Lower and Lower Middle Devonian Rugose Corals of the Central Great Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invertebrate Paleontology Devonian Goniatites from Nevada
N. Jb. Geol. Palaont. Abh. 122 3 337—342 Stuttgart. Juni 1965 Invertebrate Paleontology Earth Sciences Division Natural History Museum Devonian goniatites from Nevada By M. R. House University Museum, Oxford With plate 32 Abstract: Several goniatites recently found in the Nevada Limestone and Pilot Shale * Nevada are described. A new species, Erbenoceras erbeni, is erected for specimens from *< Lower Nevada Limestone in the Cortez Mountains and is thought to be of Emsian age. -im higher in the Nevada Limestone in the southern Roberts Mountains, but below the »3-known Siringocephahts-hezting level, occurs Cabrieroceras aff. crispiforme, which would -Tear to indicate a basal Givetian horizon. A poorly preserved lmitoceras is recorded ~tn the Pilot Shale in the Pahranagat Range. All these three genera are recorded from «Tada for the first time. Comments are made on the palaeogeographic significance of the Tjrrence of these distinctively European forms in the western United States. Introduction Through the kindness of Dr. J. G. JOHNSON of the University of Cali- nia at Los Angeles, several Devonian goniatite faunas have been sub- *rted for study and are reported on here. They include the first Middle Vvonian goniatites known from the western United States, and these serve * give a tentative placing of the Eifelian/Givetian boundary in the Nevada -nestone. Also there are two particularly interesting Lower Devonian rcimens which must be from near the level which has yielded the holotype ' Agoniatites nevadensis MILLER, which has recently been considered to be a '-cherticeras (HOUSE 1962, p. 262) and that which yielded Goniatites desidera- * WALCOTT which Dr. -
ANTC Environmental Assessment
U.S. Department of the Interior Bureau of Land Management Environmental Assessment DOI-BLM-NV-B010-2013-0024-EA Telecommunication Facilities at Kingston, Dyer, and Hickison Summit July 2013 Applicant: Arizona Nevada Tower Corporation 6220 McLeod Drive Ste. 100 Las Vegas, Nevada 89120 Battle Mountain District Bureau of Land Management 50 Bastian Road Battle Mountain, Nevada 89820 Table of Contents Page Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Background 1 1.3 Identifying Information 2 1.4 Location of Proposed Action 2 1.5 Preparing Office 2 1.6 Case File Numbers 2 1.7 Applicant 2 1.8 Proposed Action Summary 3 1.9 Conformance 3 1.10 Purpose & Need 3 1.11 Scoping, Public Involvement & Issues 4 Chapter 2 Proposed Action & Alternatives 11 2.1 Proposed Action 11 2.1.1 Best Management Practices 13 2.2 No Action Alternative 13 2.3 Alternatives Considered but Eliminated from Detailed Analysis 14 Chapter 3 Affected Environment & Environmental Consequences 15 3.1 Project Site Descriptions 15 3.2 Issues 16 3.2.1 Air Quality 18 3.2.1.1 Affected Environment 18 3.2.1.2 Environmental Consequences 18 3.2.2 Cultural/Historical Resources 18 3.2.2.1 Affected Environment 18 3.2.2.2 Environmental Consequences 18 3.2.3 Noxious Weeds/Invasive Non-native Plants 19 3.2.3.1 Affected Environment 19 3.2.3.2 Environmental Consequences 20 3.2.4 Native American Religious Concerns 20 3.2.4.1 Affected Environment 20 3.2.4.2 Environmental Consequences 20 3.2.5 Migratory Birds 21 3.2.5.1 Affected Environment 21 3.2.5.2 Environmental Consequences 22 3.2.6 Solid/Hazardous -
Nautiloid Shell Morphology
MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION -
Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11 -
Quaternary Fault and Fold Database of the United States
Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Diamond Valley fault (Class A) No. 1161 Last Review Date: 2000-06-06 citation for this record: Anderson, R.E., compiler, 2000, Fault number 1161, Diamond Valley fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:17 PM. Synopsis The Diamond Valley fault is along the precipitous east-facing bedrock escarpment of the Sulphur Spring Range adjacent to Diamond Valley near the southeastern corner of the Winnemucca 1:250,000 map. It includes a subparallel 6-km-long fault along the east margin of Union Mountain in Elko County. The Sulphur Spring Range is an east-tilted structural block similar to many ranges in the region. The range is also a north-trending horst, and the Diamond Valley fault is the east-bounding structure of the horst. The precipitous, convex-eastward bedrock escarpment along the fault is little incised by transverse drainages, and generally lacks the faceted spurs and wineglass valleys that tend to characterize the geomorphology of major active range blocks. The fault probably juxtaposes Quaternary alluvium against bedrock, but fault scarps and (or) lineaments on Quaternary surficial deposits or erosion surfaces are apparently lacking. Name Modified from dePolo (1998 #2845), who applied the name comments Diamond Valley fault zone to a single-trace north-striking fault mapped by Dohrenwend and Moring (1991 #282) at the base of the precipitous east-facing bedrock escarpment of the Sulphur Spring Range adjacent to Diamond Valley. -
Conventional Natural Gas Play Atlas Northeast British Columbia
����������������������������������� �������������������������� ������������������������������������� ���������������������� ������������������������������������������ Ministry of Energy, Mines and Petroleum Resources 1 CoverAtlas.indd 1 15/03/2006 1:55:13 PM British Columbia Ministry of Energy, Mines and Petroleum Resources Oil & Gas Division, Resource Development & Geoscience Branch 6th floor – 1810 Blanshard Street Victoria, British Columbia V8W 9N3 Contact: Vic Levson, Director Petroleum & Aggregate Geoscience E-mail: [email protected] Fax: (250) 952-0922 Web site: www.em.gov.bc.ca/oilandgas Library and Archives Canada Cataloguing in Publication Data Main entry under title: Conventional natural gas play atlas, northeast British Columbia (Petroleum geology publication ; 2006:1) Includes bibliographical references: p. ISBN 0-7726-5532-4 1. Natural gas reserves - British Columbia, Northern - Atlases. 2. Geology, Economic - British Columbia, Northern - Atlases. I. British Columbia. Resource Development and Geoscience Branch. II. Series. TN882.C32B74 2006 553.2’8509711870223 C2006-960061-9 2 Conventional Natural Gas Play Atlas: Northeast BC Ministry of Energy, Mines and Petroleum Resources 3 The Northeast BC Play Atlas The Resource Development and Geoscience Branch of the BC Ministry of Energy and Mines and Petroleum Resources (MEMPR) in partnership with the National Energy Board (NEB) have undertaken an assessment of British Columbia’s undiscovered resources. The final report entitled Northeast British Columbia’s Ultimate Potential for Natural Gas Report - 2006A is now available through both the NEB and MEMPR websites. To access the report on the provincial government website, go to: http://www.em.gov.bc.ca/subwebs/oilandgas/resource/cog/cog.htm. While this new report covers all of BC’s gas potential areas, the major focus of the assessment is the quantification of the remaining undiscovered conventional gas potential of NEBC. -
Silurian Rugose Corals of the Central and Southwest Great Basin
Silurian Rugose Corals of the Central and Southwest Great Basin GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 Silurian Rugose Corals of the Central and Southwest Great Basin By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 777 A stratigraphic-paleontologic investigation of rugose corals as aids in age detern2ination and correlation of Silurian rocks of the Great Basin with those of other regions UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600082 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $2.15 (paper cover) Stock Number 2401-00363 CONTENTS Page Page Abstract--------------------------------------------------------------------------- 1 Systematic and descriptive palaeontology-Continued Introduction -------------------------------------------------------------------- 1 Family Streptelasmatidae-Continued Purpose and scope of investigation------------------------------- 1 Dalmanophyllum ------------------------------------------------- 32 History of investigation ---------------------------------------------- 1 Family Stauriidae ------------------------------------------------------- 32 Methods of study------------------------------------------------------- 2 Cyathoph y llo ides-------------------------------------------------- 32 Acknowledgments------------------------------------------------------- 4 Palaeophyllum -
Download Curriculum Vitae
NEIL H. LANDMAN CURATOR, CURATOR-IN-CHARGE AND PROFESSOR DIVISION OF PALEONTOLOGY HIGHEST DEGREE EARNED Ph.D. AREA OF SPECIALIZATION Evolution, life history, and systematics of externally shelled cephalopods EDUCATIONAL EXPERIENCE Ph.D. in Geology, Yale University, 1982 M. Phil. in Geology, Yale University, 1977 M.S. in Earth Sciences, Adelphi University, 1975 B.S. in Mathematics, summa cum laude, Polytechnic University of New York, 1972 PREVIOUS EXPERIENCE IN DOCTORAL EDUCATION FACULTY APPOINTMENTS Adjunct Professor, Department of Biology, City College Adjunct Professor, Department of Geology, Brooklyn College GRADUATE ADVISEES Susan Klofak, Biology, CUNY, 1999-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present GRADUATE COMMITTEES Christian Soucier, Biology, Brooklyn College, 2004-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present Yumiko Iwasaki, Geology, CUNY, 2000-2009 Emily Allen, Geology, University of Chicago, 2002-2005 Susan Klofak, Biology, CUNY, 1996-present Claude Monnet, University of Zurich, presently Sophie Low, Geology, Harvard University RESEARCH GRANT SUPPORT Kosciuszko Foundation. Comparative study of ammonite faunas from the United States Western Interior and Polish Lowland. Post-doc: Izabela Ploch, Geological Museum of Polish Geological Institute. 2011. NSF Grant MR1-R2 (Co-PI): Acquisition of a High Resolution CT-Scanner at the American Museum of Natural History: 2010-2013. NSF Grant No. DBI 0619559 (Co-PI): Acquisition of a Variable Pressure SEM at the AMNH: 2006-2009 NSF Grant No. EAR 0308926 (PI): Collaborative Research: Paleobiology, paleoceanography, and paleoclimatology of a time slice through the Western Interior Seaway: 2003-2006 National Science Foundation, Collaborative Research: Soft Tissues and Membrane Preservation in Permian Cephalopods, $40,000, February 1, 2002-January 31, 2006. -
Hydrographic Basins Information
A p p e n d i x A - B a s i n 54 Crescent Valley Page 1 of 6 Basin 54 - Crescent Valley Crescent Valley is a semi-closed basin that is bounded on the west by the Shoshone Range, on the east by the Cortez Mountains, on the south by the Toiyabe Range, and on the north by the Dry Hills. The drainage basin is about 45 miles long, 20 miles wide, and includes an area of approximately 750 square miles. Water enters the basin primarily as precipitation and is discharged primarily through evaporation and transpiration. Relatively small quantities of water enter the basin as surface flow and ground water underflow from the adjacent Carico Lake Valley at Rocky Pass, where Cooks Creek enters the southwestern end of Crescent Valley. Ground water generally flows northeasterly along the axis of the basin. The natural flow of ground water from Crescent Valley discharges into the Humboldt River between Rose Ranch and Beowawe. It is estimated that the average annual net discharge rate is approximately 700 to 750 acre-feet annually. Many of the streams which drain snowmelt of rainfall from the mountains surrounding Crescent Valley do not reach the dry lake beds on the Valley floor: instead, they branch into smaller channels that eventually run dry. Runoff from Crescent Valley does not reach Humboldt River with the exception of Coyote Creek, an intermittent stream that flows north from the Malpais to the Humboldt River and several small ephemeral streams that flow north from the Dry Hills. Surface flow in the Carico Lake Valley coalesces into Cooks Creek, which enters Crescent Valley through Rocky Pass. -
Mapping Known and Potential Karst Areas in the Northwest Territories, Canada
Mapping Known and Potential Karst Areas in the Northwest Territories, Canada Derek Ford, PGeo., PhD, FRSC. Emeritus Professor of Geography and Earth Sciences, McMaster University [email protected] For: Environment and Natural Resources, Government of the Northwest Territories August 2009 (i) Executive Summary The Goal of this Report is to Produce Maps of the Known and Potential Karst Landform Sites in the Northwest Territories (NWT) Karst landforms are those created by the dissolution of comparatively soluble rocks and the routing of the water (from rain or snowmelt) underground via caves rather than at the surface in river channels. The principal karst rocks are salt (so soluble that it is scarcely seen at the surface in the NWT), gypsum and anhydrite (solubility around 2500 mg/l of water), and limestone and dolomite (solubility around 250 -350 mg/l). All of these rock types are common and widespread amongst the sedimentary strata in the NWT. Surface karst landforms include: a) karren, which are spreads of individually small solution pits, shafts, and runnels that, collectively, may cover many hectares (limestone pavements); b) sinkholes of solutional, collapse, or other origin that can be tens to hundreds of metres in diameter and proportionally as deep. Sinkholes are considered the diagnostic karst landform worldwide; c) larger topographically closed depressions that may flood or drain seasonally, poljes if flat-floored, otherwise turloughs; d) extensive dry valleys and gorges, dry because their formative waters have been captured underground. All water sinking underground via karst landforms of all sizes drain quickly in comparison with all other types of groundwater because they are able to flow through solutionally enlarged conduits, termed caves where they are of enterable size. -
Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian -
The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.