDICINE, DEPARTMENT OF MEDICAL BIOCHEMISTRY AND MOLECULAR BIOLOGY, BIOCENTER OULU, ISBN 978-951-42-8427-4 (Paperback) UNIVERSITY OF OULU ISBN 978-951-42-8428-1 (PDF) ISSN 0355-3221 (Print) ISSN 1796-2234 (Online) ACTA UNIVERSITATIS OULUENSIS D Medica 920 KATI TAKALUOMA LYSYL HYDROXYLASES Studies on recombinant lysyl hydroxylases and mouse lines lacking lysyl hydroxylase 1 or lysyl hydroxylase 3 Academic dissertation to be presented, with the assent of the Faculty of Medicine of the University of Oulu, for public defence in the Auditorium of the Medipolis Research Center (Kiviharjuntie 11), on May 25th, 2007, at 13 p.m. OULUN YLIOPISTO, OULU 2007 Copyright © 2007 Acta Univ. Oul. D 920, 2007 Supervised by Docent Johanna Myllyharju Reviewed by Doctor Susanne Grässel Professor Nicholai Miosge ISBN 978-951-42-8427-4 (Paperback) ISBN 978-951-42-8428-1 (PDF) http://herkules.oulu.fi/isbn9789514284281/ ISSN 0355-3221 (Printed) ISSN 1796-2234 (Online) http://herkules.oulu.fi/issn03553221/ Cover design Raimo Ahonen OULU UNIVERSITY PRESS OULU 2007 Takaluoma, Kati, Lysyl hydroxylases.
    [Show full text]
  • Collagen VI), Multiplexin (E.G
    Essays in Biochemistry (2019) 63 297–312 https://doi.org/10.1042/EBC20180071 Review Article Basement membrane collagens and disease mechanisms Anna Gatseva1, Yuan Yan Sin1, Gaia Brezzo1,2 and Tom Van Agtmael1 1Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom; 2Centre for Discovery Brain Sciences, Medical Downloaded from https://portlandpress.com/essaysbiochem/article-pdf/63/3/297/844117/ebc-2018-0071c.pdf by University of Glasgow user on 14 October 2019 School, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom Correspondence: Tom Van Agtmael ([email protected]) Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and col- lagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Com- bined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
    [Show full text]