Review Article the Observer's Guide to the Gamma-Ray Burst

Total Page:16

File Type:pdf, Size:1020Kb

Review Article the Observer's Guide to the Gamma-Ray Burst Hindawi Advances in Astronomy Volume 2017, Article ID 8929054, 41 pages https://doi.org/10.1155/2017/8929054 Review Article The Observer’s Guide to the Gamma-Ray Burst Supernova Connection Zach Cano,1,2 Shan-Qin Wang,3,4 Zi-Gao Dai,3,4 and Xue-Feng Wu5,6 1 Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland 2Instituto de Astrof´ısica de Andaluc´ıa (IAA-CSIC), Glorieta de la Astronom´ıa s/n, 18008 Granada, Spain 3School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China 4Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, China 5Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 6Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University-Purple Mountain Observatory, Nanjing 210008, China Correspondence should be addressed to Zach Cano; [email protected] Received 7 April 2016; Accepted 29 November 2016; Published 11 April 2017 Academic Editor: Josep M. Trigo-Rodr´ıguez Copyright © 2017 Zach Cano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a detailed report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The discussion presented here places emphasis on how observations, and the modelling of observations, have constrained what we know about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity–decline relationships, and how they can be used to measure the Hubble constant. We present a statistical summary of their bolometric properties and use this to determine the properties of the “average” GRB-SN. We discuss their geometry and consider the various physical processes that are thought to power the luminosity of GRB-SNe and whether differences exist between GRB-SNe and the SNe associated with ultra-long-duration GRBs. We discuss how observations of their environments further constrain the physical properties of their progenitor stars and give a brief overview of the current theoretical paradigms of their central engines. We then present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs, and we conclude by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe. 1. Introduction was truly representative of the general LGRB population. This uncertainty persisted for almost five years until the spec- Observations have proved the massive-star origins of long- troscopic association between cosmological/high-luminosity ∼8×1050 −1 duration GRBs (LGRBs) beyond any reasonable doubt. The GRB 030329 ( 훾,iso erg s ) and SN 2003dh [4– temporal and spatial connection between GRB 980425 and 6]. GRB 030329 had an exceptionally bright optical afterglow broad-lined type Ic (IcBL) SN 1998bw offered the first clues to (AG; see Figures 2 and 3), and a careful decomposition of the their nature [1, 2] (Figure 1). The close proximity of this event photometric and spectroscopic observations was required in ( = 0.00866; ∼40 Mpc), which is still the closest GRB to order to isolate the SN features from the dominant AG light date, resulted in it becoming one of the most, if not the most, [7] (see Section 2.1 and Figure 4). As was seen for SN 1998bw, scrutinized GRB-SN in history. It was shown that SN 1998bw SN 2003dh was a type IcBL SN, and its kinetic energy was in 52 had a very large kinetic energy (see Section 4 and Table 3) excess of 10 erg,showingthatittoowasahypernova. 52 of ∼2–5×10 erg, which led it to being referred to as a The launch of the Swift satellite [8] dramatically changed hypernova [3]. However, given several peculiarities of its - the way we studied GRBs and the GRB-SN association, and ray properties, including its underluminous -ray luminosity thenumberofeventsdetectedbythismissionhashelped ∼5×1046 −1 ( 훾,iso erg s ), it was doubted whether this event increase the GRB-SN sample size by a factor of three since 2 Advances in Astronomy 10−13 −7d −2d 10−14 +1d +4d +11d +22d −15 const 10 +45d + ) +64d −1 +94d Å 2 −16 12 − 10 cm 13 1 − +125 d 14 10−17 I−1 (erg s 15 휆 R − 0.5 f +201 d (mag) 16 V 10−18 17 B 18 U+1 +376 d 19 10−19 0510 20 30 40 060 70 8090 100 4000 6000 8000 10000 t−t0 (d) 휆 (Å) Figure 1: GRB 980425/SN 1998bw: the archetype GRB-SN. Host image (ESO 184-G82) is from [1], where the position of the optical transient is clearly visible. Optical light curves are from [9] and spectra from [2]. −2.05 18 t + SN 1998bw V-band (z = 0.16854,훿t=0) SN 2003dh SN 1998bw 4.0 d 19 7.4 d 8.3 d 8.3 d R 20 9.9 d 12.2 d 15.9 constant units) (arbitrary d + 15.1 d 21 휆 f 20.1 d 20.3 d 27.8 d 27.1 d 22 0 20 40 60 3000 4000 5000 6000 7000 8000 9000 Days after March 29.4842 Rest wavelength (Å) (a) (b) Figure 2: (a) The photometric (-band) evolution of GRB 030329/SN 2003dh, from [6]; (b) the spectral evolution of GRB 030329/SN 2003dh, as compared with that of SN 1998bw, from [4]. the pre-Swift era. This includes, among many others, the well- focused the majority of the content on achievements made studied events GRB 060218/SN 2006aj, GRB 100316D/SN in the 10 years since [11] was published. In this review and 2010bh, GRB 111209A/SN 2011kl, GRB 120422A/SN 2012bz, many others [12–19], thorough historical accounts of the GRB 130427A/SN 2013cq, and GRB 130702A/SN 2013dx. A development of the gamma-ray burst supernova (GRB-SN) full list of the references to these well-studied spectroscopic connection are presented, and we encourage the reader to GRB-SN associations is found in Table 4. consult the detailed presentation given in section one of [11] This review paper represents a continuation of other for further details. In Tables 2 and 3 we present the most review articles presented to date, including the seminal comprehensive database yet compiled of the observational work by Woosley and Bloom (2006) [11]. As such, we have and physical properties of the GRB prompt emission and Advances in Astronomy 3 011121 021211 15 030329 041006 050525A 060904B 20 081007 (mag) 090618 R 091127 101219B 111209A 25 130702A GRB-SN bumps 130831A 140606B 10−3 0.01 0.1 1 10 100 t−t0 (observer-frame days) Figure 3: A mosaic of GRB-SNe (AG + SN). Clear SN bumps are observed for all events except SN 2003dh, for which the SN’s properties had to be carefully decomposed from photometric and spectroscopic observations [7]. The lack of an unambiguous SN bump in this case is not surprising given the brightness of its AG relative to the other GRB-SN in the plot: SN 2013dx was at a comparable redshift ( = 0.145, compared with = 0.1685 for 2003dh), but its AG was much fainter (2–5 mag) at a given moment in time. The redshift range probed in this mosaic spans almost an order of magnitude (0.145 < < 1.006) and shows the variation in peak observed magnitude for GRB-SNe. It is important to remember that given the large span of distances probed here, observer-frame -band samples a wide range of rest-frame SEDs (from -band to -band). GRB 090618 GRB 090618 0.01 0.1 GRB 090618 AG + SN + host AG + SN SN 0.1 10−3 0.01 10−4 0.01 −3 10 SN model −5 −4 10 Flux density (mJy) density Flux (mJy) density Flux 10 AG model (mJy) density Flux 10−3 0.1 1 10 100 0.1 1 10 100 10 100 t−t0 (days) t−t0 (days) t−t0 (days) (a) (b) (c) Figure 4: An example decomposition of the optical (-band) light curve of GRB 090618 [10]. (a) For a given GRB-SN event, the single-filter monochromatic flux is attributed as arising from three sources: the AG, the SN, and a constant source of flux from the host galaxy. (b)Once the observations have been dereddened, the host flux is removed, either via the image-subtraction technique or by being mathematically subtracted away. At this point a mathematical model composed of one or more power laws punctuated by break-times is fit to the early light curve to determine the temporal behaviour of the AG. (c) Once the AG model has been determined, it is subtracted from the observations leaving just light from the SN. GRB-SNe, respectively, which consists of 46 GRB-SNe. It is been renormalized to this cosmological model. Foreground the interpretation of these data which forms a substantial extinctions were calculated using the dust extinction maps contribution to this review. We have adopted the grading of [21, 22]. Unless stated otherwise, errors are statistical only. scheme devised by [17] to assign a significance of the GRB- Nomenclature is as follows: denotes the standard deviation SN association to each event, where A is strong spectroscopic of a sample, whereas the root-mean square of a sample is evidence, B is a clear light curve bump as well as some expressed as RMS. A symbol with an overplotted bar denotes spectroscopic evidence resembling a GRB-SN, C is a clear an average value.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta­ level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis.
    [Show full text]
  • Massimiliano De Pasquale, Phd
    Prot. n. 0070016 del 29/07/2020 - [UOR: SI001070 - Classif. II/7] !1 Massimiliano De Pasquale, PhD a) Personal Details Date and Place of Birth: 3 August 1975, Messina (Italy). Nationality: Italian. Current Address: Istanbul University, Beyazıt Campus, Department of Astronomy and Space Sciences. Beyazıt, Istanbul, 34119, Turkey. Telephone: +90 505 033 6800 Fax: +90 2124400370 E-mail: [email protected] b) Education 1999–2002 PhD in Physics at University of Rome “La Sapienza”, Italy. Dissertation delivered on 20/01/2003. Title: “Progenitors and energy sources of Gamma-ray Bursts: a study of BeppoSAX observation archive”. Supervisors: Dr. L. Piro, Prof. R. Ruffini. Final grade: “very good”. 1993–1999 Master of Science in Physics at University of Messina, Italy. Dissertation delivered on 20/10/1999. Title: "Estimates of ultra high energy neutrino fluxes from Gamma-ray Bursts detectable by large scale Cherenkov submarine telescopes”. Final grade: 110/110 cum laude. c) Professional History November 2016 – present: Assistant Professor at Istanbul University, Department of Astronomy and Space Sciences. May 2015 – October 2016: Research Associate – Swift UV/Optical Telescope (UVOT) Instrument Scientist at Mullard Space Science Laboratory, University College London (MSSL- UCL). UVOT Burst Support Scientist (UBS) in the Swift Gamma-ray Burst (GRB) mission. 2014 – April 2015: Post-Doctoral position at Institute of Space Astrophysics and Cosmic Physics of Palermo (IASF-Palermo), Italy. X-ray Telescope Burst Support Scientist (XBS) and Burst Advocate (BA) in the Swift GRB mission. 2013 – 2014: Research Associate – Swift/UVOT Instrument Scientist at MSSL-UCL. UBS and BA in the Swift GRB mission. 2011 – 2012: Post-Doctoral Research Scholar at University of Nevada, Las Vegas, USA.
    [Show full text]
  • JOHN R. THORSTENSEN Address
    CURRICULUM VITAE: JOHN R. THORSTENSEN Address: Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755-3528; (603)-646-2869 [email protected] Undergraduate Studies: Haverford College, B. A. 1974 Astronomy and Physics double major, High Honors in both. Graduate Studies: Ph. D., 1980, University of California, Berkeley Astronomy Department Dissertation : \Optical Studies of Faint Blue X-ray Stars" Graduate Advisor: Professor C. Stuart Bowyer Employment History: Department of Physics and Astronomy, Dartmouth College: { Professor, July 1991 { present { Associate Professor, July 1986 { July 1991 { Assistant Professor, September 1980 { June 1986 Research Assistant, Space Sciences Lab., U.C. Berkeley, 1975 { 1980. Summer Student, National Radio Astronomy Observatory, 1974. Summer Student, Bartol Research Foundation, 1973. Consultant, IBM Corporation, 1973. (STARMAP program). Honors and Awards: Phi Beta Kappa, 1974. National Science Foundation Graduate Fellow, 1974 { 1977. Dorothea Klumpke Roberts Award of the Berkeley Astronomy Dept., 1978. Professional Societies: American Astronomical Society Astronomical Society of the Pacific International Astronomical Union Lifetime Publication List * \Can Collapsed Stars Close the Universe?" Thorstensen, J. R., and Partridge, R. B. 1975, Ap. J., 200, 527. \Optical Identification of Nova Scuti 1975." Raff, M. I., and Thorstensen, J. 1975, P. A. S. P., 87, 593. \Photometry of Slow X-ray Pulsars II: The 13.9 Minute Period of X Persei." Margon, B., Thorstensen, J., Bowyer, S., Mason, K. O., White, N. E., Sanford, P. W., Parkes, G., Stone, R. P. S., and Bailey, J. 1977, Ap. J., 218, 504. \A Spectrophotometric Survey of the A 0535+26 Field." Margon, B., Thorstensen, J., Nelson, J., Chanan, G., and Bowyer, S.
    [Show full text]
  • 1 NASA Goddard Space Flight Center
    Source of Acquisition 1 NASA Goddard Space Flight Center \> SN 1987A AFTER 18 YEARS: MID-INFRARED GEMINI and SPITZER OBSERVATIONS OF THE REMNANT Patrice Bouchet1,2, Eli Dwek3, John Danziger4, Richard G. Arendt 5, I. James M. De Buizer', Sangwook Park7, Nicholas B. SuntzefF2, Robert P. Kirshners, and Peter Challis ABSTRACT We present high resolution 11.7 and 18.3 pm mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 pm flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 pm, on day 6130 with the IRAC in 3.6- 8 pm region, and on day 6190 with the IRS in the 12-37 ,urn instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662:; K, and the emitting dust mass is (2.6:;;:) x MB.Lines of [Ne 111 12.82 pm and [Ne 1111 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si 113 34.8 pm line. We also detect two lines near 26 pm which we tentatively ascribe to [Fe 117 25.99 pm and [0 IV] 25.91 pm. Comparison of the mid-IR Gemini 11.7 pm image with X-ray images obtained by Chandra, UV- optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths.
    [Show full text]
  • A Stripped Helium Star in the Potential Black Hole Binary LB-1 A
    A&A 633, L5 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937343 & c ESO 2020 Astrophysics LETTER TO THE EDITOR A stripped helium star in the potential black hole binary LB-1 A. Irrgang1, S. Geier2, S. Kreuzer1, I. Pelisoli2, and U. Heber1 1 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany e-mail: [email protected] 2 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Received 18 December 2019 / Accepted 1 January 2020 ABSTRACT +11 Context. The recently claimed discovery of a massive (MBH = 68−13 M ) black hole in the Galactic solar neighborhood has led to controversial discussions because it severely challenges our current view of stellar evolution. Aims. A crucial aspect for the determination of the mass of the unseen black hole is the precise nature of its visible companion, the B-type star LS V+22 25. Because stars of different mass can exhibit B-type spectra during the course of their evolution, it is essential to obtain a comprehensive picture of the star to unravel its nature and, thus, its mass. Methods. To this end, we study the spectral energy distribution of LS V+22 25 and perform a quantitative spectroscopic analysis that includes the determination of chemical abundances for He, C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe. Results. Our analysis clearly shows that LS V+22 25 is not an ordinary main sequence B-type star. The derived abundance pattern exhibits heavy imprints of the CNO bi-cycle of hydrogen burning, that is, He and N are strongly enriched at the expense of C and O.
    [Show full text]
  • HST Public Lecture Series
    WelcomeWelcome toto thethe SpaceSpace TelescopeTelescope ScienceScience InstituteInstitute’’ss PublicPublic LectureLecture SeriesSeries zz YourYour host:host: MaxMax MutchlerMutchler zz LithographsLithographs onon tabletable z PleasePlease taketake oneone perper personperson TONIGHT TransNeptunianTransNeptunian BinariesBinaries andand CollisionCollision Families:Families: ProbesProbes ofof OurOur LocalLocal DustDust DiskDisk SusanSusan BenecchiBenecchi MayMay 5,5, 20092009 88 PMPM STScISTScI AuditoriumAuditorium UpcomingUpcoming TalksTalks zz JuneJune 2,2, 20092009 –– JasonJason TumlinsonTumlinson,, TheThe InvisibleInvisible Galaxy:Galaxy: NewNew ViewsViews ofof thethe MilkyMilky WayWay zz JulyJuly 7,7, 20092009 –– DouglasDouglas Long,Long, TheThe MysteryMystery ofof thethe ‘‘BeBe’’ StarsStars WebWeb SiteSite && WebcastWebcast • Google “hubble lecture” • http://hubblesite.org/go/talks • List of upcoming speakers • Link to current webcast • Links to previous webcasts Scientific Symposium May 4-7 Public Lecture May 8 at 7:00 PM at the Maryland Science Center: Dr. Steven Squyers (Cornell): Roving Mars Hubble Servicing Mission 4 Launch currently set for May 11, 2009 Two Space Shuttles sitting on the launch pad Hubble was deployed and is serviced by the Space Shuttle 1990 1993 1997 1999 2002 2009 5 days of spacewalking! Hubble mission milestones as chronicled by it’s workhorse: Wide Field Planetary Camera 2 (WFPC2, to be replaced with WFC3) “Top 10 reasons why the Hubble telescope isn’t working…” WFPC2 installed during servicing mission 1
    [Show full text]
  • Remerciements – Unité 1
    TVO ILC SNC1D Remerciements Remerciements – Unité 1 Graphs, diagrams, illustrations, images in this course, unless otherwise specified, are ILC created, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. Intro Video, Copyright © 2018 The Ontario Educational Communications Authority. All rights reserved. All title artwork and graphics, unless otherwise specified, Copyright © 2018The Ontario Educational Communications Authority. All rights reserved. Logo: Science Presse , Agence Science-Presse, URL: https://www.sciencepresse.qc.ca/, Accessed 14/01/2019. Logo: Curium, Curium, URL: https://curiummag.com/wp-content/uploads/2017/10/logo_ curium-web.png, Accessed 14/01/2019. Logo: Science Étonnante, David Louapre, URL: https://sciencetonnante.wordpress.com/, Accessed 20/03/2018, © 2018 HowStuffWorks, a division of InfoSpace Holdings LLC, a System1 Company. Blog, blogging and blogglers theme, djvstock/iStock/Getty Images Logo: Wordpress, WordPress.com, Automattic Inc., URL: https://wordpress.com/, Accessed 20/03/2018, © The WordPress Foundation. Logo: Wix, Wix.com, Inc., URL: https://static.wixstatic.com/ media/9ab0d1_39d56f21398048df8af89aab0cec67b8~mv1.png, Accessed 14/01/2019. Logo: Blogger, Blogger, Inc., ZyMOS, URL: https://commons.wikimedia.org/wiki/File:Blogger. svg, Accessed 20/03/2018, © Google LLC. HOME A film by Yann Arthus-Bertrand, GoodPlanet Foundation, Europacorp and Elzévir Films, URL: https://www.youtube.com/watch?v=GItD10Joaa0, Published 04/02/2009, Accessed 20/04/2018, Courtesy of the GoodPlanet
    [Show full text]
  • Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: Gw170817 and Grb 170817A
    Draft version October 15, 2017 Typeset using LATEX twocolumn style in AASTeX61 GRAVITATIONAL WAVES AND GAMMA-RAYS FROM A BINARY NEUTRON STAR MERGER: GW170817 AND GRB 170817A B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 F. Acernese,3, 4 K. Ackley,5, 6 C. Adams,7 T. Adams,8 P. Addesso,9 R. X. Adhikari,1 V. B. Adya,10 C. Affeldt,10 M. Afrough,11 B. Agarwal,12 M. Agathos,13 K. Agatsuma,14 N. Aggarwal,15 O. D. Aguiar,16 L. Aiello,17, 18 A. Ain,19 P. Ajith,20 B. Allen,10, 21, 22 G. Allen,12 A. Allocca,23, 24 M. A. Aloy,25 P. A. Altin,26 A. Amato,27 A. Ananyeva,1 S. B. Anderson,1 W. G. Anderson,21 S. V. Angelova,28 S. Antier,29 S. Appert,1 K. Arai,1 M. C. Araya,1 J. S. Areeda,30 N. Arnaud,29, 31 K. G. Arun,32 S. Ascenzi,33, 34 G. Ashton,10 M. Ast,35 S. M. Aston,7 P. Astone,36 D. V. Atallah,37 P. Aufmuth,22 C. Aulbert,10 K. AultONeal,38 C. Austin,2 A. Avila-Alvarez,30 S. Babak,39 P. Bacon,40 M. K. M. Bader,14 S. Bae,41 P. T. Baker,42 F. Baldaccini,43, 44 G. Ballardin,31 S. W. Ballmer,45 S. Banagiri,46 J. C. Barayoga,1 S. E. Barclay,47 B. C. Barish,1 D. Barker,48 K. Barkett,49 F. Barone,3, 4 B. Barr,47 L. Barsotti,15 M. Barsuglia,40 D. Barta,50 J.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Plasmas in Gamma-Ray Bursts: Particle Acceleration, Magnetic Fields, Radiative Processes and Environments
    galaxies Article Plasmas in Gamma-Ray Bursts: Particle Acceleration, Magnetic Fields, Radiative Processes and Environments Asaf Pe’er Physics Department, Bar Ilan University, Ramat-Gan 52900, Israel; [email protected]; Tel.: +972-3-5318438 Received: 22 November 2018; Accepted: 7 February 2019; Published: 15 February 2019 Abstract: Being the most extreme explosions in the universe, gamma-ray bursts (GRBs) provide a unique laboratory to study various plasma physics phenomena. The complex light curve and broad-band, non-thermal spectra indicate a very complicated system on the one hand, but, on the other hand, provide a wealth of information to study it. In this chapter, I focus on recent progress in some of the key unsolved physical problems. These include: (1) particle acceleration and magnetic field generation in shock waves; (2) possible role of strong magnetic fields in accelerating the plasmas, and accelerating particles via the magnetic reconnection process; (3) various radiative processes that shape the observed light curve and spectra, both during the prompt and the afterglow phases, and finally (4) GRB environments and their possible observational signature. Keywords: jets; radiation mechanism: non-thermal; galaxies: active; gamma-ray bursts; TBD 1. Introduction Gamma-ray bursts (GRBs) are the most extreme explosions known since the big bang, releasing as much as 1055 erg (isotropically equivalent) in a few seconds, in the form of gamma rays [1]. Such a huge amount of energy released in such a short time must be accompanied by a relativistic motion of a relativistically expanding plasma. There are two separate arguments for that. First, the existence of > ± photons at energies ∼ MeV as are observed in many GRBs necessitates the production of e pairs by photon–photon interactions, as long as the optical depth for such interactions is greater than unity.
    [Show full text]