Unveiling Novel Functions of the Trascriptional Repressor HDAC7 in B Lymphocyte Development

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling Novel Functions of the Trascriptional Repressor HDAC7 in B Lymphocyte Development Unveiling novel functions of the trascriptional repressor HDAC7 in B lymphocyte development Alba Azagra Rodríguez Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – SenseObraDerivada 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 4.0. Spain License. FACULTAT DE BIOLOGIA PROGRAMA DE BIOMEDICINA UNVEILING NOVEL FUNCTIONS OF THE TRANSCRIPTIONAL REPRESSOR HDAC7 IN B LYMPHOCYTE DEVELOPMENT Memòria presentada per Alba Azagra Rodríguez per optar al grau de Doctor en Biomedicina per la Universitat de Barcelona Aquesta tesi s’ha realitzat al Grup de Diferenciació cel·lular a les instal·lacions del Programa d’Epigenètica i Biologia del Càncer (PEBC) de l’Institut d’Investigació Biomèdica de Bellvitge (IDIBELL, sota la direcció de la Dra Maribel Parra. Directora de tesi: Doctorand: Tutor de tesi: Dr Maribel Parra Bola Alba Azagra Rodríguez Dr Albert Tauler Girona Juliol 2019 AGRAÏMENTS 3 4 Agraïments “I will discover the cure of cancer”. Aquesta frase era el meu recurs més usat a la ESO per exemplificar el futur simple a anglès, una frase que amb el pas dels anys s’ha tornat massa simple i innocentment ambiciosa. De vegades va bé recordar per què ens vam ficar en aquest món i quins eren els nostres primers pensaments, desitjos i objectius, fossin més o menys realistes, perquè segurament eren els més entregats, purs i desinteressats. El meu primer desig de curar el càncer contenia una visió utòpica del món de la ciència, essent els pacients la principal prioritat, i involucrava la col·laboració de tots els membres del camp per poder arribar abans al coneixement i la cerca de teràpies. Per sort, més d’una persona durant aquests anys de tesi m’ha portat a recordar les bases d’aquest primer desig. M’agradaria començar amb el Víctor Deroncelé, tutor del treball de recerca que ens va transmetre la seva passió per la ciència de la manera més amena i amb gran paciència. Va ser un privilegi poder viure i experimentar què era treballar en un laboratori i poder començar a valorar amb una lleugera idea si aquesta vessant de la ciència et podia agradar o no pel teu futur. A l’Antonio García de Herreros, l’únic professor del grau al que vaig suspendre una assignatura. Tot i així, em va agafar per fer les pràctiques del TFG I em va donar la oportunitat de treballar en un grup de recerca i d’espavilar-me dins d’un laboratori (no m’ho va deixar de recordar fins l’últim dia que vaig estar allà). Aquí aprofito per agrair també a Josep Baulida, el que va ser el meu tutor del treball i que em va supervisar sempre de bon grat i amb predisposició a qualsevol cosa que em faltés, i a Josué Curto que m’ensenyés de la manera més poc convencional, sempre amb un somriure i un moment divertit. Ja anant al doctorat, m’agradaria agrair a la Maribel, la meva directora de tesi. Gràcies per confiar en mi i donar-me la oportunitat de realitzar la tesi al teu grup, sense mirar ni jutjar notes. Gràcies per tot l’ensenyament rebut durant la tesi. Gràcies per la paciència infinita als meus oblits i despistes. Gràcies per la comprensió en els moments difícils. Encara que pugui semblar absurd pels que no són del camp, crec que els que hi estan ficats em podran entendre millor, i és que em sento afortunada de tenir una cap de grup que sigui humana a més de gran investigadora. Malauradament, és una qualitat molt menys freqüent del que tocaria. Seguint amb els membres del nostre petit grup, amb el quals es respira amb tots ells molt bona sintonia, continuem amb el nostre post-doc, l’Oriol. Un gran potencial que es va haver d’adaptar ràpidament a un camp completament diferent al que feia. Disposat sempre a ajudar…i a assabentar-se de tot! Gràcies per tots els consells i recomanacions de la tesi, gràcies per les aportacions de la teva experiència al laboratori, pels moments de poyata compartits, i pels que queden. A l’Ainara, la nostra minion, la joveneta del grup. Tens grans facultats en múltiples sentits, eres buena y lo sabes ;) Gràcies per tota l’ajuda amb els experiments, amb els escrits, aquesta última etapa d’escriure ha estat una mica més fàcil gràcies a tu...i gràcies pels entranaments de gym! Un gran plaer haver-te pogut ensenyar en els teus inicis, veure que aviat sabràs molt més que jo i haver pogut compartir poyata, molts riures i ficades de pota amb tu, jefa. Espero que encara ens quedin uns quants més. 5 Y a mi querida Olguiña…hemos estado mucho tiempo las dos solas, así que me tomo la libertad de explayarme un poco más. Desde el primer día que llegué me enseñaste, me aconsejaste, me cuidaste y me ayudaste en todo lo que pudiste, con la mejor voluntad y un gran humor. Gran compañera…y amiga. En el laboratorio se pasan muchas horas cada día, y cuán largas se harían sin momentos como los que hemos pasado, tanto en la poyata como en cultivos. Aunque por un lado me hubiera gustado conocerte en otra época de tu vida para poder compartir esos momentos post-lab en los que te apetece una cerveza (o unas cuantas) y olvidar el día hablando de cualquier cosa o salir a descubrir sitios algún fin de semana entre risas, me alegro de haber tenido la oportunidad de conocerte en una época de tu vida tan especial. Una época en que la vida te ha dado muchas experiencias, pero no dejas de querer aprender cada día gracias (en gran parte) a dos maravillosos pequeñines muy moviditos con una curiosidad y una avidez alucinante. Y con lo que aprendes de ellos tomo nota para otro momento que siempre viene bien saber de estas cosas! Tienen mucha suerte de tenerte como madre…en serio, y te deben una muy grande por la falta de sueño, aunque ni el estar sin dormir hace que pierdas esa risa tan viva y tan única que te hace tan especial. Te voy a echar mucho de menos el día que me vaya….mucho. Querría también agradecer a otros miembros del PEBC. Dentro del mismo laboratorio, agradezco a los miembros del grupo de Esteban Ballestar la ayuda prestada en ocasiones cuando fue necesaria, pero especialmente quería agradecer a Natalia, former member del grupo vecino y compañera de unas cuantas aventuras en la ciudad y la provincia, de las cuales me guardo un entrañable recuerdo, a Clara, dulce y alegre con la que era un gusto compartir laboratorio, i al Xec, un company al que li acabes agafant gran carinyo, a més de ser un crack en bioinformàtica és un sol, disposat sempre a ajudar-te i explicar-te quan ho necessites. Saliendo del laboratorio sin avanzar mucho, a las chicas del PEBC6, Sandra, Marta, Laura, Clara y Marina. Con las que es un placer coincidir dentro y fuera del laboratorio, sea en la montaña o en una fiesta de Zumba. Sandra y Jordi, tenéis un corazón que no os cabe en el pecho, sois unos soles…el uno para el otro. Marta, no te lo digo mucho para que no te lo creas, pero… te voy a echar de menos, a tus lametones no por eso! Chicas, se os echará de menos por los pasillos...incluyendo la risa de Sandra, las salidas de Laura, las imitaciones de Clara y las palabras dulces de Marina. A l’Adrià, un tros pa i campió imbatible d’hores treballades en aquell departament, una màquina que t’ajudava encara que no tingués temps ni de respirar. A Pedro, mestre de cerimònies i temps lliure del departament, un gran personatge en el millor dels sentits, un plaer i una alegria tenir-te pels passadissos. A Fer, el pilar del departamento, una fuente de sabiduría de cualquier tema que se te pueda pasar por la cabeza, dispuesto a ayudarte, aconsejarte y enseñarte con calma e infinita paciencia. Agrair també a tota aquella gent maca que et creues cada dia i que et fan el dia més amè i fàcil amb un simple somriure, com la Marta, Eva, Ana, Nico, Maria, Jèssica, Paula, Olga de la Caridad, Alberto i, tanmateix, al Carles i la Patri per tots els dinars de tupper i les rialles compartides. Gracias a las chicas de cocina por facilitar el trabajo y su buen humor, sobretodo a Sonia del Oro. Gràcies també al Jaume, la Sònia i l’Ester per totes les hores d’ajuda al sorter, pels consells sobre les millors combinacions de separació i pel temps dedicat a intentar solucionar els problemes que he pogut tenir, sigui en una facultat o altra. 6 Sortint de l’Hospital, hi ha persones molt importants a la meva vida a les quals vull agrair la companyia i suport durant els anys de tesi… i anys enrere. Empezando por ti Alba, un ejemplo de constancia y de esfuerzo. Una persona que será una gran enfermera y un pilar clave para todo paciente, ya que aparte de poseer el conocimiento necesario para atender a todo enfermo en el aspecto más estrictamente médico, tiene esa gracia natural (esa salsa interna que llevas en la sangre), ese gran corazón lleno de humanidad y empatía y esa vitalidad envidiable que hacen que todo se lleve un poco mejor. Gracias por regalarme tu risa tan viva y esos momentos de charla tan buenos querida amiga.
Recommended publications
  • Computational Modeling of Lysine Post-Translational Modification: an Overview Md
    c and S eti ys h te nt m y s S B Hasan MM et al., Curr Synthetic Sys Biol 2018, 6:1 t i n o e l Current Synthetic and o r r g DOI: 10.4172/2332-0737.1000137 u y C ISSN: 2332-0737 Systems Biology CommentaryResearch Article OpenOpen Access Access Computational Modeling of Lysine Post-Translational Modification: An Overview Md. Mehedi Hasan 1*, Mst. Shamima Khatun2, and Hiroyuki Kurata1,3 1Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan 2Department of Statistics, Laboratory of Bioinformatics, Rajshahi University-6205, Bangladesh 3Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan Commentary hot spot for PTMs, and a number of protein lysine modifications could occur in both histone and non-histone proteins [11,12]. For instance, Living organisms have a magnificent ordered and complex lysine methylation in non-histone proteins can regulate the protein structure. In regulating the cellular functions, post-translational activity and protein structure stability [13]. In 2004, the Nobel Prize in modifications (PTMs) are critical molecular measures. They alter Chemistry was awarded jointly to Aaron Ciechanover, Avram Hershko protein conformation, modulating their activity, stability and and Irwin Rose for the discovery of lysine ubiquitin-mediated protein localization. Up to date, more than 300 types of PTMs are experimentally degradation [14]. discovered in vivo and in vitro pathways [1,2]. Major and common PTMs are methylation, ubiquitination, succinylation, phosphorylation, Moreover, in biological process, lysine can be modified by the glycosylation, acetylation, and sumoylation.
    [Show full text]
  • International Research and Exchanges Board Records
    International Research and Exchanges Board Records A Finding Aid to the Collection in the Library of Congress Prepared by Karen Linn Femia, Michael McElderry, and Karen Stuart with the assistance of Jeffery Bryson, Brian McGuire, Jewel McPherson, and Chanté Wilson-Flowers Manuscript Division Library of Congress Washington, D.C. 2011 International Research and Exchanges Board Records Page ii Collection Summary Title: International Research and Exchanges Board Records Span Dates: 1947-1991 (bulk 1956-1983) ID No: MSS80702 Creator: International Research and Exchanges Board Creator: Inter-University Committee on Travel Grants Extent: 331,000 items; 331 cartons; 397.2 linear feet Language: Collection material in English and Russian Repository: Manuscript Division, Library of Congress, Washington, D.C. Abstract: American service organization sponsoring scholarly exchange programs with the Soviet Union and Eastern Europe in the Cold War era. Correspondence, case files, subject files, reports, financial records, printed matter, and other records documenting participants’ personal experiences and research projects as well as the administrative operations, selection process, and collaborative projects of one of America’s principal academic exchange programs. International Research and Exchanges Board Records Page iii Contents Collection Summary .......................................................... ii Administrative Information ......................................................1 Organizational History..........................................................2
    [Show full text]
  • Loss of Conserved Ubiquitylation Sites in Conserved Proteins During Human Evolution
    INTERNATIONAL JOURNAL OF MOleCular meDICine 42: 2203-2212, 2018 Loss of conserved ubiquitylation sites in conserved proteins during human evolution DONGBIN PARK, CHUL JUN GOH, HYEIN KIM, JI SEOK LEE and YOONSOO HAHN Department of Life Science, Chung‑Ang University, Seoul 06974, Republic of Korea Received January 30, 2018; Accepted July 6, 2018 DOI: 10.3892/ijmm.2018.3772 Abstract. Ubiquitylation of lysine residues in proteins serves Introduction a pivotal role in the efficient removal of misfolded or unused proteins and in the control of various regulatory pathways Ubiquitylation, in which the highly conserved 76‑residue poly- by monitoring protein activity that may lead to protein peptide ubiquitin is covalently attached to a lysine residue of degradation. The loss of ubiquitylated lysines may affect substrate proteins, mediates the targeted destruction of ubiq- the ubiquitin‑mediated regulatory network and result in the uitylated proteins by the ubiquitin‑proteasome system (1‑4). emergence of novel phenotypes. The present study analyzed The ubiquitin‑mediated protein degradation pathway serves a mouse ubiquitylation data and orthologous proteins from crucial role in the efficient and specific removal of misfolded 62 mammals to identify 193 conserved ubiquitylation sites from proteins and certain key regulatory proteins (5,6). Ubiquitin 169 proteins that were lost in the Euarchonta lineage leading and other ubiquitin‑like proteins, including autophagy‑related to humans. A total of 8 proteins, including betaine homo- protein 8, Ubiquitin‑like
    [Show full text]
  • Metabolomics-Assisted Proteomics Identifies Succinylation and SIRT5 As Important Regulators of Cardiac Function
    Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function Sushabhan Sadhukhana, Xiaojing Liub,c,d, Dongryeol Ryue, Ornella D. Nelsona, John A. Stupinskif, Zhi Lia, Wei Cheng, Sheng Zhangg, Robert S. Weissf, Jason W. Locasaleb,c,d, Johan Auwerxe,1, and Hening Lina,h,1 aDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; bDuke Cancer Institute, Duke University School of Medicine, Durham, NC 27710; cDuke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710; dDepartment of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710; eLaboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; fDepartment of Biomedical Sciences, Cornell University, Ithaca, NY 14853; gProteomics & Mass Spectrometry Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853; and hHoward Hughes Medical Institute, Cornell University, Ithaca, NY 14853 Edited by Kevan M. Shokat, University of California, San Francisco, CA, and approved March 9, 2016 (received for review October 7, 2015) Cellular metabolites, such as acyl-CoA, can modify proteins, leading SIRT4 and SIRT5 have very weak deacetylase activities (14). SIRT5 to protein posttranslational modifications (PTMs). One such PTM is possesses unique enzymatic activity on hydrolyzing negatively lysine succinylation, which is regulated by sirtuin 5 (SIRT5). Although charged
    [Show full text]
  • SUMO and Transcriptional Regulation: the Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies
    molecules Review SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies Mathias Boulanger 1,2 , Mehuli Chakraborty 1,2, Denis Tempé 1,2, Marc Piechaczyk 1,2,* and Guillaume Bossis 1,2,* 1 Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; [email protected] (M.B.); [email protected] (M.C.); [email protected] (D.T.) 2 Equipe Labellisée Ligue Contre le Cancer, Paris, France * Correspondence: [email protected] (M.P.); [email protected] (G.B.) Abstract: One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent Citation: Boulanger, M.; transcriptional mechanisms that have been characterized thus far and how they impact our view of Chakraborty, M.; Tempé, D.; SUMO-dependent chromatin organization are also considered.
    [Show full text]
  • Ubiquitin Modifications
    npg Cell Research (2016) 26:399-422. REVIEW www.nature.com/cr Ubiquitin modifications Kirby N Swatek1, David Komander1 1Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modi- fications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ‘ubiquitin code’. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiq- uitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. Keywords: ubiquitin; proteasomal degradation; phosphorylation; post-translational modification; Parkin Cell Research (2016) 26:399-422.
    [Show full text]
  • SUCLA2 Mutations Cause Global Protein Succinylation Contributing To
    ARTICLE https://doi.org/10.1038/s41467-020-19743-4 OPEN SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease ✉ Philipp Gut 1,2,17 , Sanna Matilainen3,17, Jesse G. Meyer4,14,17, Pieti Pällijeff3, Joy Richard2, Christopher J. Carroll5, Liliya Euro 3, Christopher B. Jackson 3, Pirjo Isohanni3,6, Berge A. Minassian7,8, Reem A. Alkhater9, Elsebet Østergaard10, Gabriele Civiletto2, Alice Parisi2, Jonathan Thevenet2, Matthew J. Rardin4,15, Wenjuan He1, Yuya Nishida1, John C. Newman 1, Xiaojing Liu11,16, Stefan Christen2, ✉ ✉ Sofia Moco 2, Jason W. Locasale 11, Birgit Schilling 4,18 , Anu Suomalainen 3,12,13,18 & 1234567890():,; ✉ Eric Verdin 1,4,18 Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-β (SUCLA2), causing global protein hyper- succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper- succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD+)-dependent desuccinylase SIRT5. To test the contribution of hyper- succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications.
    [Show full text]
  • Aes Corporation
    THE AES CORPORATION THE AES CORPORATION The global power company A Passion to Serve A Passion A PASSION to SERVE 2000 ANNUAL REPORT ANNUAL REPORT THE AES CORPORATION 1001 North 19th Street 2000 Arlington, Virginia 22209 USA (703) 522-1315 CONTENTS OFFICES 1 AES at a Glance AES CORPORATION AES HORIZONS THINK AES (CORPORATE OFFICE) Richmond, United Kingdom Arlington, Virginia 2 Note from the Chairman 1001 North 19th Street AES OASIS AES TRANSPOWER Arlington, Virginia 22209 Suite 802, 8th Floor #16-05 Six Battery Road 5 Our Annual Letter USA City Tower 2 049909 Singapore Phone: (703) 522-1315 Sheikh Zayed Road Phone: 65-533-0515 17 AES Worldwide Overview Fax: (703) 528-4510 P.O. Box 62843 Fax: 65-535-7287 AES AMERICAS Dubai, United Arab Emirates 33 AES People Arlington, Virginia Phone: 97-14-332-9699 REGISTRAR AND Fax: 97-14-332-6787 TRANSFER AGENT: 83 2000 AES Financial Review AES ANDES FIRST CHICAGO TRUST AES ORIENT Avenida del Libertador COMPANY OF NEW YORK, 26/F. Entertainment Building 602 13th Floor A DIVISION OF EQUISERVE 30 Queen’s Road Central 1001 Capital Federal P.O. Box 2500 Hong Kong Buenos Aires, Argentina Jersey City, New Jersey 07303 Phone: 852-2842-5111 Phone: 54-11-4816-1502 USA Fax: 852-2530-1673 Fax: 54-11-4816-6605 Shareholder Relations AES AURORA AES PACIFIC Phone: (800) 519-3111 100 Pine Street Arlington, Virginia STOCK LISTING: Suite 3300 NYSE Symbol: AES AES ENTERPRISE San Francisco, California 94111 Investor Relations Contact: Arlington, Virginia USA $217 $31 Kenneth R. Woodcock 93% 92% AES ELECTRIC Phone: (415) 395-7899 $1.46* 91% Senior Vice President 89% Burleigh House Fax: (415) 395-7891 88% 1001 North 19th Street $.96* 18 Parkshot $.84* AES SÃO PAULO Arlington, Virginia 22209 Richmond TW9 2RG $21 Av.
    [Show full text]
  • The E3 Ligase TRIM32 Is an Effector of the RAS Family Gtpase RAP2
    The E3 Ligase TRIM32 is an effector of the RAS family GTPase RAP2 Berna Demiray A thesis submitted towards the degree of Doctor of Philosophy Cancer Institute University College London 2014 Declaration I, Berna Demiray, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated. London, 2014 The E3 Ligase TRIM32 is an Effector of the RAS family GTPase RAP2 Classical RAS oncogenes are mutated in approximately 30% of human tumours and RAP proteins are closely related to classical RAS proteins. RAP1 has an identical effector domain to RAS whereas RAP2 differs by one amino acid. RAP2 not only shares effectors with other classical RAS family members, but it also has its own specific effectors that do not bind to RAP1 or classical RAS family proteins. Thus, although closely related, RAP2 performs distinct functions, although these have been poorly characterised. Using RAP2 as bait in Tandem Affinity Purifications, we have identified several RAP2 interacting proteins including TRIM32; a protein implicated in diverse pathological processes such as Limb-Girdle Muscular Dystrophy (LGMD2H), and Bardet-Biedl syndrome (BBS). TRIM32 was shown to interact specifically with RAP2 in an activation- and effector domain-dependent manner; demonstrating stronger interaction with the RAP2 V12 mutant than the wild-type RAP2 and defective binding to the effector mutant RAP2 V12A38. The interaction was mapped to the C-terminus of TRIM32 (containing the NHL domains) while mutations found in LGMD2H (R394H, D487N, ∆588) were found to disrupt binding to RAP2. The TRIM32 P130S mutant linked to BBS did not affect binding to RAP2, suggesting that the RAP2-TRIM32 interaction may be functionally involved in LGMD2H.
    [Show full text]
  • Oxidative Stress-Triggered Interactions Between the Succinyl- and Acetyl
    Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves Heng Zhou1, Iris Finkemeier2, Wenxue Guan1, Maria-Armineh Tossounian3,4,5, Bo Wei3,4,5,6,7, David Young3,4,5, Jingjing Huang3,4,5,6,7, Joris Messens3,4,5, Xibin Yang8, Jun Zhu8, Michael H. Wilson9, Wenbiao Shen1, Yanjie Xie1,9,*, Christine H Foyer9,* 1 Laboratory Center of Life Sciences, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China. 2 Institute of Plant Biology and Biotechnology, Westfaelische Wilhelms University Muenster, 48149 Muenster, Germany 3 VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium. 4 Brussels Center for Redox Biology, B-1050 Brussels, Belgium. 5 Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium. 6 VIB-UGent Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium. 7 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. 8 Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China. 9 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK Running title: Redox mediated succinylome/acetylome interactions This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/pce.13100 This article is protected by copyright. All rights reserved. Summary Statement Protein post-transcriptional modifications (PTMs) such as lysine succinylation and acetylation regulating protein functions in response to metabolic and environmental cues.
    [Show full text]
  • Carlson Crewmember Only
    A‐B 11/10/2009 STATE OF ALASKA Commercial Fisheries Entry Commission Carlson Summary Crewmember License Holders ONLY Obs Name Obs Name Obs Name 1 AADNES, STEWART W. 2 AADSEN, TELE L. 3 AAFF, DANIEL L. 4 AAGAARD, PETER G. 5 AAKER, JESSIE J. 6 AAL, MARTIN A. 7 AALAND, DAVID R. 8 AALAND, RICHARD D. 9 AALCOMB, CHUCK J. 10 AALONA, ALLAN J. 11 AAMOT, JAN E. 12 AANDENID, MARK 13 AANDERUD, ZACHARY T. 14 AAREN, RUSSELL P. 15 AARHAUG, TORFINN 16 AARON, DARWIN A. 17 AARON, JONATHAN G. 18 AARON, WAYNE R. 19 AARON, WILLIAM H. 20 AARON, WILLIAM O. 21 AASE, ANGELA M. 22 AASE, HENNING 23 AASEN, JON J. 24 AASNESS, JOHN C. 25 ABAD, JOSEPH C. 26 ABADIE, BERNARD 27 ABADY, MOHAMMED E. 28 ABALAMA, SHANNON R. 29 ABALATEO, RENATO S. 30 ABALOS, ANTHONY 31 ABALOS, HERMAN G. 32 ABAN MOO, WILLIAM F. 33 ABAN, FREDDY T. 34 ABATE, TIM D. 35 ABBE, THOMAS E. 36 ABBEY, CHRIS W. 37 ABBEY, STEVEN C. 38 ABBEY, WAYNE T. 39 ABBOTT, ADAM J. 40 ABBOTT, BRUCE K. 41 ABBOTT, BRYAN 42 ABBOTT, CARLOS F. 43 ABBOTT, CHARLES V. 44 ABBOTT, DAVID N. 45 ABBOTT, DENNIS R. 46 ABBOTT, ERIC S. 47 ABBOTT, GREG P. 48 ABBOTT, HANS T. 49 ABBOTT, HAROLD W. 50 ABBOTT, JACK T. 51 ABBOTT, JIM 52 ABBOTT, JOHN P. 53 ABBOTT, MARK A. 54 ABBOTT, ROBERT L. 55 ABBOTT, ROBERT W. 56 ABBOTT, ROSS W. 57 ABBOTT, ROY W. 58 ABBOTT, WAYNE T. 59 ABBOTTMOORE, MATTHEW A. 60 ABDAL‐SHAHEED, NASIF M. 61 ABDELHADI, ADAM T.
    [Show full text]
  • Protein Interactions Allow Functional Regulation of Homocysteine Metabolism
    HIGHLIGHTS - Protein interactions allow functional regulation of homocysteine metabolism - Homocysteine metabolism establishes pathway interplays through protein interactions - Intermolecular interactions within homocysteine metabolism may support substrate channeling - Homocysteine metabolism interaction networks are altered in oncogenesis - Proteins of homocysteine metabolism interact with oncogenes for gene regulation PROTEIN-PROTEIN INTERACTIONS INVOLVING ENZYMES OF THE MAMMALIAN METHIONINE AND HOMOCYSTEINE METABOLISM Francisco Portillo1,2,3,4, Jesús Vázquez5,6, María A. Pajares2,7* 1Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain 2Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain 3Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain 4Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. 5Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández de Almagro 3, 28029 Madrid, Spain. 6CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain. 7Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain. *Corresponding author: Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain. (Phone: 34-918373112; FAX: 34-915360432; email: [email protected]). ABBREVIATIONS: AdoMet, S-adenosylmethionine; AdoHcy, S- adenosylhomocysteine; AHCY, S-adenosylhomocysteine hydrolase; AP, affinity 1 purification; BHMT and BHMT2, betaine homocysteine S-methyltransferases 1 and 2; CBS, cystathionine b-synthase; CTH, cystathionine g-lyase; GSH and GSSG, glutathione reduced and oxidized forms; Hcy, homocysteine; MAT, methionine adenosyltransferase; MS, mass spectrometry; MTR, methionine synthase; NNMT, nicotinamide N- methyltransferase; PDRG1, p53 and DNA damage-regulated gene 1.
    [Show full text]