The Marketplace of High Performance Computing

Total Page:16

File Type:pdf, Size:1020Kb

The Marketplace of High Performance Computing The Marketplace of High Performance Computing a1 a;b2 c3 Erich Strohmaier , Jack J. Dongarra , Hans W. Meuer d4 and Horst D. Simon a Computer Science Department, University of Tennessee, Knoxvil le, TN 37996 b Mathematical ScienceSection, Oak Ridge National Lab., Oak Ridge, TN 37831 c Computing Center, University of Mannheim, D-68131 Mannheim, Germany d NERSC, Lawrence Berkeley Laboratory, 50A, Berkeley, CA 94720 Abstract In this pap er we analyze the ma jor trends and changes in the High Performance Computing HPC market place since the b eginning of the journal `Parallel Com- puting'. The initial success of vector computers in the seventies was driven byraw p erformance. The intro duction of this typ e of computer systems started the area of `Sup ercomputing'. In the eighties the availability of standard developmentenviron- ments and of application software packages b ecame more imp ortant. These criteria determined next to p erformance the success of MP vector systems esp ecially at in- dustrial customers. MPPs b ecame successful in the early nineties due to their b etter price/p erformance ratios whichwas enabled by the attack of the `killer-micros'. In the lower and medium market segments the MPPs were replaced by micropro cessor based SMP systems in the middle of the nineties. This success was the basis for the emerging cluster concepts for the very high end systems. In the last few years only the companies whichhaveentered the emerging markets for massive paral- lel database servers and nancial applications attract enough business volume to b e able to supp ort the hardware development for the numerical high end comput- ing market as well. Success in the traditional oating p ointintensive engineering applications seems to b e no longer sucient for survival in the market. Key words: High Performance Computing, HPC Market, Sup ercomputer Market, HPC technology, Sup ercomputer market, Sup ercomputer technology 1 e-mail: [email protected] 2 e-mail: [email protected] 3 e-mail: [email protected] 4 e-mail: [email protected] Preprint submitted to Elsevier Preprint 26 July 1999 1 Intro duction \The Only Thing Constant Is Change" | Lo oking back on the last decades this seem certainly to b e true for the market of High-Performance Computing systems HPC. This market was always characterized by a rapid change of vendors, architectures, technologies and the usage of systems. Despite all these changes the evolution of p erformance on a large scale however seems to b e a very steady and continuous pro cess. Mo ore's Law is often cited in this context. If we plot the p eak p erformance of various computers of the last 5 decades in gure 1 which could have b een called the `sup ercomputers' of there time [4,2] we indeed see howwell this law holds for almost the complete lifespan of mo dern computing. On average we see an increase in p erformance of two magnitudes of order every decade. Moore's Law ASCI Red 1 TFlop/s TMC CM-5 Cray T3D TMC CM-2 1 GFlop/s Cray 2 Cray X-MP Cray 1 CDC 7600 IBM 360/195 1 MFlop/s CDC 6600 IBM 7090 1 KFlop/s UNIVAC 1 EDSAC 1 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Fig. 1. Performance of the fastest computer systems for the last 5 decades compared to Mo ore's Law. In this pap er we analyze the ma jor trends and changes in the HPC market for the last three decades. For this we fo cus on systems which had at least some commercial relevance. Historical overviews with di erent fo cus can b e found in [8,9]. In the second half of the seventies the intro duction of vector computer sys- tems marked the b eginning of mo dern Sup ercomputing. These systems o ered a p erformance advantage of at least one order of magnitude over conventional systems of that time. Raw p erformance was the main if not the only selling argument. In the rst half of the eighties the integration of vector system 2 in conventional computing environments b ecame more imp ortant. Only the manufacturers which provided standard programming environments, op erat- ing systems and key applications were successful in getting industrial cus- tomers and survived. Performance was mainly increased by improved chip technologies and by pro ducing shared memory multi pro cessor systems. Fostered by several Government programs massive parallel computing with scalable systems using distributed memory got in the fo cus of interest end of the eighties. Overcoming the hardware scalability limitations of shared mem- ory systems was the main goal. The increase of p erformance of standard micro pro cessors after the RISC revolution together with the cost advantage of large scale pro ductions formed the basis for the \Attack of the Killer Micro". The transition from ECL to CMOS chip technology and the usage of \o the shelf " micro pro cessor instead of custom designed pro cessors for MPPs was the con- sequence. Traditional design fo cus for MPP system was the very high end of p erformance. In the early nineties the SMP systems of various workstation manufacturers as well as the IBM SP series which targeted the lower and medium market segments gained great p opularity. Their price/p erformance ratios were b etter due to the missing overhead in the design for supp ort of the very large con g- urations and due to cost advantages of the larger pro duction numb ers. Due to the vertical integration of p erformance it was no longer economically feasible to pro duce and fo cus on the highest end of computing p ower alone. The design fo cus for new systems shifted to the market of medium p erformance systems. The acceptance of MPP system not only for engineering applications but also for new commercial applications esp ecially for database applications empha- sized di erent criteria for market success such as stability of system, continuity of the manufacturer and price/p erformance. Success in commercial environ- ments is now a new imp ortant requirement for a successful Sup ercomputer business. Due to these factors and the consolidation in the number of vendors in the market hierarchical systems build with comp onents designed for the broader commercial market are currently replacing homogeneous systems at the very high end of p erformance. Clusters build with comp onents of the shelf also gain more and more attention. 2 1976{1985: The rst Vector Computers If one had to pick one p erson asso ciated with Sup ercomputing it would b e without doubt Seymour Cray. Coming from Control Data Corp oration CDC where he had designed the CDC 6600 series in the sixties he had started his own company `Cray Research Inc.' in 1972. The delivery of the rst Cray1 3 vector computer in 1976 to the Los Alamos Scienti c Lab oratory marked the b eginning of the mo dern area of `Sup ercomputing'. The Cray1 was character- ized by a new architecture whichgave it a p erformance advantage of more than an order of magnitude over scalar systems at that time. Beginning with this system high-p erformance computers had a substantially di erent architecture from main stream computers. Before the Cray 1 systems which sometimes were called `Sup ercomputer' like the CDC 7600 still had b een scalar systems and did not di er in their architecture to this extend from comp eting main stream systems. For more than a decade sup ercomputer was a synonym for vector computer. Only at the b eginning of the nineties would the MPPs b e able to challenge or outp erform their MP vector comp etitors. 2.1 Cray 1 The architecture of the vector units of the Cray1 was the basis for the complete family of Crayvector systems into the nineties including the Cray 2, CrayX- MP, Y-MP, C-90, J-90 and T-90. Common feature was not only the usage of vector instructions and vector register but esp ecially the close coupling of the fast main memory with the CPU. The system did not have a separate scalar unit but integrated the scalar functions eciently in the vector cpu with the advantage of high scalar computing sp eed as well. One common remark ab out the Cray1 was often that it was not only the fastest vector system but esp ecially also the fastest scalar system of it's time. The Cray1was also a true Load/Store architecture. A concept which later entered mainstream computing with the RISC pro cessors. In the X-MP and follow on architecture, three simultaneous Load/Store op erations p er CPU were supp orted in parallel from main memory without using caches. This gave the systems exceptionally high memory to register bandwidth and facilitated the ease of use greatly. The Cray1 was well accepted in the scienti c community and 65 systems were sold till the end of it's pro duction in 1984. In the US the initial acceptance was largely driven bygovernment lab oratories and classi ed sites for which raw p erformance was essential. Due to it's p otential the Cray 1 so on gained great p opularity in general research lab oratories and at universities. 2.2 Cyber 205 Main comp etitor for the Cray1 wasavector computer from CDC the Cy- b er 205. This system was based on the design of the Star 100 of which only 4 systems had b een build after it's rst delivery in 1974.
Recommended publications
  • Annual Reports of FCCSET Subcommittee Annual Trip Reports To
    Annual Reports of FCCSET Subcommittee Annual trip reports to supercomputer manufacturers trace the changes in technology and in the industry, 1985-1989. FY 1986 Annual Report of the Federal Coordinating Council on Science, Engineering and Technology (FCCSET). by the FCCSET Ocnmittee. n High Performance Computing Summary During the past year, the Committee met on a regular basis to review government and industry supported programs in research, development, and application of new supercomputer technology. The Committee maintains an overview of commercial developments in the U.S. and abroad. It regularly receives briefings from Government agency sponsored R&D efforts and makes such information available, where feasible, to industry and universities. In addition, the committee coordinates agency supercomputer access programs and promotes cooperation with particular emphasis on aiding the establish- ment of new centers and new communications networks. The Committee made its annual visit to supercomputer manufacturers in August and found that substantial progress had been made by Cray Research and ETA Systems toward developing their next generations of machines. The Cray II and expanded Cray XMP series supercomputers are now being marketed commercially; the Committee was briefed on plans for the next generation of Cray machines. ETA Systems is beyond the prototype stage for the ETA-10 and planning to ship one machine this year. A ^-0 A 1^'Tr 2 The supercomputer vendors continue to have difficulty in obtaining high performance IC's from U.S. chip makers, leaving them dependent on Japanese suppliers. In some cases, the Japanese chip suppliers are the same companies, e.g., Fujitsu, that provide the strongest foreign competition in the supercomputer market.
    [Show full text]
  • Emerging Technologies Multi/Parallel Processing
    Emerging Technologies Multi/Parallel Processing Mary C. Kulas New Computing Structures Strategic Relations Group December 1987 For Internal Use Only Copyright @ 1987 by Digital Equipment Corporation. Printed in U.S.A. The information contained herein is confidential and proprietary. It is the property of Digital Equipment Corporation and shall not be reproduced or' copied in whole or in part without written permission. This is an unpublished work protected under the Federal copyright laws. The following are trademarks of Digital Equipment Corporation, Maynard, MA 01754. DECpage LN03 This report was produced by Educational Services with DECpage and the LN03 laser printer. Contents Acknowledgments. 1 Abstract. .. 3 Executive Summary. .. 5 I. Analysis . .. 7 A. The Players . .. 9 1. Number and Status . .. 9 2. Funding. .. 10 3. Strategic Alliances. .. 11 4. Sales. .. 13 a. Revenue/Units Installed . .. 13 h. European Sales. .. 14 B. The Product. .. 15 1. CPUs. .. 15 2. Chip . .. 15 3. Bus. .. 15 4. Vector Processing . .. 16 5. Operating System . .. 16 6. Languages. .. 17 7. Third-Party Applications . .. 18 8. Pricing. .. 18 C. ~BM and Other Major Computer Companies. .. 19 D. Why Success? Why Failure? . .. 21 E. Future Directions. .. 25 II. Company/Product Profiles. .. 27 A. Multi/Parallel Processors . .. 29 1. Alliant . .. 31 2. Astronautics. .. 35 3. Concurrent . .. 37 4. Cydrome. .. 41 5. Eastman Kodak. .. 45 6. Elxsi . .. 47 Contents iii 7. Encore ............... 51 8. Flexible . ... 55 9. Floating Point Systems - M64line ................... 59 10. International Parallel ........................... 61 11. Loral .................................... 63 12. Masscomp ................................. 65 13. Meiko .................................... 67 14. Multiflow. ~ ................................ 69 15. Sequent................................... 71 B. Massively Parallel . 75 1. Ametek.................................... 77 2. Bolt Beranek & Newman Advanced Computers ...........
    [Show full text]
  • (52) Cont~Ol Data
    C) (52) CONT~OL DATA literature and Distribution Services ~~.) 308 North Dale Street I st. Paul. Minnesota 55103 rJ 1 August 29, 1983 "r--"-....." (I ~ __ ,I Dear Customer: Attached is the third (3) catalog supplement since the 1938 catalog was published . .. .·Af ~ ~>J if-?/t~--62--- G. F. Moore, Manager Literature & Distribution Services ,~-" l)""... ...... I _._---------_._----_._----_._-------- - _......... __ ._.- - LOS CATALOG SUPPLEPtENT -- AUGUST 1988 Pub No. Rev [Page] TITLE' [ extracted from catalog entry] Bind Price + = New Publication r = Revision - = Obsolete r 15190060 [4-07] FULL SCREEN EDITOR (FSEDIT) RM (NOS 1 & 2) .......•...•.•...•••........... 12.00 r 15190118 K [4-07] NETWORK JOB ENTRY FACILITY (NJEF) IH8 (NOS 2) ........................... 5.00 r 15190129 F [4-07] NETWORK JOB ENTRY FACILITY (NJEF) RM (NOS 2) .........•.......•........... + 15190150 C [4-07] NETWORK TRANSFER FACILITY (NTF) USAGE (NOS/VE) .......................... 15.00 r 15190762 [4-07] TIELINE/NP V2 IHB (L642) (NOS 2) ........................................ 12.00 r 20489200 o [4-29] WREN II HALF-HEIGHT 5-114" DISK DRIVE ................................... + 20493400 [4-20] CDCNET DEVICE INTERFACE UNITS ........................................... + 20493600 [4-20] CDCNET ETHERNET EQUIPMENT ............................................... r 20523200 B [4-14] COMPUTER MAINTENANCE SERVICES - DEC ..................................... r 20535300 A [4-29] WREN II 5-1/4" RLL CERTIFIED ............................................ r 20537300 A [4-18] SOFTWARE
    [Show full text]
  • Musings RIK FARROWOPINION
    Musings RIK FARROWOPINION Rik is the editor of ;login:. While preparing this issue of ;login:, I found myself falling down a rabbit hole, like [email protected] Alice in Wonderland . And when I hit bottom, all I could do was look around and puzzle about what I discovered there . My adventures started with a casual com- ment, made by an ex-Cray Research employee, about the design of current super- computers . He told me that today’s supercomputers cannot perform some of the tasks that they are designed for, and used weather forecasting as his example . I was stunned . Could this be true? Or was I just being dragged down some fictional rabbit hole? I decided to learn more about supercomputer history . Supercomputers It is humbling to learn about the early history of computer design . Things we take for granted, such as pipelining instructions and vector processing, were impor- tant inventions in the 1970s . The first supercomputers were built from discrete components—that is, transistors soldered to circuit boards—and had clock speeds in the tens of nanoseconds . To put that in real terms, the Control Data Corpora- tion’s (CDC) 7600 had a clock cycle of 27 .5 ns, or in today’s terms, 36 4. MHz . This was CDC’s second supercomputer (the 6600 was first), but included instruction pipelining, an invention of Seymour Cray . The CDC 7600 peaked at 36 MFLOPS, but generally got 10 MFLOPS with carefully tuned code . The other cool thing about the CDC 7600 was that it broke down at least once a day .
    [Show full text]
  • Network Working Group S. Kirkpatrick Request for Comments: 1166 M
    Network Working Group S. Kirkpatrick Request for Comments: 1166 M. Stahl Obsoletes RFCs: 1117, 1020, 997, 990, 960, 943, M. Recker 943, 923, 900, 870, 820, 790, 776, 770, 762, July 1990 758, 755, 750, 739, 604, 503, 433, 349 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is a status report on the network numbers and autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Table of Contents Introduction.................................................... 1 Network Numbers................................................. 4 Class A Networks................................................ 7 Class B Networks................................................ 8 Class C Networks................................................ 47 Other Reserved Internet Addresses............................... 100 Network Totals.................................................. 101 Autonomous System Numbers....................................... 102 Documents....................................................... 111 Contacts........................................................ 115 Security Considerations......................................... 182 Authors' Addresses.............................................. 182 Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information
    [Show full text]
  • A PARALLEL IMPLEMENTATION of BACKPROPAGATION NEURAL NETWORK on MASPAR MP-1 Faramarz Valafar Purdue University School of Electrical Engineering
    Purdue University Purdue e-Pubs ECE Technical Reports Electrical and Computer Engineering 3-1-1993 A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK ON MASPAR MP-1 Faramarz Valafar Purdue University School of Electrical Engineering Okan K. Ersoy Purdue University School of Electrical Engineering Follow this and additional works at: http://docs.lib.purdue.edu/ecetr Valafar, Faramarz and Ersoy, Okan K., "A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK ON MASPAR MP-1" (1993). ECE Technical Reports. Paper 223. http://docs.lib.purdue.edu/ecetr/223 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. TR-EE 93-14 MARCH 1993 A PARALLEL IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK ON MASPAR MP-1" Faramarz Valafar Okan K. Ersoy School of Electrical Engineering Purdue University W. Lafayette, IN 47906 - * The hdueUniversity MASPAR MP-1 research is supponed in pan by NSF Parallel InfrasmctureGrant #CDA-9015696. - 2 - ABSTRACT One of the major issues in using artificial neural networks is reducing the training and the testing times. Parallel processing is the most efficient approach for this purpose. In this paper, we explore the parallel implementation of the backpropagation algorithm with and without hidden layers [4][5] on MasPar MP-I. This implementation is based on the SIMD architecture, and uses a backpropagation model which is more exact theoretically than the serial backpropagation model. This results in a smoother convergence to the solution. Most importantly, the processing time is reduced both theoretically and experimentally by the order of 3000, due to architectural and data parallelism of the backpropagation algorithm.
    [Show full text]
  • The Helios Operating System
    The Helios Operating System PERIHELION SOFTWARE LTD May 1991 COPYRIGHT This document Copyright c 1991, Perihelion Software Limited. All rights reserved. This document may not, in whole or in part be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent in writing from Perihelion Software Limited, The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE. UK. Printed in the UK. Acknowledgements The Helios Parallel Operating System was written by members of the He- lios group at Perihelion Software Limited (Paul Beskeen, Nick Clifton, Alan Cosslett, Craig Faasen, Nick Garnett, Tim King, Jon Powell, Alex Schuilen- burg, Martyn Tovey and Bart Veer), and was edited by Ian Davies. The Unix compatibility library described in chapter 5, Compatibility,im- plements functions which are largely compatible with the Posix standard in- terfaces. The library does not include the entire range of functions provided by the Posix standard, because some standard functions require memory man- agement or, for various reasons, cannot be implemented on a multi-processor system. The reader is therefore referred to IEEE Std 1003.1-1988, IEEE Stan- dard Portable Operating System Interface for Computer Environments, which is available from the IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Pis- cataway, NJ 08855-1331, USA. It can also be obtained by telephoning USA (201) 9811393. The Helios software is available for multi-processor systems hosted by a wide range of computer types. Information on how to obtain copies of the Helios software is available from Distributed Software Limited, The Maltings, Charlton Road, Shepton Mallet, Somerset BA4 5QE, UK (Telephone: 0749 344345).
    [Show full text]
  • Future of Supercomputing Yoshio Oyanagi ∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 149 (2002) 147–153 www.elsevier.com/locate/cam Future of supercomputing Yoshio Oyanagi ∗ Department of Computer Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan Received 26 October 2001; received in revised form 11 February 2002 Abstract Supercomputing or High Performance Computing plays ever more important roles in industrial ÿelds as well as in basic research. Based upon the history of supercomputers in the last few decades, a personal view of the supercomputing in the ÿrst decade of the 21st century is presented. c 2002 Elsevier Science B.V. All rights reserved. Keywords: Supercomputers; HPC; Simulation; Computational science; Peta5ops computer 1. From supercomputing to high performance computing The ÿrst “supercomputer” Cray-1 was built by Seymour Cray in 1976 and people thought only a fewof such supercomputers wouldmeet the demand from science and engineering. At present, however, a notebook PC in your bag supersedes the computing power of Cray-1. Supercomputing has played important roles in industrial ÿelds such as automobile, aeronautics, building and civil engineering, electric and electronic engineering, material and pharmaceutics, as well as in basic research such as elementary particles, chemistry, condensed matter, genome, protein and complex systems. Supercomputers are regarded as the computers which have an order of magnitude higher performance. They are special expensive facilities which only government laboratories or universities or big companies can a<ord. Currently, although supercomputing is playing ever more important roles in various ÿelds, the word “supercomputer” is not very popular.
    [Show full text]
  • Seymour Cray: the Father of World Supercomputer
    History Research 2019; 7(1): 1-6 http://www.sciencepublishinggroup.com/j/history doi: 10.11648/j.history.20190701.11 ISSN: 2376-6700 (Print); ISSN: 2376-6719 (Online) Seymour Cray: The Father of World Supercomputer Si Hongwei Department of the History of Science, Tsinghua University, Beijing, China Email address: To cite this article: Si Hongwei. Seymour Cray: The Father of World Supercomputer. History Research. Vol. 7, No. 1, 2019, pp. 1-6. doi: 10.11648/j.history.20190701.11 Received : May 14, 2019; Accepted : June 13, 2019; Published : June 26, 2019 Abstract: Seymour R. Cray was an American engineer and supercomputer developer who designed a series of the fastest computers in the world in 1960-1980s. The difference between Cray and most other corporate engineers is that he often won those business battles. His success was attributable to his existence in a postwar culture where engineers were valued. He was able to also part of an extraordinary industry where revolutionary developments were encouraged, and even necessary. Lastly Cray is recognized as "the father of world supercomputer". From the perspective of science and technology history, this paper describes the history of Cray and his development of supercomputer. It also sums up his innovative ideas and scientific spirit. It provides a reference for supercomputer enthusiasts and peers in the history of computer research. Keywords: Seymour R. Cray, Supercomputer, Science and Technology History 1. Introduction 2. The Genius Seymour Supercomputer refers to the most advanced electronic computer system with the most advanced technology, the Seymour Cray was born on September 28th, 1925 in the fastest computing speed, the largest storage capacity and the town of Chippewa, Wisconsin.
    [Show full text]
  • Recent Supercomputing Development in Japan
    Supercomputing in Japan Yoshio Oyanagi Dean, Faculty of Information Science Kogakuin University 2006/4/24 1 Generations • Primordial Ages (1970’s) – Cray-1, 75APU, IAP • 1st Generation (1H of 1980’s) – Cyber205, XMP, S810, VP200, SX-2 • 2nd Generation (2H of 1980’s) – YMP, ETA-10, S820, VP2600, SX-3, nCUBE, CM-1 • 3rd Generation (1H of 1990’s) – C90, T3D, Cray-3, S3800, VPP500, SX-4, SP-1/2, CM-5, KSR2 (HPC ventures went out) • 4th Generation (2H of 1990’s) – T90, T3E, SV1, SP-3, Starfire, VPP300/700/5000, SX-5, SR2201/8000, ASCI(Red, Blue) • 5th Generation (1H of 2000’s) – ASCI,TeraGrid,BlueGene/L,X1, Origin,Power4/5, ES, SX- 6/7/8, PP HPC2500, SR11000, …. 2006/4/24 2 Primordial Ages (1970’s) 1974 DAP, BSP and HEP started 1975 ILLIAC IV becomes operational 1976 Cray-1 delivered to LANL 80MHz, 160MF 1976 FPS AP-120B delivered 1977 FACOM230-75 APU 22MF 1978 HITAC M-180 IAP 1978 PAX project started (Hoshino and Kawai) 1979 HEP operational as a single processor 1979 HITAC M-200H IAP 48MF 1982 NEC ACOS-1000 IAP 28MF 1982 HITAC M280H IAP 67MF 2006/4/24 3 Characteristics of Japanese SC’s 1. Manufactured by main-frame vendors with semiconductor facilities (not ventures) 2. Vector processors are attached to mainframes 3. HITAC IAP a) memory-to-memory b) summation, inner product and 1st order recurrence can be vectorized c) vectorization of loops with IF’s (M280) 4. No high performance parallel machines 2006/4/24 4 1st Generation (1H of 1980’s) 1981 FPS-164 (64 bits) 1981 CDC Cyber 205 400MF 1982 Cray XMP-2 Steve Chen 630MF 1982 Cosmic Cube in Caltech, Alliant FX/8 delivered, HEP installed 1983 HITAC S-810/20 630MF 1983 FACOM VP-200 570MF 1983 Encore, Sequent and TMC founded, ETA span off from CDC 2006/4/24 5 1st Generation (1H of 1980’s) (continued) 1984 Multiflow founded 1984 Cray XMP-4 1260MF 1984 PAX-64J completed (Tsukuba) 1985 NEC SX-2 1300MF 1985 FPS-264 1985 Convex C1 1985 Cray-2 1952MF 1985 Intel iPSC/1, T414, NCUBE/1, Stellar, Ardent… 1985 FACOM VP-400 1140MF 1986 CM-1 shipped, FPS T-series (max 1TF!!) 2006/4/24 6 Characteristics of Japanese SC in the 1st G.
    [Show full text]
  • A Look at Some Compilers MATERIALS from the DRAGON BOOK and WIKIPEDIA MICHAEL WOLLOWSKI
    2/11/20 A Look at some Compilers MATERIALS FROM THE DRAGON BOOK AND WIKIPEDIA MICHAEL WOLLOWSKI EQN oTakes inputs like “E sub 1” and produces commands for text formatter TROFF to produce “E1” 1 2/11/20 EQN EQN oTreating EQN as a language and applying compiler technologies has several benefits: oEase of implementation. oLanguage evolution. In response to user needs 2 2/11/20 Pascal Developed by Nicolas Wirth. Generated machine code for the CDC 6000 series machines To increase portability, the Pascal-P compiler generates P-code for an abstract stack machine. One pass recursive-descent compiler Storage is organized into 4 areas: ◦ Code for procedures ◦ Constants ◦ Stack for activation records ◦ Heap for data allocated by the new operator. Procedures may be nested, hence, activation record for a procedure contains both access and control links. CDC 6000 series The first member of the CDC 6000 series Was the supercomputer CDC 6600, Designed by Seymour Cray and James E. Thornton Introduced in September 1964 Performed up to three million instructions per second, three times faster than the IBM Stretch, the speed champion for the previous couple of years. It remained the fastest machine for five years until the CDC 7600 Was launched. The machine Was Freon refrigerant cooled. Control Data manufactured about 100 machines of this type, selling for $6 to $10 million each. 3 2/11/20 CDC 6000 series By Steve Jurvetson from Menlo Park, USA - Flickr, CC BY 2.0, https://commons.Wikimedia.org/w/index.php?curid=1114605 CDC 205 CDC 205 DKRZ 4 2/11/20 CDC 205 CDC 205 Wiring, davdata.nl Pascal 5 2/11/20 Pascal One of the compiler Writers states about the use of a one-pass compiler: ◦ Easy to implement ◦ Imposes severe restrictions on the quality of the generated code and suffers from relatively high storage requirements.
    [Show full text]
  • R00456--FM Getting up to Speed
    GETTING UP TO SPEED THE FUTURE OF SUPERCOMPUTING Susan L. Graham, Marc Snir, and Cynthia A. Patterson, Editors Committee on the Future of Supercomputing Computer Science and Telecommunications Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for ap- propriate balance. Support for this project was provided by the Department of Energy under Spon- sor Award No. DE-AT01-03NA00106. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations that provided support for the project. International Standard Book Number 0-309-09502-6 (Book) International Standard Book Number 0-309-54679-6 (PDF) Library of Congress Catalog Card Number 2004118086 Cover designed by Jennifer Bishop. Cover images (clockwise from top right, front to back) 1. Exploding star. Scientific Discovery through Advanced Computing (SciDAC) Center for Supernova Research, U.S. Department of Energy, Office of Science. 2. Hurricane Frances, September 5, 2004, taken by GOES-12 satellite, 1 km visible imagery. U.S. National Oceanographic and Atmospheric Administration. 3. Large-eddy simulation of a Rayleigh-Taylor instability run on the Lawrence Livermore National Laboratory MCR Linux cluster in July 2003.
    [Show full text]