Contributions Towards the Consistent ID of Powdery Mildew (Erysiphales, Ascomycota) Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies in <I>Erysiphales</I> Anamorphs (4): Species on <I>Hydrangeaceae</I> and <I>Papaveraceae&L
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 287–301 January–March 2011 doi: 10.5248/115.287 Studies in Erysiphales anamorphs (4): species on Hydrangeaceae and Papaveraceae Anke Schmidt1 & Markus Scholler2* 1Holunderweg 2 B, D-23568 Lübeck, Germany 2Staatliches Museum für Naturkunde, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany * Correspondence to: [email protected] Abstract — Anamorphic powdery mildews on Hydrangeaceae and Papaveraceae in Germany are revised. Species are documented in detail including line drawings, photomicrographs, and identification keys. On Papaveraceae three species are accepted, specifically Erysiphe macleayae on Chelidonium majus and Macleaya cordata, E. cruciferarum on Eschscholzia californica, and Oidium sp. (an unknown species previously assigned to E. cruciferarum) on Pseudofumaria lutea. Species on Hydrangeaceae are Oidium hortensiae on Hydrangea macrophylla and E. deutziae on Deutzia cf. scabra and Philadelphus cf. coronarius. The fungus on the latter host plant was previously assigned to O. hortensiae. Erysiphe deutziae, E. macleayae, and Oidium hortensiae are introduced species. Key words — conidial germination, morphology, neomycete Introduction In Germany, there are three species of Erysiphales reported on Papaveraceae (Erysiphe cruciferarum, Erysiphe cf. macleayae, Golovinomyces orontii (Castagne) Heluta); and two (Erysiphe deutziae, Oidium hortensiae) on Hydrangeaceae (Braun 1995, Jage et. al. 2010). The following is a revision of anamorphs on certain host plants of Papaveraceae/Hydrangeaceae (Chelidonium, Deutzia, Hydrangea, Macleaya, Meconopsis, Philadelphus and Pseudofumaria) for which the host/pathogen affiliations have been doubtful. Materials & methods Both fresh and dried structures were examined in tap water mounts with light microscopy using Olympus BH 2 and Zeiss Axioskop 2 Plus. -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
Powdery Mildew – a New Disease of Carrots
SEPTEMBER 2009 PRIMEFACT 616 SECOND EDITION Powdery mildew – a new disease of carrots Andrew Watson management strategies for carrot powdery mildew”. The project is due to finish in 2011. Plant Pathologist, Plant Health Sciences, Yanco Agricultural Institute The project is based in the three states that have recorded the disease i.e.. New South Wales, Powdery mildew has been found on a carrot crops Tasmania and South Australia. The collaborators in in three states of Australia. The first finding of the Tasmania include Hoong Pung (Peracto Pty Ltd.) disease was in the Murrumbidgee Irrigation Area and in South Australia , Barbara Hall (Sardi). (MIA) of New South Wales in 2007. It has This project is looking at the spread of powdery subsequently been found in Tasmania and South mildew on carrots and best methods of managing Australia in 2008. While the organism causing the the disease using fungicides, varietal resistance disease is commonly found in parsnip crops, (where available) and softer alternatives. powdery mildew has not previously been recorded on carrots in Australia. Fungicide options. Cause Fungicide trials in New South Wales and Tasmania have shown that applications of sulphur The causal agent is Erysiphe heraclei, the same successfully controls the disease as do Amistar and fungus that affects parsnips and other members of Folicur. The latter products have a permit for the Apiaceae family. Preliminary information has powdery mildew control. Sulphur has a general indicated that this form of E. heraclei does not infect vegetable registration. However alternative products parsnip or parsley, indicating that it may be specific need to be investigated as resistance to fungicides to carrots. -
Culturing and Direct DNA Extraction Find Different Fungi From
Research CulturingBlackwell Publishing Ltd. and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots Tamara R. Allen1, Tony Millar1, Shannon M. Berch2 and Mary L. Berbee1 1Department of Botany, The University of British Columbia, Vancouver BC, V6T 1Z4, Canada; 2Ministry of Forestry, Research Branch Laboratory, 4300 North Road, Victoria, BC V8Z 5J3, Canada Summary Author for correspondence: • This study compares DNA and culture-based detection of fungi from 15 ericoid Mary L. Berbee mycorrhizal roots of salal (Gaultheria shallon), from Vancouver Island, BC Canada. Tel: (604) 822 2019 •From the 15 roots, we PCR amplified fungal DNAs and analyzed 156 clones that Fax: (604) 822 6809 Email: [email protected] included the internal transcribed spacer two (ITS2). From 150 different subsections of the same roots, we cultured fungi and analyzed their ITS2 DNAs by RFLP patterns Received: 28 March 2003 or sequencing. We mapped the original position of each root section and recorded Accepted: 3 June 2003 fungi detected in each. doi: 10.1046/j.1469-8137.2003.00885.x • Phylogenetically, most cloned DNAs clustered among Sebacina spp. (Sebaci- naceae, Basidiomycota). Capronia sp. and Hymenoscyphus erica (Ascomycota) pre- dominated among the cultured fungi and formed intracellular hyphal coils in resynthesis experiments with salal. •We illustrate patterns of fungal diversity at the scale of individual roots and com- pare cloned and cultured fungi from each root. Indicating a systematic culturing detection bias, Sebacina DNAs predominated in 10 of the 15 roots yet Sebacina spp. never grew from cultures from the same roots or from among the > 200 ericoid mycorrhizal fungi previously cultured from different roots from the same site. -
Shropshire Fungus Checklist 2010
THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification. -
Biologicznych
Praktyczne zastosowania badań mikro - BIOLOGICZNYCH pod redakcją Wojciecha Truszkowskiego Praktyczne zastosowania badań mikrobiologicznych Uniwersytet Warmińsko-Mazurski w Olsztynie Praktyczne zastosowania badań mikrobiologicznych pod red. Wojciecha Truszkowskiego Olsztyn 2019 Praktyczne zastosowania badań mikrobiologicznych Monografia naukowa pod redakcją dr. Wojciecha Truszkowskiego Recenzenci: dr hab. Anna Biedunkiewicz dr hab. Marta Damszel Korekta: Irmina Sitkowska Nakład: 30 egz. 10 ark. wyd. ISBN 978-83-943385-9-6 © Katedra Agrotechnologii, Zarządzania Produkcją Rolniczą i Agrobiznesu, Uniwersytet Warmińsko-Mazurski w Olsztynie Druk: Zakład Poligraficzny Uniwersytetu Warmińsko – Mazurskiego w Olsztyne Olsztyn 2019 Monografia zawiera teksty artykułów nadesłane przez uczestników 48. MSKN „Międzynarodowe Seminarium Kół Naukowych. Koła naukowe szkołą twórczego działania” i to autorzy ponoszą odpowiedzialność za przedstawione treści. Praktyczne zastosowania badań mikrobiologicznych SPIS TREŚCI WPROWADZENIE ………...…………............................................................................................... 7 ROZDZIAŁ I. WPŁYW MIKROORGANIZMÓW NA BEZPIECZEŃSTWO SANITARNE I EKOLOGICZNE MARTYNA BUTA Obecność genów integrazy wśród bakterii ściekowych ………...………………….... 11 KAROLINA NOWACKA Różnorodność gatunkowa grzybów fitopatogenicznych fyllosfery wybranych makrofitów jezior Skanda i Kortowskie ………...………………………………….... 22 WIKTOR ZIELIŃSKI Występowanie grzybów rodzaju Aspergillus w wodzie z fontanny w Parku Centralnym w Olsztynie ………...………………………………………………….................... -
<I>Erysiphe Syringae-Japonicae</I>
ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.259 Volume 130, pp. 259–264 January–March 2015 First record of Erysiphe syringae-japonicae in Turkey Ilgaz Akata* & Vasyl P. Heluta 1Ankara University, Science Faculty, Department of Biology, TR 06100, Ankara, Turkey 2M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., Kiev, 01601, Ukraine *Corresponding author: [email protected] Abstract — Erysiphe syringae-japonicae was reported on leaves of Syringa vulgaris for the first time from Turkey. A short description, distribution, and illustrations for this powdery mildew fungus are provided and discussed briefly. Key words — Asia Minor, Erysiphales, invasive species, lilac, Microsphaera Introduction A powdery mildew collected in Japan on the lilac, Syringa amurensis var. japonica [= S. reticulata], was described by Braun (1982) as Microsphaera syringae-japonicae (Erysiphales, Ascomycota). Later, this species was reported from the Russian Far East (Bunkina 1991, as “Microsphaera syringae”) and from Korea (Shin 2000). Microsphaera syringae-japonicae was already known on lilacs in North America and Europe, and was distinguished from M. syringae, mainly by its evanescent mycelium, its larger number of spores in the ascus, and its usually more extensively pigmented chasmothecial appendage bases. In 1988, one of the authors (VP Heluta) critically examined the type specimens of powdery mildews described from the Russian Far East, and showed that one of them, the type specimen of M. aceris on leaves of Acer barbinerve, had chasmothecia identical to those of M. syringae-japonicae. However they were in adherent groups that could have drifted from another host such as aSyringa sp. -
Genetic Diversity and Host Range of Powdery Mildews on Papaveraceae
Mycol Progress (2016) 15: 36 DOI 10.1007/s11557-016-1178-8 ORIGINAL ARTICLE Genetic diversity and host range of powdery mildews on Papaveraceae Katarína Pastirčáková1 & Tünde Jankovics2 & Judit Komáromi3 & Alexandra Pintye2 & Martin Pastirčák4 Received: 29 September 2015 /Revised: 19 February 2016 /Accepted: 23 February 2016 /Published online: 10 March 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Because of the strong morphological similarity of of papaveraceous hosts. Although E. macleayae occurred nat- the powdery mildew fungi that infect papaveraceous hosts, a urally on Macleaya cordata, Macleaya microcarpa, M. total of 39 samples were studied to reveal the phylogeny and cambrica,andChelidonium majus only, our inoculation tests host range of these fungi. ITS and 28S sequence analyses revealed that the fungus was capable of infecting Argemone revealed that the isolates identified earlier as Erysiphe grandiflora, Glaucium corniculatum, Papaver rhoeas, and cruciferarum on papaveraceous hosts represent distinct line- Papaver somniferum, indicating that these plant species may ages and differ from that of E. cruciferarum sensu stricto on also be taken into account as potential hosts. Erysiphe brassicaceous hosts. The taxonomic status of the anamorph cruciferarum originating from P. somniferum was not able to infecting Eschscholzia californica was revised, and therefore, infect A. grandiflora, C. majus, E. californica, M. cordata, a new species name, Erysiphe eschscholziae, is proposed. The and P. rhoeas. The emergence of E. macleayae on M. taxonomic position of the Pseudoidium anamorphs infecting microcarpa is reported here for the first time from the Glaucium flavum, Meconopsis cambrica, Papaver dubium, Czech Republic and Slovakia. The appearance of chasmothecia and Stylophorum diphyllum remain unclear. -
Nisan 2013-2.Cdr
Ekim(2013)4(2)35-45 11.06.2013 21.10.2013 The powdery mildews of Kıbrıs Village Valley (Ankara, Turkey) Tuğba EKİCİ1 , Makbule ERDOĞDU2, Zeki AYTAÇ1 , Zekiye SULUDERE1 1Gazi University,Faculty of Science , Department of Biology, Teknikokullar, Ankara-TURKEY 2Ahi Evran University,Faculty of Science and Literature , Department of Biology, Kırsehir-TURKEY Abstract:A search for powdery mildews present in Kıbrıs Village Valley (Ankara,Turkey) was carried out during the period 2009-2010. A total of ten fungal taxa of powdery mildews was observed: Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam., E. buhrii U. Braun , E. heraclei DC. , E. lycopsidisR.Y. Zheng & G.Q. Chen , E. pisi DC. var . pisi, E. pisi DC. var. cruchetiana (S. Blumer) U. Braun, E. polygoni DC., Leveillula taurica (Lév.) G. Arnaud , Phyllactinia guttata (Wallr.) Lév. and P. mali (Duby) U. Braun. They were determined as the causal agents of powdery mildew on 13 host plant species.Rubus sanctus Schreber. for Phyllactinia mali (Duby) U. Braun is reported as new host plant. Microscopic data obtained by light and scanning electron microscopy of identified fungi are presented. Key words: Erysiphales, NTew host, axonomy, Turkey Kıbrıs Köyü Vadisi' nin (Ankara, Türkiye) Külleme Mantarları Özet:Kıbrıs Köyü Vadisi' nde (Ankara, Türkiye) bulunan külleme mantarlarının araştırılması 2009-2010 yıllarında yapılmıştır. Külleme mantarlarına ait toplam 10taxa tespit edilmiştir: Erysiphe alphitoides (Griffon & Maubl.) U. Braun & S. Takam., E. buhrii U. Braun , E. heraclei DC. , E. lycopsidis R.Y. Zheng & G.Q. Chen, E. pisi DC. var . pisi, E. pisi DC. var. cruchetiana (S. Blumer) U. Braun , E. polygoniDC ., Leveillula taurica (Lév.) G. -
Powdery Mildew Species on Papaya – a Story of Confusion and Hidden Diversity
Mycosphere 8(9): 1403–1423 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/9/7 Copyright © Guizhou Academy of Agricultural Sciences Powdery mildew species on papaya – a story of confusion and hidden diversity Braun U1, Meeboon J2, Takamatsu S2, Blomquist C3, Fernández Pavía SP4, Rooney-Latham S3, Macedo DM5 1Martin-Luther-Universität, Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany 2Mie University, Department of Bioresources, Graduate School, 1577 Kurima-Machiya, Tsu 514-8507, Japan 3Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, U.S.A. 4Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 Carretera Morelia-Zinapécuaro, Tarímbaro, Michoacán CP 58880, México 5Universidade Federal de Viçosa (UFV), Departemento de Fitopatologia, CEP 36570-000, Viçosa, MG, Brazil Braun U, Meeboon J, Takamatsu S, Blomquist C, Fernández Pavía SP, Rooney-Latham S, Macedo DM 2017 – Powdery mildew species on papaya – a story of confusion and hidden diversity. Mycosphere 8(9), 1403–1423, Doi 10.5943/mycosphere/8/9/7 Abstract Carica papaya and other species of the genus Carica are hosts of numerous powdery mildews belonging to various genera, including some records that are probably classifiable as accidental infections. Using morphological and phylogenetic analyses, five different Erysiphe species were identified on papaya, viz. Erysiphe caricae, E. caricae-papayae sp. nov., Erysiphe diffusa (= Oidium caricae), E. fallax sp. nov., and E. necator. The history of the name Oidium caricae and its misapplication to more than one species of powdery mildews is discussed under Erysiphe diffusa, to which O. -
Ohio Plant Disease Index
Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families. -
Erysiphaceae) from Europe with Special Emphasis on Switzerland
Österr. Z. Pilzk. 28 („2019“ 2021) – Austrian J. Mycol. 28 („2019“ 2021) 131 New species, new records and first sequence data of powdery mildews (Erysiphaceae) from Europe with special emphasis on Switzerland ADRIEN BOLAY PHILIPPE CLERC 7, ch. de Bonmont Conservatoire et Jardin botaniques CH-1260 Nyon, Switzerland de la Ville de Genève E-mail: [email protected] CP. 71 CH-1292 Chambéry, Switzerland E-mail: [email protected] UWE BRAUN MONIKA GÖTZ Martin-Luther-Universität, Institut für Biologie Institut für Pflanzenschutz in Gartenbau Bereich Geobotanik und Botanischer Garten Her- und Forst, Julius Kühn-Institut (JKI) barium, Neuwerk 21 Bundesforschungsinstitut für Kultur- 06099 Halle (Saale), Germany Pflanzen E-mail: [email protected] Messeweg 11/12 38104 Braunschweig, Germany E-mail: [email protected] SUSUMU TAKAMATSU Graduate School of Bioresources Mie University 1577 Kurima-machiya Tsu Mie 514–8507, Japan E-mail: [email protected] Accepted 9. March 2021. © Austrian Mycological Society, published online 10. March 2021 BOLAY, A., CLERC, P., BRAUN, U., GÖTZ, M., TAKAMATSU, S., (“2019”) 2021: New species, new records and first sequence data of powdery mildews (Erysiphaceae) from Europe with special emphasis on Switzerland. – Österr. Z. Pilzk. 28: 131–160. Key words: Ascomycota, Helotiales, Erysiphe abeliana, Phyllactinia cruchetii, sp. nov., taxonomy, new records. – Swiss mycota. – 2 new species, 1 epitype. Abstract: New records of powdery mildews (Erysiphaceae) from Switzerland and adjacent countries are listed and annotated, including first records of multiple host plants worldwide. The collections con- cerned are described, illustrated, discussed, and some identifications have been confirmed by results of sequencing (ITS + 28S rDNA).