REVIEW ARTICLE New concepts in basement membrane biology Willi Halfter1, Philipp Oertle2, Christophe A. Monnier2,*, Leon Camenzind2, Magaly Reyes-Lua1, Huaiyu Hu3, Joseph Candiello4, Anatalia Labilloy5,†, Manimalha Balasubramani6, Paul Bernhard Henrich1 and Marija Plodinec2,7 1 Department of Ophthalmology, University Hospital Basel, Switzerland 2 Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland 3 Department of Neurobiology and Physiology, Upstate University Hospital, SUNY University, Syracuse, NY, USA 4 Department of Bioengeneering, University of Pittsburgh, PA, USA 5 Department of Renal Physiology, University of Pittsburgh, PA, USA 6 Proteomics Core Facility of the University of Pittsburgh, PA, USA 7 Department of Pathology, University Hospital Basel, Switzerland Keywords Basement membranes (BMs) are thin sheets of extracellular matrix that basal lamina; basement membrane; outline epithelia, muscle fibers, blood vessels and peripheral nerves. The biomechanical properties; collagen IV; current view of BM structure and functions is based mainly on transmis- laminin; membrane asymmetry; nidogen; sion electron microscopy imaging, in vitro protein binding assays, and phe- perlecan notype analysis of human patients, mutant mice and invertebrata. Correspondence Recently, MS-based protein analysis, biomechanical testing and cell adhe- W. Halfter, Department of Ophthalmology, sion assays with in vivo derived BMs have led to new and unexpected University Hospital Basel, Mittlere insights. Proteomic analysis combined with ultrastructural studies showed Strasse 91, 4031 Basel, Switzerland that many BMs undergo compositional and structural changes with Fax: +41 61 267 21 09 advancing age. Atomic force microscopy measurements in combination Tel: +49 7624 982528 with phenotype analysis have revealed an altered mechanical stiffness that E-mail:
[email protected] M.