A Case Study in Horned Dinosaur Evolution

Total Page:16

File Type:pdf, Size:1020Kb

A Case Study in Horned Dinosaur Evolution Advances in Quantitative Methods in Dinosaur Palaeobiology: A Case Study in Horned Dinosaur Evolution by Caleb Marshall Brown A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Caleb Marshall Brown 2013 Advances in Quantitative Methods in Dinosaur Palaeobiology: A Case Study in Horned Dinosaur Evolution Caleb Marshall Brown Doctor of Philosophy Graduate Department of Ecology and Evolutionary Biology University of Toronto 2013 Abstract Discerning modes and rates of biological evolution and speciation are some of the primary objectives of evolutionary biology. Much palaeobiological work has focused on developing robust methods for testing and fitting evolutionary models to samples of fossils across a stratigraphic or temporal axis, with most analyses centering on marine invertebrates. Recent extensive sampling of dinosaur deposits now allows for testing of evolutionary modes in this clade, a first for large-bodied terrestrial vertebrates. Within dinosaur palaeobiology, the relative roles of anagenesis and cladogenesis in diversification, particularly for horned dinosaurs, are hotly debated. Due to their large sample sizes, well-documented stratigraphic positions, highly diagnostic ornamentation, and monodominant bonebeds (representing populations), centrosaurine dinosaurs from the Belly River Group of Alberta make an ideal model system for testing the predictions of these two divergent evolutionary modes. Despite this unparalleled fossil record, it (as well as most fossil records) is limited by missing data, small sample size, taphonomic biases, and stratigraphic error. In this thesis, I ii present case studies that attempt to quantify and better understand these limitations, and inform best practices for overcoming them. The first four chapters, utilizing data sets for crocodilians (extant archosaurs) and a model geological system (upper Belly River Group), allow for a better- constrained quantitative evolutionary analysis of the Belly River Group centrosaurines in chapter five. Correlations and time-series analyses of morphology and stratigraphic position of Centrosaurus apertus and Styracosaurus albertensis are used to test for directional trends and evolutionary model fitting. Evolutionary results are robust to multiple simulations of stratigraphic uncertainty, and overlap between the taxa depends on a single locality. Results find no support for anagenesis, and rather are consistent with taxonomic turnover due to punctuated evolutionary events or, more likely, ecological replacement due to habitat tracking. iii Acknowledgments Firstly I would like to thank my supervisors David Evans and Robert Reisz. David provided a research lab full of like-minded researchers always ready to collaborate on projects, work on developing new ideas or challenge existing ones. He constantly pushed the idea of hypothesis testing in palaeobiology, a powerful tool that has greatly shaped my research program. Robert provided the needed experience and ability to see the big picture in seemingly trivial details. Both supervisors also gave me enough freedom to pursue productive side projects along with my thesis research. Michael Ryan has been a longtime mentor and served on both the thesis and appraisal committee. His extensive experience with all things Centrosaurus was of great asset to the development of the ideas in the thesis. The other members of my thesis and appraisal committee, Peter Dodson, Don Jackson, Deborah McLennan, Mary Silcox, and Denis Walsh, provided encouragement and support, and poignantly illustrated gaps in my knowledge when necessary. David Eberth provided more than one crash course in sedimentology, was the most qualified ‘field assistant’ I will ever have, and was always willing to challenge my ideas as devils advocate. The research and technical crew at the Royal Ontario Museum, both staff and students, provided an amazing environment to grow as a scientist and person. Kevin Seymour was the man responsible for making sure things kept running and took care of numerous administrative hoops, many of which I am sure I am still unaware of. Ian Morrison, Brian Iwama, Shino Sugimoto, Peter Fenton, Janet Waddington, and Jean-Bernard Caron provided a positive research and social environment at the museum. David’s lab (Nicolás Campione, Collin VanBuren, Chris McGarrity, iv Derek Larson, Kirstin Brink, Kentaro Chiba, Ryan Schott, Jessica Hawthorn, and Matt Vavrek), were great collaborators, editors, debaters, and friends. Together they provided an immense amount of feedback and proofreading of my thesis and papers. Jessica Arbour, Nicolás Campione, and Matt Vavrek provided assistance with coding in R. Research discussions with Don Brinkman, Phil Currie, Don Henderson, Jordan Mallon, Tony Russell, Darren Tanke, François Terrien, and Jessica Theodor proved fruitful and greatly benefited the thesis. The specimens utilized for this thesis are housed a numerous institutions across North America and Europe, and access to these specimens is acknowledged in the respective chapters of the thesis. The staff of the Royal Tyrrell Museum and Royal Ontario Museum deserve special mention for their long history of openness and assistance with my research, and both feel like my academic homes. None of this research could have been possible without the collection and research of generations of scientists who have come before me. I am grateful for the financial support that I have been fortunate to receive including: NSERC CGS D - Alexander Graham Bell Canada Graduate Scholarship, Ontario Graduate Scholarship, numerous EEB and University of Toronto fellowships, and funding from the Dinosaur Research Institute and Jurassic Foundation. Finally I would like to family and friends, for their constant support during my thesis. My parents Jim and Deborah Brown encouraged my interest in science and natural history, and without their support I would not have pursued research. Most of all, I thank my partner, Lorna O’Brien, for her tireless support and encouragement. She has proofread and formatted countless manuscripts, listened patiently to all my crazy ideas, and put up with the stress of finishing not only one, but two theses. v Table of Contents ABSTRACT........................................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................. iv TABLE OF CONTENTS................................................................................................... vi LIST OF TABLES........................................................................................................... xvi LIST OF FIGURES ......................................................................................................... xix LIST OF APPENDICES................................................................................................ xxvi GENERAL INTRODUCTION.................................................................................... xxviii Thesis Design and Overview..................................................................................xxx Chapter One............................................................................................................xxx Chapter Two ........................................................................................................ xxxii Chapter Three ..................................................................................................... xxxiii Chapter Four.........................................................................................................xxxv Chapter Five ....................................................................................................... xxxvi Contributions to Co-authored Chapters............................................................. xxxvii References ......................................................................................................... xxxvii CHAPTER 1: Testing of the Effect of Missing Data Estimation and Distribution in Morphometric Multivariate Data Analyses .........................................................................1 Abstract.......................................................................................................................2 Introduction ................................................................................................................3 Institutional Abbreviations .............................................................................6 vi Materials .....................................................................................................................6 Variables.........................................................................................................7 Methods ......................................................................................................................8 Missing Data Input .........................................................................................8 Random .................................................................................................9 Anatomic Bias.......................................................................................9 Taxonomic Bias...................................................................................12 Missing Data Analysis..................................................................................13
Recommended publications
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • Offer Your Guests a Visually Stunning and Interactive Experience They Won’T Find Anywhere Else World of Animals
    Creative Arts & Attractions Offer Your Guests a Visually Stunning and Interactive Experience They Won’t Find Anywhere Else World of Animals Entertain guests with giant illuminated, eye-catching displays of animals from around the world. Animal displays are made in the ancient Eastern tradition of lantern-making with 3-D metal frames, fiberglass, and acrylic materials. Unique and captivating displays will provide families and friends with a lifetime of memories. Animatronic Dinosaurs Fascinate patrons with an impressive visual spectacle in our exhibitions. Featured with lifelike appearances, vivid movements and roaring sounds. From the very small to the gigantic dinosaurs, we have them all. Everything needed for a realistic and immersive experience for your patrons. Providing interactive options for your event including riding dinosaurs and dinosaur inflatable slides. Enhancing your merchandise stores with dinosaur balloons and toys. Animatronic Dinosaur Options Abelisaurus Maiasaura Acrocanthosaurus Megalosaurus Agilisaurus Olorotitan arharensis Albertosaurus Ornithomimus Allosaurus Ouranosaurus nigeriensis Ankylosaurus Oviraptor philoceratops Apatosaurus Pachycephalosaurus wyomingensis Archaeopteryx Parasaurolophus Baryonyx Plateosaurus Brachiosaurus Protoceratops andrewsi Carcharodontosaurus Pterosauria Carnotaurus Pteranodon longiceps Ceratosaurus Raptorex Coelophysis Rugops Compsognathus Spinosaurus Deinonychus Staurikosaurus pricei Dilophosaurus Stegoceras Diplodocus Stegosaurus Edmontosaurus Styracosaurus Eoraptor Lunensis Suchomimus
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • A Revision of the Ceratopsia Or Horned Dinosaurs
    MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY VOLUME III, 1 A.R1 A REVISION orf tneth< CERATOPSIA OR HORNED DINOSAURS BY RICHARD SWANN LULL STERLING PROFESSOR OF PALEONTOLOGY AND DIRECTOR OF PEABODY MUSEUM, YALE UNIVERSITY LVXET NEW HAVEN, CONN. *933 MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY Volume I. Odontornithes: A Monograph on the Extinct Toothed Birds of North America. By Othniel Charles Marsh. Pp. i-ix, 1-201, pis. 1-34, text figs. 1-40. 1880. To be obtained from the Peabody Museum. Price $3. Volume II. Part 1. Brachiospongidae : A Memoir on a Group of Silurian Sponges. By Charles Emerson Beecher. Pp. 1-28, pis. 1-6, text figs. 1-4. 1889. To be obtained from the Peabody Museum. Price $1. Volume III. Part 1. American Mesozoic Mammalia. By George Gaylord Simp- son. Pp. i-xvi, 1-171, pis. 1-32, text figs. 1-62. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $5. Part 2. A Remarkable Ground Sloth. By Richard Swann Lull. Pp. i-x, 1-20, pis. 1-9, text figs. 1-3. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $1. Part 3. A Revision of the Ceratopsia or Horned Dinosaurs. By Richard Swann Lull. Pp. i-xii, 1-175, pis. I-XVII, text figs. 1-42. 1933. To be obtained from the Peabody Museum. Price $5 (bound in cloth), $4 (bound in paper). Part 4. The Merycoidodontidae, an Extinct Group of Ruminant Mammals. By Malcolm Rutherford Thorpe. In preparation.
    [Show full text]
  • Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses By
    Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses by Elizabeth Kruk A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences University of Alberta © Elizabeth Kruk, 2015 Abstract Pachyrhinosaurus is a peculiar ceratopsian known only from Upper Cretaceous strata of Alberta and the North Slope of Alaska. The genus consists of three described species Pachyrhinosaurus canadensis, Pachyrhinosaurus lakustai, and Pachyrhinosaurus perotorum that are distinguishable by cranial characteristics, including parietal horn shape and orientation, absence/presence of a rostral comb, median parietal bar horns, and profile of the nasal boss. A fourth species of Pachyrhinosaurus is described herein and placed into its phylogenetic context within Centrosaurinae. This new species forms a polytomy at the crown with Pachyrhinosaurus canadensis and Pachyrhinosaurus perotorum, with Pachyrhinosaurus lakustai falling basal to that polytomy. The diagnostic features of this new species are an apomorphic, laterally curved Process 3 horns and a thick longitudinal ridge separating the supraorbital bosses. Another focus is investigating the ontogeny of Pachyrhinosaurus nasal bosses in a histological context. Previously, little work has been done on cranial histology in ceratopsians, focusing instead on potential integumentary structures, the parietals of Triceratops, and how surface texture relates to underlying histological structures. An ontogenetic series is established for the nasal bosses of Pachyrhinosaurus at both relative (subadult versus adult) and fine scale (Stages 1-5). It was demonstrated that histology alone can indicate relative ontogenetic level, but not stages of a finer scale. Through Pachyrhinosaurus ontogeny the nasal boss undergoes increased vascularity and secondary remodeling with a reduction in osteocyte lacunar density.
    [Show full text]
  • Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda)
    Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda) by Nicolás Ernesto José Campione Ruben A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto © Copyright by Nicolás Ernesto José Campione Ruben 2013 Inferring body mass in extinct terrestrial vertebrates and the evolution of body size in a model-clade of dinosaurs (Ornithopoda) Nicolás E. J. Campione Ruben Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto 2013 Abstract Organismal body size correlates with almost all aspects of ecology and physiology. As a result, the ability to infer body size in the fossil record offers an opportunity to interpret extinct species within a biological, rather than simply a systematic, context. Various methods have been proposed by which to estimate body mass (the standard measure of body size) that center on two main approaches: volumetric reconstructions and extant scaling. The latter are particularly contentious when applied to extinct terrestrial vertebrates, particularly stem-based taxa for which living relatives are difficult to constrain, such as non-avian dinosaurs and non-therapsid synapsids, resulting in the use of volumetric models that are highly influenced by researcher bias. However, criticisms of scaling models have not been tested within a comprehensive extant dataset. Based on limb measurements of 200 mammals and 47 reptiles, linear models were generated between limb measurements (length and circumference) and body mass to test the hypotheses that phylogenetic history, limb posture, and gait drive the relationship between stylopodial circumference and body mass as critics suggest.
    [Show full text]
  • A New Horned Dinosaur from an Upper Cretaceous Bone Bed in Alberta
    Darren H. Tanke Darren H. Tanke Langston, Jr. Wann Philip J. Currie, Philip J. Currie is a professor and Canada In the first monographic treatment of Research Chair at The University of Alberta Philip J. Currie, Wann Langston, Jr., & Darren H. Tanke a horned (ceratopsid) dinosaur in almost a (Department of Biological Sciences), is an Adjunct century, this monumental volume presents Professor at the University of Calgary, and was for- merly the Curator of Dinosaurs at the Royal Tyrrell one of the closest looks at the anatomy, re- Museum of Palaeontology. He took his B.Sc. at the lationships, growth and variation, behavior, University of Toronto in 1972, and his M.Sc. and ecology and other biological aspects of a sin- Ph.D. at McGill in 1975 and 1981. He is a Fellow of gle dinosaur species. The research, which was the Royal Society of Canada (1999) and a member A New Horned conducted over two decades, was possible of the Explorers Club (2001). He has published more because of the discovery of a densely packed than 100 scientific articles, 95 popular articles and bonebed near Grande Prairie, Alberta. The fourteen books, focussing on the growth and varia- tion of extinct reptiles, the anatomy and relationships Dinosaur From an locality has produced abundant remains of a of carnivorous dinosaurs, and the origin of birds. new species of horned dinosaur (ceratopsian), Fieldwork connected with his research has been con- and parts of at least 27 individual animals centrated in Alberta, Argentina, British Columbia, were recovered. China, Mongolia, the Arctic and Antarctica.
    [Show full text]
  • The Early Evolution of Biting–Chewing Performance in Hexapoda
    Chapter 6 The Early Evolution of Biting–Chewing Performance in Hexapoda Alexander Blanke Abstract Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (¼ silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a compa- rably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed. 6.1 Introduction Insecta sensu lato (¼ Hexapoda) display a high diversity of mouthpart shapes within the early evolved lineages which started to radiate approximately 479 million years ago (Misof et al. 2014). These shape changes were described qualitatively and were often stated to relate mainly to the type of food consumed (Yuasa 1920; Isely 1944; Evans and Forsythe 1985; Chapman and de Boer 1995). To the knowledge of the author, this and related statements regarding mouthpart mechanics being shaped by functional demands have never been tested in a quantitative framework.
    [Show full text]
  • A Subadult Individual of Styracosaurus Albertensis
    Vertebrate Anatomy Morphology Palaeontology 8:67–95 67 ISSN 2292-1389 A subadult individual of Styracosaurus albertensis (Ornithischia: Ceratopsidae) with comments on ontogeny and intraspecific variation inStyracosaurus and Centrosaurus Caleb M. Brown1,*, Robert B. Holmes2, Philip J. Currie2 1Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, AB, T0J 0Y0, Canada; [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; [email protected]; [email protected] Abstract: Styracosaurus albertensis is an iconic centrosaurine horned dinosaur from the Campanian of Alberta, Canada, known for its large spike-like parietal processes. Although described over 100 years ago, subsequent dis- coveries were rare until the last few decades, during which time several new skulls, skeletons, and bonebeds were found. Here we described an immature individual, the smallest known for the species, represented by a complete skull and fragmentary skeleton. Although ~80% maximum size, it possesses a suite of characters associated with immaturity, and is regarded as a subadult. The ornamentation is characterized by a small, recurved, but fused nasal horncore; short, rounded postorbital horncores; and short, triangular, and flat parietal processes. Using this specimen, and additional skulls and bonebed material, the cranial ontogeny of Styracosaurus is described, and compared to Centrosaurus. In early ontogeny, the nasal horncores of Styracosaurus and Centrosaurus are thin, recurved, and unfused, but in the former the recurved morphology is retained into large adult size and the horncore never develops the procurved morphology common in Centrosaurus. The postorbital horncores of Styracosaurus are shorter and more rounded than those of Centrosaurus throughout ontogeny, and show great- er resorption later in ontogeny.
    [Show full text]
  • New Evidence for Combat and Cannibalism in Tyrannosaurs 9 April 2015
    New evidence for combat and cannibalism in tyrannosaurs 9 April 2015 Researchers found numerous injuries on the skull that occurred during life. Although not all of them can be attributed to bites, several are close in shape to the teeth of tyrannosaurs. In particular one bite to the back of the head had broken off part of the skull and left a circular tooth-shaped puncture though the bone. The fact that alterations to the bone's surface indicate healing means that these injuries were not fatal and the animal lived for some time after they were inflicted. Lead author Dr David Hone from Queen Mary, University of London said "This animal clearly had a tough life suffering numerous injuries across the head including some that must have been quite nasty. The most likely candidate to have done this Artist's reconstruction of one Daspletosaurus feeding on another. Credit: Tuomas Koivurinne is another member of the same species, suggesting some serious fights between these animals during their lives". A new study documents injuries inflicted in life and There is no evidence that the animal died at the death to a large tyrannosaurine dinosaur. The hands (or mouth) of another tyrannosaur. However, paper shows that the skull of a genus of the preservation of the skull and other bones, and tyrannosaur called Daspletosaurus suffered damage to the jaw bones show that after the numerous injuries during life, at least some of specimen began to decay, a large tyrannosaur which were likely inflicted by another (possibly of the same species) bit into the animal Daspletosaurus.
    [Show full text]