A More Informative Way to Name Plutonic Rocks a More Informative Way to Name Plutonic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

A More Informative Way to Name Plutonic Rocks a More Informative Way to Name Plutonic Rocks 2018 GSA Presidential Address, p. 16 VOL. 29, NO. 2 | FEBRUARY 2019 A More Informative Way to Name Plutonic Rocks A More Informative Way to Name Plutonic Rocks Allen F. Glazner, Dept. of Geological Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA; John M. Bartley, Dept. of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA; and Drew S. Coleman, Dept. of Geological Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA ABSTRACT a formidable entry barrier to students of granodiorites (Fig. 1). Thus, any classifi- The International Union of Geological the field. In a recent undergraduate text- cation based on discrete categories will Sciences (IUGS) system for rock classifi- book, Winter (2010, p. 32) lists 157 com- split continuously variable rock composi- cation, introduced more than 40 years mon igneous rock names, many of them tions at arbitrary boundaries. ago, has served geologists well but suffers unknown to practicing petrologists. Say An international effort to systematize from the problem of dividing a continuum “kugdite” to a geologist and you will the nomenclature of plutonic igneous of rock compositions into arbitrary bins. likely get a puzzled stare. rocks was started in the 1960s under the As a result, closely related rocks can be Classification of igneous rocks has leadership of Swiss petrologist Albert given unrelated names (e.g., granodiorite occupied and irritated petrologists for Streckeisen, and summaries of this work and tonalite), and the names themselves, centuries. Unlike biological classifica- (e.g., Streckeisen, 1974, 1976; LeBas and which were generally derived from the tions, which can place organisms into Streckeisen, 1991) are the standard refer- names of places or people, rarely contrib- discrete categories, rock classifications ences for current nomenclature. The prin- ute to understanding the processes that place sharp boundaries between objects cipal classification is based on a double generate the diversity of igneous rocks. that are completely gradational. A biolo- triangle (Fig. 2); this diagram, appropriate Here we propose a quantitative modifica- gist can classify something definitively for rocks with 10% or more quartz or tion to the IUGS system that reduces the as a dog or cat, knowing that there are no feldspathoid minerals plus feldspars, uses number of distinct names but more effec- doggish cats or cattish dogs, but a petrolo- the modal (volume) proportions of quartz tively communicates the inherent vari- gist cannot do so—there are plenty of (Q), alkali feldspar (A), plagioclase (P), ability of plutonic rocks. The system rec- granodioritic granites and granitic and feldspathoids (F) to name rocks. ognizes that mapped plutonic rock units are characterized by recognizable tex- tures and mineral assemblages, but that Cathedral Peak mineral proportions within those units Granodiorite can be highly variable. Adding quantita- tive data to rock names is an important step toward moving geologic field obser- vations into quantitative digital form and preparing them for advanced data mining and analysis. One thing quarks do have going for them: all Figure 1. Outcrop photo- their names are simple—something chemists, graphs of the Cathedral Peak Granodiorite and El biologists, and especially geologists seem Capitan Granite, Yosemite incapable of achieving when naming their own National Park, California, stuff. —Neil deGrasse Tyson, Astrophysics for USA. In spite of largely People in a Hurry equivalent mineral propor- El Capitan tions, one is termed a gran- INTRODUCTION ite and the other a granodi- Granite orite. This confusion is Why do we bother to name rocks? One lessened if name boundar- answer among many is that rock catego- ies are considered fuzzy rather than sharp. Pennies ries can efficiently convey important are 2 cm in diameter. information about a geologic setting just G384A as biological categories can convey the same for ecosystems. Say “zebra” to a biologist and they will likely think “African savanna”; say “granodiorite” to a geologist and they will likely think “subduction zone.” However, the sheer number of igneous rock names presents GSA Today, https://doi.org/10.1130/GSATG384A.1. Copyright 2019, The Geological Society of America. CC-BY-NC. Q The International Union of Geological quartzolite Sciences (IUGS) commission aimed to simplify the nomenclature, eliminate 90 90 synonymic terms (e.g., adamellite = quartz-rich quartz monzonite), and come up with granitioids fields and corresponding names that are 60 60 consistent with general usage. The IUGS e method relies on two parameters, the granodiorit tonalite modal percentage of quartz or feld- granite quartz monzodiorite, quartz-monzogabbro spathoid minerals (horizontal lines), and syeno- monzo- quartz alkali feldspar syenite granite granite e quartz diorite, the ratio of alkali feldspar to plagioclase quartz gabbro, alkali feldspar10 granit 35 65 90 (lines radiating from the quartz and feld- 20 20 quartz anorthosite alkali feldspar syenite quartz quartz monzodiorite, spathoid apices). These values are easy to syenite monzonite monzogabbro estimate in thin section, although less so 55 syenite monzonite in the field, where the plagioclase/alkali APfoid-bearing foid-bearing diorite, syenite monzonite feldspar distinction can be subtle. In con- foid-bearing 10 10 gabbro, alkali feldspar syenite 10 50 90 anorthosite trast, the modal proportions of mafic min- foid monzosyenite foid monzodiorite, foid syenite foid monzogabbro foid-bearing diorite, erals and their sum (color index) are gen- foid-bearing gabbro, erally easy to estimate in the field and foid-bearing anorthosite diagnostic of a given rock unit, although foid-bearing monzodiorite these are not used in the IUGS system. foid-bearing monzogabbro foid diorite, foid gabbro The IUGS diagram provides a convenient 60 60 way to assign a standardized name once the mode has been estimated, and this is foidolite both a strength and a significant problem. As an example of the problems that this 90 90 kind of classification can cause, consider the data in Figure 3, taken from Bateman F (1992). Modal data from the well-known Cathedral Peak Granodiorite of Yosemite Figure 2. The International Union of Geological Sciences classification double triangle. Field boundaries are arbitrary and not designed to follow petrologic processes, so closely related rocks National Park in California, USA (Fig. 1), can scatter across several fields. The plethora of names and positions of boundary lines are diffi- are split rather evenly between the granite cult to remember, particularly because they mean little in terms of process. They also serve to carve up related rocks (e.g., one map unit) into several different rock types. and granodiorite fields. Thus, any random hand sample or outcrop of the Cathedral Peak pluton might be a granite or a grano- diorite or straddle the arbitrary boundary between them. This unit was designated a granodiorite because one or the other name had to be chosen, even though the pluton includes both. The nearby El Capitan Granite (Fig. 1) is also more-or- less evenly divided between the granite and granodiorite fields (with several points in the tonalite field), but it is offi- cially a granite. Rocks of the Kuna Crest suite, a set of medium-grained rocks with high color index, scatter over the grano- diorite, tonalite, quartz monzodiorite/ quartz monzogabbro, and quartz diorite/ quartz gabbro fields. This sort of artificial Figure 3. Modal data for plutonic units from Yosemite National Park, California, USA, from Bateman (1992). Many of the main units scat- ter evenly across the granite (monzogranite) and granodiorite fields, and petrologic vari- ability in the granodiorite of Kuna Crest crosses the common point of four fields, meaning that the rock could be called any of the four (really, six; see text). Q—quartz; A—alkali feldspar; P—plagioclase. ABQ M 50 40 30 Color 20 index 10 0 Q P A P A Figure 4. Modal data for 403 quartz-bearing plutonic rocks from the Sierra Nevada batholith, plotted on the quartz-alkali feldspar-plagioclase (QAP) triangle and in a tetrahedron whose base is QAP and whose apex M represents mafic minerals. It is clear that the proportion of mafic minerals (color index) increases dramatically away from the center of the QAP triangle, toward the QP sideline. This trend is neglected by the International Union of Geological Sciences classification. Data from Bateman et al. (1984) and Bateman et al. (1988). separation-by-name of closely related of classification. Noting an analogy described in the literature are covered by rocks is an unfortunate consequence of between mineral assemblages and life just one or two dozen. We compiled the fitting observations into arbitrarily assemblages, he said: number of citations in GeoRef mentioning defined boxes. How artificial a classification of faunas 19 of the most common IUGS names over Figure 3 also shows that the color indi- would be which was based on the ratio of the period 1970–2018. “Granite” made up ces of rocks called El Capitan Granite foxes to hares, of hares to moles and so on! just under half of the total number of cita- range from near zero to more than 20, an To be sure it is by no means accidental that tions (~223,000) in this list, and the names the ratio of hares to foxes is 10 in a certain important point to which the name “gran- area and only 2 in another, but as compared were distributed as in Figure 5. The first ite,” as defined by the IUGS system, gives with the broad factors controlling life in the nine names account for 90% of the cita- no indication. In general, color index two areas it is relatively accidental… So it is tions (allowing for multiple counting of increases moving away from the center of not accidental that a rock is nearly pure oliv- citations listing more than one name). the quartz-alkali feldspar-plagioclase ine here and only 75 per cent olivine a few As is common with textual data, feet distant, but it is relatively accidental and (QAP) triangle, toward plagioclase (Fig.
Recommended publications
  • Minor Elements in Magnetic Concentrates from the Syenite-Shonkinite Province, Southern Asir, Kingdom of Saudi Arabia
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Minor elements in Magnetic concentrates from the Syenite-Shonkinite Province, Southern Asir, Kingdom of Saudi Arabia I/ I/ I/ I/ W. C. Overstreet, G. W. Day, Theodore Botinelly, and George Van Trump, Jr. Open-File Report 87 r Report prepared by the U.S. Geological Survey in cooperation with the Deputy Ministry for Mineral Resources, Saudi Arabia This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, I/ USGS, Retired 2/ USGS, Denver, CO 1987 CONTENTS ABSTRACT............................................................ 1 ACKNOWLEDGMENT...................................................... 1 INTRODUCTION........................................................ 1 Areas covered and previous work................................ 1 Syenite plutons........................................... 3 Jabal Fayfa and Jabal Bani Malik..................... 3 Pluton southeast of Suq al Ithnayn................... 3 Shonkinite pluton at Jabal Atwid..................... 3 Mineral potential......................................... 3 Purpose of present investigation............................... 3 PROCEDURES.......................................................... 10 Collection and preparation of detrital magnetite............... 10 Mineralogical analyses......................................... 10 Semiquantitative spectrographic analyses....................... 11 Method...................................................
    [Show full text]
  • Feldspar and Nepheline Syenite 2016
    2016 Minerals Yearbook FELDSPAR AND NEPHELINE SYENITE [ADVANCE RELEASE] U.S. Department of the Interior January 2020 U.S. Geological Survey Feldspar and Nepheline Syenite By Arnold O. Tanner Domestic survey data and tables were prepared by Raymond I. Eldridge III, statistical assistant. In 2016, feldspar production in the United States was representing 46% of the 2016 production tonnages listed in estimated to be 470,000 metric tons (t) valued at $33.1 million, tables 1 and 2. an almost 10% decrease in quantity and a 11% decrease in Feldspar was mined in six States (table 3). North Carolina value compared with 2015 (table 1). Exports of feldspar in 2016 was by far the leading producer State; the remaining five were, decreased by 61% to 5,890 t, valued at $1.5 million, and imports in descending order of estimated output, Virginia, California, of feldspar decreased by 69% to 36,900 t, valued at $3.4 million. Idaho, Oklahoma, and South Dakota. Production was from Imports of nepheline syenite (predominantly from Canada) 10 mines and beneficiating facilities—4 in North Carolina, 2 in increased by 27% to about 572,000 t valued at $73 million. California, and 1 in each of the 4 remaining States (table 3). World production of feldspar in 2016 was 23.4 million metric I-Minerals Inc. continued the mine permitting process for tons (Mt) (tables 1, 7). its Helmer-Bovill project in north-central Idaho; the mine Feldspars, which constitute about 60% of the earth’s crust, would produce potassium feldspar, halloysite, kaolin, and are anhydrous aluminosilicate minerals of two main groupings: quartz.
    [Show full text]
  • Some Geologic and Exploration Characteristics of Porphyry Copper Deposits in a Volcanic Environment, Sonora, Mexico
    Some geologic and exploration characteristics of porphyry copper deposits in a volcanic environment, Sonora, Mexico Item Type text; Thesis-Reproduction (electronic); maps Authors Solano Rico, Baltazar, 1946- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 03:12:43 Link to Item http://hdl.handle.net/10150/566651 SOME GEOLOGIC AND EXPLORATION CHARACTERISTICS OF PORPHYRY COPPER DEPOSITS IN A VOLCANIC ENVIRONMENT, SONORA, MEXICO by Baltazar Solano Rico A Thesis Submitted to the Faculty of the DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN GEOLOGICAL ENGINEERING In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 5 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship.
    [Show full text]
  • CONTRIBUTION to PETROLOGY and K/Ar AMPHIBOLE DATA for PLUTONIC ROCKS of the HAGGIER MTS., SOCOTRA ISLAND, YEMEN
    Acta Geodyn. Geomater., Vol. 6, No. 4 (156), 441–451, 2009 CONTRIBUTION TO PETROLOGY AND K/Ar AMPHIBOLE DATA FOR PLUTONIC ROCKS OF THE HAGGIER MTS., SOCOTRA ISLAND, YEMEN 1) 2) .Ferry FEDIUK * and Kadosa BALOGH 1) Geohelp, Na Petřinách 1897, Praha 6, Czech Republic 2) Institute of Nuclear Research of the Hungarian Academy of Sciences *Corresponding author‘s e-mail: [email protected] (Received June 2009, accepted November 2009) ABSTRACT A morphologically distinct intrusive massif emerges from sedimentary Mesozoic/Tertiary cover in Eastern Socotra forming the high Haggier Mts. It is mostly composed of peralkaline and hypersolvus granite partly accompanied by gabbroic rocks. Amphibole, the sole mafic mineral of the granite, shows predominately the arfvedsonite composition, while riebeckite, for which Socotra is reported in most manuals of mineralogy as the “locus typicus”, occurs subordinately only. Either Paleozoic or Tertiary age has been assumed for this massif for a long time. In the last decade, however, K/Ar datings have been published clearly showing Precambrian (Neoproterozoic) age. The present authors confirm with somewhat modified results this statement by five new radiometric measurements of monomineral amphibole fractions yielding values of 687 to 741 Ma for granites and 762 Ma for gabbroic rocks. The massif represents an isolated segment of numerous late postorogenic Pan- African A-granite bodies piercing the Nubian-Arabian Shield and is explained as the result of partial melting of Pan-African calc-alkaline shield rocks in the closing stage of the orogeny. KEYWORDS: Yemen, Socotra, Arabian–Nubian Shield, K/Ar data, amphiboles, peralkaline granite, coronitic gabbronorite, Neoproterozoic 1.
    [Show full text]
  • Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
    Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • The Commingling of Diverse Magma Types in the Fwgstaff Ltlke Igneous Complex
    Maine Geological Survey Studies in Maine Geology: Volume 3 1989 The Commingling of Diverse Magma Types in the Fwgstaff Ltlke Igneous Complex Roger L. Nielsen1 Emily S. Landis Vincent M . Ceci Cynthia}. Post01i2 Department ofGeo logy University of Maryland College Park, Maryland 20742 1Present address: College of Oceanography Oregon State University Corvallis, Oregon 97331 2 Present address: Building 222, Room A/21 National Bureau ofStandards Gaithersburg, Maryland 20899 ABSTRACT The Flagstaff Lake Igneous Complex is a member of an array of Acadian plutons which extend from the Katahdin batholith in the northeast to New Hampshire in the southwest. It is characterized by four major rock types: (1) gabbro, (2) granite, (3) garnet tonalite, and (4) trondhjemite. Field, petrographic, and geochemical evidence support the hypothesis that these diverse rocks existed as contemporaneous liquids, and that extensive mixing occurred at the time of emplacement. The dominant mafic mineral pairs in the gabbros are olivine-clinopyroxene, two pyroxenes, and pyroxene­ hornblende. The high Fe, low Ni and Cr contents of most of the gab bro sampled imply that it underwent substantial fractional crystallization prior to and during emplacement. The granitic rocks of the Flagstaff Lake Igneous Complex are heterogeneous, ranging from two-mica granites with equal amounts (-30%) of orthoclase, plagioclase, and quartz, to mafic diorites. These K-feldspar-bearing silicic rocks are exposed over -40% of the areal extent of the complex. Trondhjemite containing biotite, plagioclase, cordierite, and quartz, with minor muscovite and K-feldspar, is located along the margins of the intrusion, particularly in areas where the contact between the gabbro and granite intersects aluminous metapelitic wall rocks.
    [Show full text]
  • Geology and Petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon Area, Crook County, Wyoming Don L
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1980 Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming Don L. Halvorson University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Halvorson, Don L., "Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming" (1980). Theses and Dissertations. 119. https://commons.und.edu/theses/119 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY AND PETROLOGY OF THE DEVILS TOWER, MISSOURI BUTTES, AND BARLOW CANYON AREA, CROOK c.OUNTY, WYOMING by Don L. Halvorson Bachelor of Science, University of Colorado, 1965 Master of Science Teaching, University of North Dakota, 1971 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 1980 Th:ls clisserratio.1 submitted by Don L. Halvol'.'son in partial ful­ fillment of the requirements fo1· the Degree of Doctor of Philosophy from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whora the work has been done. This dissertation meets the standards for appearance aud con­ forms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved.
    [Show full text]
  • Tom Abstraktow 6B-Ost Ver Publ.Pdf
    Cover photo: A euhedral, oscillatory zoned, primary monazite has been altered at the rims and along cracks to an allanite-apatite-xenotime assemblage. The host mineral is feldspar. Granite, Strzegom Massif. Workshop on accessory minerals, University of Warsaw, September 2014 Editors of Volume Bogusław BAGIŃSKI, Oliwia GRAFKA Witold MATYSZCZAK, Ray MACDONALD Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw Al. Żwirki i Wigury 93, 02-089 Warszawa [email protected] Language correction: Ray MACDONALD Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw Al. Żwirki i Wigury 93, 02-089 Warszawa [email protected] 1 Organizing committee: Bogusław BAGIŃSKI Ray MACDONALD Michał RUSZKOWSKI Financial support: Workshop on accessory minerals was financially supported by the Polish Ministry of Science and Higher Education subvention and research grant No N N307634040, Faculty of Geology University of Warsaw and PIG-PIB. 2 Workshop on accessory minerals, University of Warsaw, September 2014 Preface The progress made over the past two decades in our understanding of accessory minerals containing HFSE has been remarkable. Even when “fresh-minted”, minerals such as monazite, xenotime, allanite and zircon are compositionally and structurally complex. The complexity increases many times during low-temperature alteration processes, such as interaction with hydrothermal fluids and weathering. Progress has, of course, been expedited by the introduction of a range of exciting new technologies, especially in structure determinations. On re-reading the excellent 2002 review of accessory mineral research by Poitrasson et al., one is struck by how far the subject area has advanced in 12 years. We felt that this was an opportune time to bring together a group of Earth scientists with special expertise in accessory minerals to outline their current research interests, to share ideas and to consider productive future research directions.
    [Show full text]
  • Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide
    Chapter 1 – Introduction – Review of Rocks and Plate Tectonics Practice Exam and Study Guide To be able to understand the material covered during this course you need to have a basic background in the kinds of rocks making up our planet. This section of the study guide is aimed at helping you gain that background. 1. What are the three major groups of rocks found on planet Earth? Igneous Rocks 2. Which of the following processes is associated with igneous rocks? a. Solid‐state recrystallization b. Weathering and erosion c. Transportation and deposition d. Cooling a silicate liquid to a solid rock e. The accumulation of granitic debris in a moraine 3. If a silicate liquid flows out along the Earth’s surface or seabed, then it is called _______________. 4. If a silicate liquid exists beneath the Earth’s surface or seabed, then it is called _______________. 5. Which of the following terms refer to a body of magma or its solidified equivalent? a. Basalt b. Sandstone c. Gneiss d. Pluton e. Schist 6. If you can see the crystals making up an igneous rock with the naked eye, then the texture is described as a. Pyroclastic b. Phaneritic c. Aphanitic d. Porphyritic e. Aphyric from Perilous Earth: Understanding Processes Behind Natural Disasters, ver. 1.0, June, 2009 by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 7. In an aphanitic igneous rock can you make out the outlines of individual crystals with the naked eye? Yes or No 8. What type of igneous rock is the most volumetrically important on our planet? Intrusive Igneous Rocks 9.
    [Show full text]
  • Open-File Report 2005-1235
    Prepared in cooperation with the Idaho Geological Survey and the Montana Bureau of Mines and Geology Spatial databases for the geology of the Northern Rocky Mountains - Idaho, Montana, and Washington By Michael L. Zientek, Pamela Dunlap Derkey, Robert J. Miller, J. Douglas Causey, Arthur A. Bookstrom, Mary H. Carlson, Gregory N. Green, Thomas P. Frost, David E. Boleneus, Karl V. Evans, Bradley S. Van Gosen, Anna B. Wilson, Jeremy C. Larsen, Helen Z. Kayser, William N. Kelley, and Kenneth C. Assmus Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 2005-1235 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Abstract .......................................................................................................................................................... 1 Introduction
    [Show full text]
  • Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 349381, 8 pages http://dx.doi.org/10.1155/2013/349381 Research Article Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan Mohammad Arif,1 S. Wajid Hanif Bukhari,2 Noor Muhammad,3 and Muhammad Sajid1 1 Department of Geology, University of Peshawar, Peshawar 25120, Pakistan 2 Centre of Excellence in Mineralogy, University of Balochistan, Quetta 87300, Pakistan 3 Department of Mining Engineering, NWFP University of Engineering and Technology, Peshawar 25120, Pakistan Correspondence should be addressed to Mohammad Arif; arif [email protected] Received 17 April 2013; Accepted 11 May 2013 Academic Editors: M. Gregoire,N.Hirao,J.A.Morales,L.Tosi,andJ.Yvon´ Copyright © 2013 Mohammad Arif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
    [Show full text]
  • Laboratory 5 in Your Lab Book on Pages 129-152 to Answer the Questions in This Work Sheet
    LAST NAME (ALL IN CAPS): ____________________________________ FIRST NAME: _________________________ 6. IGNEOUS ROCKS AND VOLCANIC HAZARDS Instructions: Refer to Laboratory 5 in your lab book on pages 129-152 to answer the questions in this work sheet. Your work will be graded on the basis of its accuracy, completion, clarity, neatness, legibility, and correct spelling of scientific terms. Some rocks that you would be working with may have sharp edges and corners, therefore, be careful when working with them! When you are done with your lab work, please clean the desk and leave all materials you worked with in the same way you found them! INTRODUCTION MAFIC COLOR INDEX (MCI): Is an estimate of the % of mafic (dark) minerals by volume. Mafic minerals are dark colored minerals such as olivine, pyroxene, amphibole, and biotite; Felsic minerals are light colored minerals such as quartz, plagioclase feldspar, k-feldspar, and muscovite. Ultramafic rocks: CI > 85% (made up of more than 85% mafic minerals) Mafic rocks: CI 46-85% Intermediate rocks: CI 16-45% Felsic rocks: CI 0-15% ORIGIN OF ROCK (INTRUSIVE/EXTRUSIVE) Intrusive (plutonic): formed from magma; made up of large minerals (coarse-grained) Extrusive (volcanic): formed from lava; made up of microscopic crystals (fine-grained) TEXTURES OF IGNEOUS ROCKS Phaneritic: Coarse grain size; visible grains (1-10 mm); result of slow cooling Pegmatitic: Minerals are exceptionally large: > 1 cm long Porphyritic: Composed of crystals of 2 different sizes indicative of multistage cooling history (intrusive/extrusive) long period of slow partial cooling from a magma forms the large crystals sudden extrusion of the remaining magma and the already formed crystals Aphanitic: Fine grain size (< 1 mm); result of quick cooling Glassy: Lack crystals; superfast cooling Vesicular: Contains tiny holes called vesicles which formed due to gas bubbles in the lava.
    [Show full text]