Skeletal System 2: Structure and Function of the Musculoskeletal System

Total Page:16

File Type:pdf, Size:1020Kb

Skeletal System 2: Structure and Function of the Musculoskeletal System Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Keywords Musculoskeletal health/ Musculoskeletal system/Skeletal system Systems of life This article has been Skeletal system double-blind peer reviewed In this article... l The structure and function of muscles and joints l How pathology can affect the musculoskeletal system l Ways to promote good musculoskeletal health Skeletal system 2: structure and function of the musculoskeletal system Key points Author Jennie Walker is principal lecturer, Nottingham Trent University. The musculoskeletal system comprises Abstract Understanding the structure and purpose of the musculoskeletal system bones, cartilage, enables practitioners to understand common pathophysiology and consider the most ligaments, tendons appropriate steps to improve musculoskeletal health. This article, the second in a and muscles that two-part series, considers the structure and function of the musculoskeletal system, form a framework reviews the structure of muscles and joints and identifies some of the common for the body pathology occurring at these structures. The structure of a Citation Walker J (2020) Skeletal system 2: structure and function of the joint determines its musculoskeletal system. Nursing Times [online]; 116: 3, 52-56. plane and range of movement he musculoskeletal system is Joints Maintaining a made up of bones, cartilage, liga- The joints are the articulating surfaces healthy diet and ments, tendons and muscles, between two bones and may be classified physical exercise are Twhich form a framework for the according to how much movement they essential for good body. Tendons, ligaments and fibrous allow: musculoskeletal tissue bind the structures together to create l Synarthrosis – a fixed, unmovable joint; health stability, with ligaments connecting bone l Amphiarthrosis – a joint in which some to bone, and tendons connecting muscle to movement is possible; Musculoskeletal bone. There are 206 bones in the adult skel- l Diarthrosis – a freely movable joint pathophysiology eton; male and female skeletons are almost (Moini, 2020). can significantly the same, but the female skeleton has a They can also be classified according to reduce functional broader pelvis to accommodate childbirth the components that unite the bones (such as ability and quality and the male skeleton is typically taller fibrous structures, cartilaginous structures of life with greater bone density. The skeleton is and synovial structures), as shown below. divided into the: Understanding the l Axial skeleton – comprising the skull, Fibrous joints anatomy and vertebral column and the rib cage; Fibrous joints are articulating surfaces physiology of the l Appendicular skeleton – consisting of linked together with tough fibrous con- musculoskeletal the pelvic and pectoral girdles, and the nections. One example is the suture lines system allows upper and lower limbs (Cedar, 2012). in the skull, where bones that were initially practitioners to Coordinated movement is made pos- separate have become fused together (syn- consider signs and sible through the combination of pur- ostosis) to form one bone (Danning, 2019). symptoms, and poseful and synchronised movements As the suture line does not permit move- determine across the relevant muscles and bones to ment once fusion has occurred, this is con- appropriate create articulation of the joints. The con- sidered to be a synarthrotic joint. management figuration of the joint surface determines Syndesmoses are another type of the movement possible. Planes of move- fibrous joint, in which ligaments and ment include flexion, extension, abduc- interosseous membrane connect the joint tion, adduction, rotation and circumduc- to create a firm structure. One example is tion (Table 1). the inferior tibiofibular joint, in which Nursing Times [online] March 2020 / Vol 116 Issue 3 52 www.nursingtimes.net Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Systems of life interosseous, tibiofibular and transverse ligaments connect the distal tibia and Table 1. Planes of movement at the joint fibula of the lower leg. Another is the Movement Description Illustration radioulnar joint, where an intraosseous Flexion Bending the joint: membrane connects the distal radius and decreases the angle ulnar bones of the forearm. This can also between the bones be classified as an amphiarthrotic joint as it permits some movement to allow for Extension Straightening the limb Elbow (continuing the extension pronation and supination of the hand and joint Flexion past the anatomical forearm. straight line may be described as Extension Cartilaginous joints hyperextension) These joints are connected by tough carti- lage between the bone and can be classified Abduction Movement away from the as primary (synchondroses) or secondary midline (symphyses). Adduction Movement towards the midline Synchondroses Abduction Synchondroses are cartilaginous joints formed of hyaline cartilage, and are mainly found in the growing skeleton as the ossifi- cation centres of growing bone that will Adduction ossify over time (synostosis), such as the epiphyseal growth plate. Cartilaginous joints are usually immo- Rotation Movement around a longitudinal axis bile but, in a rare condition in children and adolescents, the attachment of the epiph- ysis loosens, allowing the femoral head to slip down the femoral neck. This is known Rotation as a slipped upper femoral epiphysis and often presents with the child developing an unexpected limp (Robson and Synder- Circumduction Movement in a circular combe Court, 2019). motion In the mature skeleton, an example of a synchondrosis is the first sternocostal joint (between the first rib and the manu- brium); all other sternocostal joints are synovial. Circumductioncumduction Symphyses Pronation For example. turning the These are permanent cartilaginous joints, palm of the hand Supination Pronation in which the bones are connected through downwards fibrocartilage; interestingly, these are all at the body’s midline (Robson and Synder- Supination For example, turning the combe Court, 2019). The intervertebral palm of the hand upwards discs between the vertebral bodies of the spine are an example of bones connected by fibrocartilage. These fibrous joints allow Opposition Movement of the thumb relatively limited movement individually across the palm to touch but extensive movement can be achieved the tips of the fingers on Opposition collectively across the whole spine. the same hand Another example of a symphysis is the symphysis pubis in the pelvis, which helps maintain pelvic stability. In pregnancy, the symphysis pubis is softened by hormones Inversion Turning the sole of the to allow for expansion during delivery. foot inwards This, together with the unfused bones of the baby’s skull, allows passage of the Eversion Turning the sole of the baby’s head through the birth canal. foot outwards As symphyses allow slight movement between the articulating surfaces, they are Eversion Inversion FRANCESCA CORRA FRANCESCA considered to be amphiarthroses. Nursing Times [online] March 2020 / Vol 116 Issue 3 53 www.nursingtimes.net Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Systems of life Table 2. Types of synovial joint Joint type Description Example Illustration Planar Two flat or slightly curved articulating l Intercarpal joints surfaces that slide against each other, l Intertarsal joints allowing a side-to-side and back-and-forth l Vertebral facets Plane Joint movement Carpals Hinge Typically has convex part of one bone that l Elbow sits inside the concave part of another and l Ankle allows a uni-axial movement, such as flexion l Knee Humerus and extension Hinge joint Radius Ulna Pivot One bone pivots around another to create a l Atlantoaxial joint between rotational movement around a single axis C1 (atlas) and C2 (axis) of the spine Humerus l Radioulnar joint between the radius and the ulnar, Ulna Pivot joint allowing them to pronate Radius and supinate the hand Condyloid An ovoid convex part sits in the ellipsoidal l Radiocarpal joint of the cavity of the other bone, which permits wrist Radius Ulna flexion/extension, abduction/adduction and l Metacarpophalangeal circumduction joints in the hand Lunate Scaphoid Saddle Allows articulation through reciprocal l Carpometacarpal joint of reception as the bones have concave-convex the thumb surfaces that interlock. Permits flexion/ extension, abduction/adduction and circumduction Trapezium First metacarpal Ball and The spheroid structure (ball) sits in the l Glenohumeral socket socket of another bone. This allows multiaxial l Acetabulofemoral (hip) movement and has the greatest range of Acetabulum movement. The depth of the socket and the of hip bone fibrocartilaginous labrum are the limiting Head of factors for motion femur Synovial joints muscles around the joint maintains move- attached to the periosteum, allowing Synovial joints are designed to allow free ment, while stability is maintained movement, maintaining tensile strength movement of the joint and are classified as through the use of soft tissue structures, and helping to prevent dislocation. Inside diarthroses. Characterised by a gap such as ligaments, labra, fat pads and the capsule are sensory nerve fibres, which between the articulating bones, they are menisci (Danning, 2019). detect pain and identify
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Mesenchymal Stem Cells in Combination with Hyaluronic Acid
    www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction.
    [Show full text]
  • (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: a Five-Year Follow-Up Prospective Cohort Study
    life Communication Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,5,* , Hanno Schenker 1, Arne Driessen 1 , Björn Rath 1,6 and Markus Tingart 1 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.D.); [email protected] (B.R.); [email protected] (M.T.) 2 School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK 3 Barts and the London School of Medicine and Dentistry, London E1 2AD, UK 4 Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria 6 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected] Abstract: Introduction: Many procedures are available to manage cartilage defects of the talus, Citation: Migliorini, F.; Eschweiler, J.; including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether Maffulli, N.; Schenker, H.; Driessen, AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the A.; Rath, B.; Tingart, M. Autologous present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized Matrix Induced Chondrogenesis focal unipolar chondral defects of the talar shoulder at midterm follow-up.
    [Show full text]
  • Series 1100TDM Tandem MEGALUG Mechanical Joint Restraint
    Series 1100TDM Tandem MEGALUG® Mechanical Joint Restraint High Pressure Restraint for Ductile Iron Pipe Features and Applications: • For use on Ductile Iron Pipe 4 inch through 54 inch • High Pressure Restraint • Torque Limiting Twist-Off Nuts • Mechanical Joint follower gland incorporated into the restraint • MEGA-BOND® Coating System For more information on MEGA- BOND, visit our web site at www. ebaa.com • Minimum 2 to 1 Safety Factor Series 1112TDM restraining a mechanical joint fitting. • Constructed of A536 Ductile Iron Post Pressure Rating • EBAA-Seal™ Mechanical Nominal Pipe Shipping Assembly (PSI) Joint Gaskets are provided Size Weights* Deflection with all 1100TDM MEGALUG 4 21.6 3° 700 restraints. These are required 6 33.0 3° 700 to accommodate the pressure ratings and safety factors 8 40.0 3° 700 shown. 10 60.2 3° 700 12 75.0 3° 700 • New: High strength heavy hex 14 112.7 2° 700 machine bolts with T-nuts are 16 131.6 2° 700 provided to facilitate easier assembly due to the fittings 18 145.2 1½° 500 radius area prohibiting the use 20 166.6 1½° 500 longer T-bolts. 24 290.2 1½° 500 30 457.9 1° 500 • T-Nuts constructed of High 36 553.63 1° 500 Tensile Ductile Iron with Fluropolymer Coating. 42 1,074.8 1° 500 48 1,283.1 1° 500 For use on water or wastewater 54 1,445.32 ½° 400 pipelines subject to hydrostatic NOTE: For applications or pressures other than those shown please pressure and tested in accordance contact EBAA for assistance.
    [Show full text]
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Embryonic Cell That Forms Cartilage Medical Term
    Embryonic Cell That Forms Cartilage Medical Term Unexploited Gordie languishes: he scumbles his initiatives atweel and esthetically. When Nate gestate his niggardliness Grecizing not post-free enough, is Mikhail windowless? Ship-rigged or millionth, Edgar never enshrining any millionairesses! The crest cell phenotype research in record area forms the body of shift review the Table 1. Where and repair differs substantially augments the embryonic cartilage tissue types of its tension adaptation and cells? In both types for medicine to that cartilage. Cells turn into differentiated stem cells that trace specific tissues and organs. Ambiguous cells the emergence of daughter stem a concept in. Mesenchymal Chondrosarcoma NORD National. Blood cells Chondro Oma Cartilage Tumor Arthro Joints Cartilage creates a. Can disturb blood cells and stromal which manufacture produce fat cartilage and bone. Label by following from NURSING 3345 at University of Texas Medical Branch. Body mostly a laboratory stem cells divide that form more cells called daughter cells. Guidelines for Human Embryonic Stem Cell with Brown. Abstract The skeletal system is formed of bones and cartilage which are. Each tissue cartilage bone and skeletal muscle goes through my different. Medical terms UCL. Please note love the definitions are moving given an explain another word found also a. Definition Stem cells are cells which feature not yet developed a special. The term totipotent refer down the grief that they ever total potential to. Stem from Research Uses Types & Examples Healthline. For cardiac muscle cells and was still pluripotent stem cells may also structures and cartilage that embryonic cell forms a primitive connective tissue physiology as well as macrophages are adequately informed consent.
    [Show full text]
  • Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor
    Human Anatomy (Biology 2) Lecture Notes Updated July 2017 Instructor: Rebecca Bailey 1 Chapter 1 The Human Body: An Orientation • Terms - Anatomy: the study of body structure and relationships among structures - Physiology: the study of body function • Levels of Organization - Chemical level 1. atoms and molecules - Cells 1. the basic unit of all living things - Tissues 1. cells join together to perform a particular function - Organs 1. tissues join together to perform a particular function - Organ system 1. organs join together to perform a particular function - Organismal 1. the whole body • Organ Systems • Anatomical Position • Regional Names - Axial region 1. head 2. neck 3. trunk a. thorax b. abdomen c. pelvis d. perineum - Appendicular region 1. limbs • Directional Terms - Superior (above) vs. Inferior (below) - Anterior (toward the front) vs. Posterior (toward the back)(Dorsal vs. Ventral) - Medial (toward the midline) vs. Lateral (away from the midline) - Intermediate (between a more medial and a more lateral structure) - Proximal (closer to the point of origin) vs. Distal (farther from the point of origin) - Superficial (toward the surface) vs. Deep (away from the surface) • Planes and Sections divide the body or organ - Frontal or coronal 1. divides into anterior/posterior 2 - Sagittal 1. divides into right and left halves 2. includes midsagittal and parasagittal - Transverse or cross-sectional 1. divides into superior/inferior • Body Cavities - Dorsal 1. cranial cavity 2. vertebral cavity - Ventral 1. lined with serous membrane 2. viscera (organs) covered by serous membrane 3. thoracic cavity a. two pleural cavities contain the lungs b. pericardial cavity contains heart c. the cavities are defined by serous membrane d.
    [Show full text]
  • Juncturae Ossium Membri Superioris) Rndr
    SPECIAL ARTHROLOGY Connections of the upper limb (juncturae ossium membri superioris) RNDr. Michaela Račanská, Ph.D. Lecture 8 – DENTISTRY – Autumn 2016 Connections of the shoulder girdle: scapula + clavicle – art. acromioclavicularis clavicle + sternum – art. sternoclavicularis Syndesmoses of the shoulder blade Connections of the free upper limb: Humerus + scapula – art. humeri Humerus + radius + ulna – art. cubiti Radius + ulna – membrana interossea antebrachii – art. radioulnaris distalis Radius + carpal bones– art. radiocarpea Carpal bones – art. mediocarpea carpal + metacarpal bones– art. carpometacarpea Metacarpal bones + phalanges proximales – art. metacarpophalangea Phalanges – art. interphalangea manus I. Articulatio sternoclavicularis Type: compound joint- discus articularis ball and socket (movements in connection to the scapula movements) A. head: facies articularis sternalis claviculae A. fossa: incisura clavicularis manubrii sterni AC: tough, short Ligaments: lig. sternoclaviculare anterius lig. sternoclaviculare posterius lig. interclaviculare lig. costoclaviculare Movements: small, to all direction II. Articulatio acromioclavicularis Type: ball and socket, sometimes discus articularis AS: facies art. acromialis (clavicula) + facies art. acromii (scapula) AC: tough, short ligaments: lig. acromioclaviculare lig. coracoclaviculare (lig. trapezoideum + lig. conoideum) lig. coracoacromiale - fornix humeri lig. transversum scapulae movements: restricted, in connections with movements in sternoclavicular joint Syndesmoses of the
    [Show full text]
  • Module 6 : Anatomy of the Joints
    Module 6 : Anatomy of the Joints In this module you will learn: About the classification of joints What synovial joints are and how they work Where the hinge joints are located and their functions Examples of gliding joints and how they work About the saddle joint and its function 6.1 Introduction The body has a need for strength and movement, which is why we are rigid. If our bodies were not made this way, then movement would be impossible. We are designed to grow with bones, tendons, ligaments, and joints that all play a part in natural movements known as articulations – these strong connections join up bones, teeth, and cartilage. Each joint in our body makes these links possible and each joint performs a specific job – many of them differ in shape and structure, but all control a range of motion between the body parts that they connect. 6.2 Classifying Joints Joints that do not allow movement are known as synarthrosis joints. Examples of synarthroses are sutures of the skull, and the gomphoses which connect our teeth to the skull. Amphiarthrosis joints allow a small range of movement, an example of this is your intervertebral discs attached to the spine. Another example is the pubic symphysis in your hip region. The freely moving joints are classified as diarthrosis joints. These have a higher range of motion than any other type of joint, they include knees, elbows, shoulders, and wrists. Joints can also be classified depending on the kind of material each one is structurally made up of. A fibrous joint is made up of tough collagen fiber, examples of this are previously mentioned sutures of the skull or the syndesmosis joint, which holds the ulna and radius of your forearm in place.
    [Show full text]
  • Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
    Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients.
    [Show full text]
  • Chapter 14. Anthropometry and Biomechanics
    Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28
    [Show full text]
  • Module 2 : Anatomy – the Skeleton
    Module 2 : Anatomy – The Skeleton In this module you will learn: The functions of the skeletal system The types of bones in the human body The effects of exercise on your bones What happens to the bones as we get older When studying to become a fitness instructor or personal trainer, you will learn all about the anatomy of the human body. Studying the skeleton is one of the foundations of your trade, you will need to know how the body is structured, the names of each bone, types of bones, importance of bone and joint health, detail of the spine and different terms of movement. Without stating the obvious, each of your clients has their own skeleton and you must be fully aware of how this works. This is for many reasons; you are a teacher and must be fully aware of how to prevent injuries, avoid unnecessary stress on the bones and, if qualified, help the client prevent or heal bone and joint related conditions or medical problems. 2.1 Understanding the Skeletal System The skeleton is comprised of 206 different bones that provide 5 main functions: Support mechanism for muscle and tissue Protection for organs Movement with bones, muscles, and joints Storing minerals and blood cells Growth Skeletal System 2.2 Bones are Formed by Ossification Some bones (such as the flat bones of your skull) in the body are formed in a similar stage to connective tissue. The process is known as direct or intramembranous ossification. Other bones are made up of cartilaginous matter, this is developed from future bone in the embryo which then dissolves and is replaced with other bone cells.
    [Show full text]